初三中考数学知识点总结

合集下载

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。

中考数学考点总结归纳

中考数学考点总结归纳

中考数学考点总结归纳初三中考数学知识点总结1.同角或等角的余角相等。

2.过一点有且只有一条直线和已知直线垂直。

3.过两点有且只有一条直线。

4.两点之间线段最短。

5.同角或等角的补角相等。

6.边角边公理:有两边和它们的夹角对应相等的两个三角形全等。

7.角边角公理:有两角和它们的夹边对应相等的两个三角形全等。

8.推论:有两角和其中一角的对边对应相等的两个三角形全等。

9.边边边公理:有三边对应相等的两个三角形全等。

10.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。

11.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

12.直角三角形斜边上的中线等于斜边上的一半。

13.定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

14.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

15.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。

16.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形。

中考数学怎么快速提分中考数学复习课牵扯到一个系统化、完善化的关键环节,这个环节既关系到学生巩固、消化、归纳数学基础知识,提炼分析、解决问题的能力,又关系到学生对所学知识的实际运用,更是对学习基础较差的学生起到查漏补缺的作用。

中考数学复习课的教学一般具有“基础+提高+综合”的特点,不仅要完成教学任务,更要看重“教学有效性”。

因此,初三复习一般都要经历这么三轮复习:在中考复习阶段很多学生在初一、初二时期的单元考等中成绩都是比较优秀,但在初三综合模拟考中往往成绩却不佳。

究其原因一个是因为初一初二单元考等的范围小、内容少,而模拟考或中考试卷考查的范围大、知识面广、易混淆的知识点更多。

中考数学复习,时间紧迫,更需要我们看重教学有效性,如进行系统的复习,打好每一位学生的基础,使每个学生对初中数学知识尽量达到“理解”和“掌握”的要求;在熟练应用基础知识的同时进行提高、拓展和综合。

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全一、代数与函数1.数的性质:整数的除法、整除性及定理、分数的加减乘除、有理数的加减乘除、实数的性质。

2.代数式:代数式的定义、整式、分式、多项式、同类项、合并同类项、整式的加减乘除。

3.一次函数:一次函数的定义、一次函数的图象、一次函数的性质、解一次函数方程、应用题。

4.二次函数:二次函数的定义、二次函数的图象、二次函数的性质、解二次函数方程、应用题。

5.四则运算:整式的加减乘除、分式的加减乘除、根式的加减乘除。

二、平面几何1.角:角的定义、角的分类、角的性质、角度计量。

2.三角形:三角形的分类、三角形的性质、三角形的判定、三角形的面积计算、相似三角形。

3.四边形:四边形的分类、四边形的性质、平行四边形的性质、长方形、正方形、菱形。

4.圆:圆的性质、弦长定理、切线定理、扇形面积和弓形面积的计算。

5.计算:角度计算、线段比例计算、面积计算。

三、立体几何1.空间几何体:点、线、面、多面体的定义、性质、种类、展开图。

2.体积:立方体的体积计算、长方体的体积计算、棱柱的体积计算、棱锥的体积计算、圆柱的体积计算、球的体积计算。

四、数据与概率1.统计:数据的收集与整理、频数表、频率表、柱状图、折线图、扇形图。

2.概率:随机事件、样本空间、概率的定义、概率的计算、发生与不发生。

五、函数图象的认识和运用1.坐标系:直角坐标系、象限、坐标的含义。

2.函数:函数的概念、函数的图象、函数的性质、函数的运算。

3.函数关系:函数关系的表达、函数关系的应用。

4.反比例函数:反比例函数的性质、反比例函数的图象、反比例函数的应用。

六、数与量1.等比数列:等比数列的概念、等比数列的通项公式及性质、等比数列的前n项和的计算、应用题。

2.数轴,绝对值,数线图以上是中考数学知识点的一些提纲,总结了中考的数学考试内容,包括代数与函数、平面几何、立体几何、数据与概率、函数图象的认识和运用以及数与量等各个方面的知识点。

