2017-2018学年江西省吉安县第三中学、泰和县第二中学高二下学期期中考试物理试题 解析版
江西省南昌市第二中学2017-2018学年高二上学期第一次月考英语试题含答案
南昌二中2017—2018学年度上学期第一次月考高二英语试卷第一部分听力(共两节,满分30 分)第一节(共5小题;每小题1分,满分5分)听下面5段对话.每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍.1。
What does the man probably do?A. A shop assistant. B。
A policeman。
C. A postman。
2. How old is the man’s daughter?A。
Six months old。
B. One year old。
C。
Two years old。
3。
When did the woman plan to go to Spain?A. In spring。
B. In summer。
C。
In autumn。
4. Where will the speakers go first?A. A restaurant.B. A cinema.C. A hospital.5. What does the man think of the lecture?A. It was interesting。
B。
It was far beyond his understanding。
C. It was long but easy to understand。
第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题.6. What does the man usually do at home?A。
江西省南昌市第二中学2023-2024学年高一下学期5月期中英语试题(解析版)
南昌二中2023-2024学年度下学期高一期中考试英语试卷第一部分:听力理解(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。
1.What are the speakers talking about?A.A floodB. A fireC. A car accident2.How many tickets does the woman need to buy?A.7B.6C.53.What do we know about the man?A. He just bought a new house.B. He doesn’t get along with his roommates.C. He is a man of bad temper.4.What time is it now?A.9:00B. 9:10C.9:405.What does the man say about the woman?A. She should have been more active.B. She was very talkative.C. She danced very well.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,每小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.Where does the woman come from?A. Australia.B. EnglandC. Brazil.7.What does the woman do ?A. She’s a trader.B. She’s a student.C. She’s a receptionist.听第7段材料,回答第8至9题。
江西2023-2024学年高二下学期期中考试中职英语试卷(答案)
江西2023-2024学年高二下学期期中考试中职英语试卷本试卷共分三部分。
满分100分。
考试时间100分钟。
注意事项:1.答卷前,考生务必将答题纸密封线内的项目填写清楚。
2.用钢笔把所有答案写在答题纸上。
不能答在试卷上。
3.考试结束,将试卷和答题纸一并交回。
第一部分:英语知识运用(共两节,满分25分)第一节:语法和词汇知识(共10小题;每小题1分,满分10分)从A﹑B﹑C﹑D四个选项中,选出可以填入空白处的最佳选项。
1.She insisted that she _______ the book from the library.A.borrowedB.had borrowedC.borrowD.would borrow2.The book, _______ the author was blind, became a bestseller.A.thatB.whoseC.whichD.of which3.By the time he arrived, the train _______ for five minutes.A.had leftB.had been awayC.had goneD.had been gone4.It's necessary for students _______ English well before going abroad.A.learningB.to learnC.learnD.learned5.The man _______ saved the drowning child was awarded a medal.A.whoB.whomC.whoseD.that6.The manager demanded that the report _______ to him immediately.A.be submittedB.submittedC.should submitD.would be submitted7.Not until he apologized to me _______ that he was wrong.A.did he realizeB.he realizedC.does he realizeD.he realizing8.The teacher asked the students to _______ the new words in their notebooks.A.write downB.write outC.write upD.write off9.The more exercise you do, _______ you will be.A.the healthierB.healthierC.the healthiestD.healthiest10.He is such a good teacher _______ we all respect.A.thatB.whichC.asD.who第二节:完形填空(共15小题;每小题1分,满分15分)阅读下面短文,掌握其大意,然后从11-25各题所给的四个选项(A ﹑B﹑C和D)中,选出最佳选项。
2017-2018下学期金太阳5月份高二年级期中考试物理(B)(解析版)
2017-2018下学期金太阳5月份高二年级期中考试物理(B )(解析版)一、单项选择题(本大题共8小题,每小题3分,共24分)1.如图1所示,把一条长约10 m 的电线的两端连接在一个灵敏电流表的两个接线柱上,形成闭合回路,让两个同学迅速摇动电线.当他们摇动的电线沿哪个方向时,灵