中考数学重要知识点归纳

中考数学重要知识点归纳

中考数学重要知识点归纳
一、数与式
1.整数与分数的运算
2.整式与分式的运算
3.代数式的加减乘除运算
4.矩形的面积与周长计算
二、代数式与方程
1.一元一次方程求解
2.一元二次方程求解
3.线性方程组求解
4.不等式的解集表示
三、几何
1.平面直角坐标系
2.直线与线段的性质
3.圆的性质与计算
4.三角形的性质与计算
5.平行线与角的性质
6.平面图形的对称性
四、函数
1.线性函数与线性方程的关系
2.幂函数与指数函数的计算与图像
3.函数的平移、翻折与对称
4.函数的最值与极值
五、统计与概率
1.统计数据的收集与整理
2.平均数、中位数、众数的计算
3.概率的计算与事件的排列组合
4.抽样调查的设计与分析
六、三角函数
1.直角三角形中的三角函数计算
2.任意角的三角函数计算
3.三角恒等式的证明与应用
4.根据图像判断三角函数与角度的关系
七、利益问题
1.简单利息与复利的计算
2.等额本息与等本等息的还款计算
3.百分数与比例的计算
以上是中考数学的重要知识点的归纳,考生可以根据这些知识点进行
系统地学习和总结,以提高数学考试成绩。

当然,除了掌握基础知识,考
生还需注重练习和思维能力的培养,通过多做题目、深入理解和独立思考,才能真正掌握数学知识,提升解题能力。

中考常考的数学知识点整理总结

中考常考的数学知识点整理总结

中考常考的数学知识点整理总结
一、基本运算:
1.整数的加、减、乘、除运算;
2.分数的加、减、乘、除运算;
3.小数的加、减、乘、除运算;
4.百分数与小数的互相转化;
5.指数与幂的运算;
6.四则混合运算。

二、代数与方程:
1.代数式的合并与展开;
2.一次方程与一元一次方程组的解法;
3.二次根式的运算;
4.平方根与立方根的计算;
5.平方差公式与完全平方公式的应用;
6.利用方程求解实际问题。

三、几何与图形:
1.基本图形的认识与性质:点、线、面、角等;
2.三角形的性质:角的性质、边的关系等;
3.直角三角形、等腰三角形、等边三角形的性质与计算;
4.平行线与平行四边形的性质;
5.四边形的性质:矩形、正方形、菱形等;
6.圆的性质与计算:弦、弧、切线等;
7.二维图形的面积与周长计算;
8.三维图形的体积与表面积计算;
9.直角坐标系与函数图像的认识与绘制。

四、统计与概率:
1.数据的收集与整理:调查、统计表、折线图等;
2.数据的分析与显示:频数、频率、平均数、中位数、众数等;
3.概率与事件的关系与计算;
4.排列与组合的计算。

这些知识点是中考数学中经常出现的内容,掌握了这些知识点,基本上就能解决中考中的大部分数学题目。

考生在备考时可以根据这些知识点进行有针对性的复习和练习,提高数学的解题能力。

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)掌握中考常考数学知识点是我们提高成绩的关键!在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

下面是小编给大家整理的初中中考常考数学知识点归纳总结,仅供参考希望能帮助到大家。

初中中考常考数学知识点归纳总结篇11.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如=x,=│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

中考数学必考知识点及总结

中考数学必考知识点及总结

中考数学必考知识点及总结一、代数1.整数运算:加减乘除,整数的乘方、乘方根、分式等的运算。

2.一元一次方程:解一元一次方程的方法,如用等式的性质、加减消元法、加法逆元素法、代入法等。

3.一元一次方程组:联立一元一次方程组的解法,如代入法、消元法等。

4.二元一次方程:通过解方程组方法以及用递推法。

5.实数的性质:包括有理数和无理数的性质、实数的数轴表示、实数的大小比较、实数的运算律等。

6.整式运算:包括多项式的加减乘除、综合运算等。

7.分式运算:包括分式的加减乘除、分式的化简、分式方程的解等。

8.二次根式:二次根式的概念、性质以及二次根式的加减乘除、化简等相关运算。

9.二次根式方程:涉及到解二次根式方程以及二次根式的应用等。

10.不等式:包括一元一次不等式、一元一次绝对值不等式、一元一次分式不等式、二元一次不等式等的解法。

11.初步函数:包括函数的概念、函数的表示、函数的对应法则、函数的性质等。

12.函数的图像:初步了解一元一次函数、一元二次函数的图像以及通过解题的方法掌握一元一次函数、一元二次函数的图像。

13.数列与等差数列:了解数列的概念、等差数列的概念、等差数列的通项公式、前n项和公式等。

二、平面几何1.线段的中点:中点的性质,中点的坐标,中点的应用。

2.线段的分点:分点的概念,分点的坐标,分点的共线性等相关知识。

3.三角形:三角形的性质、三角形的分类、三角形的周长、面积等相关知识。

4.多边形:包括正多边形的边数、对角、内角和外角等相关知识。

5.圆的相关性质:包括圆周率π、圆的面积、周长、内切外切相切线等相关知识。

6.平行线与相交线:包括平行线的性质、相交线的性质、平行线的判定等相关知识。

7.三角形的相似:了解相似三角形的性质、相似三角形的判定等相关知识。

8.勾股定理:了解勾股定理的概念、勾股定理的应用等相关知识。

9.平面直角坐标系:了解平面直角坐标系的概念、直角坐标系的应用等相关知识。

10.直角三角形:包括直角三角形的性质、勾股定理及其应用等相关知识。

初三中考数学知识点总结涵盖全部知识点

初三中考数学知识点总结涵盖全部知识点

第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数及它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 及b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点及原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 及b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

初三数学中考知识点总结

初三数学中考知识点总结

初三数学中考知识点总结一、代数1. 算式和开方- 四则运算和约束条件- 开平方与清值运算2. 质因数分解与最大公约数、最小公倍数- 素数、质因数- 互质数、最大公约数、最小公倍数- 多个数的最大公约数、最小公倍数3. 数的性质- 整数、奇数、偶数、素数、合数- 分数、小数、有限小数、循环小数、无限不循环小数- 相反数、绝对值、数轴- 整数的乘方、开方4. 一元一次方程- 一元一次方程与解的概念- 利用等式的性质解一元一次方程- 解一元一次方程的方法:列式法、图解法、加减消去法、清分法- 平均数与方程的联系5. 算式的变形与运算- 算式的变形:合并同类项、分配律、提公因式、平方差公式、差的平方、完全平方公式、立方差公式、差的立方- 数的运算:整数运算、分数运算、小数运算、有理数运算、乘方运算二、几何1. 直线,射线,线段,角,平行线,垂线,相交线及其性质- 线段、直线、射线的概念- 角的概念及角的种类- 平行线、垂线的概念及判定- 相交线的概念及性质2. 平面图形- 三角形的概念及分类- 四边形的概念及分类- 多边形的概念及分类- 圆的概念及性质3. 运动与空间几何- 平面镜像与对称- 平移、旋转、翻转- 空间几何与投影4. 相似与全等- 相似三角形的判定及性质- 全等三角形的判定及性质5. 空间立体与计算- 直方体、正方体、长方体- 圆柱、圆锥、圆台- 正四面体、正六面体、正八面体、正二十面体- 球及其计算- 空间角及其计算三、函数与方程1. 函数与方程- 函数的概念及性质- 方程与不等式的概念及解的概念- 一元一次不等式与解的概念- 数列与解的概念2. 解方程与不等式- 解一元一次方程的方法- 解一元一次不等式的方法- 解一元一次方程组的方法- 解遗方程组的方法3. 函数的性质与应用- 函数的性质:奇偶性、单调性、周期性、对称轴- 比例函数与线性函数的性质- 线性规律与折线图- 函数的应用:函数关系及应用、函数图形及性质、函数的表示及应用四、统计与概率1. 数据的收集和整理- 数据的收集方法- 数据的整理方法- 频数、频率、众数、中位数、平均数、极差2. 数据的分析和解读- 数据分布图:条形图、折线图、折线图- 数据的解读方法- 定量变量与定性变量3. 概率的基本概念- 随机事件及其概率- 概率计算方法:频率方法、古典概型方法、几何概率方法- 相互独立事件的概率计算- 事件的综合计算以上就是初三数学中考的全部知识点总结,希望对你有所帮助!。

初三中考数学知识点归纳

初三中考数学知识点归纳

初三中考数学知识点归纳初三中考数学知识点归纳是帮助学生系统复习和掌握数学基础概念、公式和解题技巧的重要工具。

以下是对初三中考数学知识点的归纳总结:一、数与代数1. 实数:包括有理数和无理数的概念,实数的性质和运算。

2. 代数式:包括代数表达式的简化、合并同类项、因式分解等。

3. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。

4. 函数:包括一次函数、二次函数、反比例函数的图像和性质。

5. 指数与对数:指数运算法则,对数的定义和基本性质。

二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本几何图形的性质。

2. 相似与全等:相似三角形、全等三角形的判定和性质。

3. 圆的性质:圆周角、切线、弧长、扇形面积等。

4. 立体几何:包括长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。

三、统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理和描述。

2. 统计图表:条形图、折线图、饼图的绘制和解读。

3. 概率:事件的确定性和不确定性,概率的计算方法。

四、解题技巧1. 审题:仔细阅读题目,理解题意。

2. 列式:根据题意列出相应的数学表达式或方程。

3. 计算:准确进行数学运算,注意运算顺序。

4. 检查:解题后要进行结果的检验和验证。

结束语通过以上对初三中考数学知识点的归纳,希望能帮助同学们更好地复习和准备中考。

数学学习需要不断的练习和思考,希望每位同学都能在中考中取得优异的成绩。

记住,数学不仅仅是记忆公式和定理,更重要的是理解其背后的逻辑和原理。

祝你们学习进步,考试顺利!。

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。

在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。

中考数学知识点总结归纳完整版

中考数学知识点总结归纳完整版

中考数学知识点总结归纳完整版
数学是一门重要的科学学科,对于我们的学习和生活都有着重要的作用。

而中考数学则是衡量学生数学水平的重要指标。

下面是对中考数学知识点的总结归纳:
一、整数和分数
1.整数的四则运算和混合运算
2.分数的四则运算和混合运算
3.整数与分数之间的互换
4.带分数的化简与计算
二、代数式和方程
1.代数式的定义和求值
2.合并同类项和提取公因式
3.一元一次方程和一元一次不等式
4.一元一次方程组的解法
5.一元一次不等式组的解法
三、几何
1.几何图形的基本概念和性质
2.平行线和三角形的性质
3.相似与全等的判定
4.三角形的面积和勾股定理
5.弧长和扇形的面积
6.圆的性质和相关定理
7.正多边形的性质和圆周角的证明
四、函数
1.函数的基本概念和表示方法
2.常用函数的图象和性质(线性函数、二次函数、绝对值函数等)
3.函数的增减性和最值的求解方法
4.函数的复合和反函数
5.解直接变比例和反比例的问题
五、统计与概率
1.统计图表的制作和分析
2.随机事件和概率的定义
3.事件间的关系和计算方法
4.排列和组合的计算方法
5.抽样调查和样本误差的计算
六、数与式的计算
1.取正负有理数的方法
2.科学记数法的转换和计算
3.根式的定义和运算
4.多项式的加减乘除运算
5.代数式的乘法和因式分解
七、解决实际问题
1.信息的理解和抽象
2.利用数学知识解决实际问题的方法
3.分析问题和建立模型
4.计算结果的验证和解释
5.问题的探究和拓展。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。

在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。

九年级数学中考知识点总结归纳

九年级数学中考知识点总结归纳

一、代数运算1.整式的加减运算:合并同类项、简化、展开式子等。

2.整式的乘法运算:平方、方阵、乘法公式等。

3.整式的除法运算:因式分解、提公因式等。

4.分式的加减乘除运算:通分、约简、整除法等。

二、方程与不等式1.一元一次方程及其应用:解方程、构造方程。

2.一元一次不等式及其应用:解不等式、解关系式、问题求解。

3.一元二次方程及其应用:解方程、配方法、应用题。

4.一元二次不等式及其应用:解不等式、解关系式、问题求解。

5.线性方程组及其应用:解方程组、应用题。

三、几何1.平面几何基本概念:点、直线、线段、角等。

2.平面图形的性质:三角形、四边形、圆等。

3.平行线与相交线的性质:相交线的角关系、对应角、同位角等。

4.相似三角形与勾股定理:相似三角形的性质与判定、勾股定理证明与应用。

5.三视图与视图变换:俯视图、前视图、侧视图的认识与画法、图形的旋转、翻转、平移等。

6.圆的相关概念与性质:圆的构造、角关系、切线与切圆、弦与弧等。

四、函数与图像1.函数基本概念:函数的定义、定义域、值域、图像等。

2.一次函数:通解、斜率与函数图像特征。

3.二次函数:解析式、顶点坐标、开口方向、对称轴等特征。

4.反比例函数:解析式、图像、变化规律等。

5.函数关系:函数的求值、函数图的性质、函数的复合等。

五、统计与概率1.数据的收集与整理:调查、记录、整理数据等。

2.图表的制作与分析:直方图、条形图、折线图、饼图等。

3.描述统计与概率:集中趋势、离散程度、概率计算等。

4.排列与组合:排列、组合的计算及应用。

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。

2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。

3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。

二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。

2. 分数的比较:可以先通分,再比较分子的大小。

3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。

4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。

三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。

2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。

3. 代数式的乘法:使用分配律,将每一项与其他项相乘。

4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。

四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。

2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。

3. 解一元一次不等式:通过运算规则,求出不等式的解集。

4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。

5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。

五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。

2. 空间图形:包括立体图形如球体、长方体、正方体等。

3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。

4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。

六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。

2. 平均数的计算:包括算术平均数、加权平均数等。

学科数学中考知识点总结

学科数学中考知识点总结

学科数学中考知识点总结一、数与代数1. 自然数、整数、有理数、实数和复数的相关概念。

2. 整式的概念,整式的加减乘除以及相关性质。

3. 一元一次方程与一元一次方程组,包括解法、实际问题和应用。

4. 一元一次不等式及其解法。

5. 一元二次方程及其解法,根与系数之间的关系。

6. 实系数多项式的相关概念,多项式的运算、根、系数与项数的关系。

7. 多项式整式的除法,多项式的因式分解以及分解方法。

8. 分式及其相关概念,分式的乘除法、分式方程及其解法。

9. 分式不等式及其解法。

10. 实数的大小比较及实数的绝对值。

11. 实数的实数平方根、实数立方根及其运算。

12. 复数及其相关概念,复数的加减乘除。

13. 多项式与一元一次方程的联系。

二、平面几何与空间几何1. 几何图形的基本性质,例如,各种三角形的性质、四边形的性质等。

2. 圆及其相关概念,圆的面积、周长与圆内接正多边形的面积的计算。

3. 直角坐标系,坐标的概念,点的坐标,距离的计算。

4. 直线和曲线的方程以及它们的相关性质。

5. 多边形的面积和周长的计算。

6. 三角形的面积,三角形的高、中线、角平分线等的相关概念及应用。

7. 直角三角形的三边关系及其应用。

8. 三角形的三边角关系及其证明。

9. 三角形的外心、内心、重心和垂心的相关概念及应用。

10. 圆锥曲线的相关概念,如椭圆、双曲线等。

11. 空间图形的相关概念和性质,如球体、柱体、锥体等的表面积和体积计算。

三、函数与图像1. 函数及相关概念,函数的自变量、因变量、定义域、值域和图像。

2. 一次函数的概念及相关性质,一次函数的表示形式和性质。

3. 一次函数的图像,一次函数的斜率、截距及其应用。

4. 一次函数的应用,如利润、成本、收入等问题的建立和求解。

5. 二次函数及其图像,二次函数的导数、顶点、对称轴及相关性质。

6. 二次函数与一元二次方程的关系,二次函数的最值及相关应用。

7. 二次函数与实际问题的应用。

中考数学知识点总结归纳

中考数学知识点总结归纳

中考数学知识点总结归纳中考数学知识点总结1知识点1:一元二次方程的基本概念1、一元二次方程3x2+5x—2=0的常数项是—2。

2、一元二次方程3x2+4x—2=0的一次项系数为4,常数项是—2。

3、一元二次方程3x2—5x—7=0的二次项系数为3,常数项是—7。

4、把方程3x(x—1)—2=—4x化为一般式为3x2—x—2=0。

知识点2:直角坐标系与点的位置1、直角坐标系中,点A(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系中,点A(1,1)在第一象限。

4、直角坐标系中,点A(—2,3)在第四象限。

5、直角坐标系中,点A(—2,1)在第二象限。

知识点3:已知自变量的值求函数值1、当x=2时,函数y=的值为1。

2、当x=3时,函数y=的值为1。

3、当x=—1时,函数y=的值为1。

知识点4:基本函数的概念及性质1、函数y=—8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=—3(x—2)2—5的开口向下。

5、抛物线y=4(x—3)2—10的对称轴是x=3。

6、抛物线的顶点坐标是(1,2)。

7.反比例函数的图像在第一和第三象限。

知识点5:数据的平均数中位数与众数1.数据13、10、12、8和7的平均值是10。

2.数据3,4,2,4,4的模式是4。

3、数据1,2,3,4,5的中位数是3。

知识点6:特殊三角函数值1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知识点7:圆的基本性质1.半圆或直径的圆周角是直角。

2.任何三角形都必须有一个外接圆。

3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同一圆或等圆内,等圆心角的圆弧相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法10(其中1≤a<10,n为整数)。

1、科学记数法:设N>0,则N= a×n2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

代数部分第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。

单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有: ))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式1、分式定义:形如BA 的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:(1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a a a aa a ;(3)b a ab ⋅=(a≥0,b ≥0);(4))0,0(≥≥=b a ba b a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。

(3)二次根式的除法:)0,0(≥≥=b a ba b a二次根式运算的最终结果如果是根式,要化成最简二次根式。

代数部分第三章:方程和方程组基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

相关文档
最新文档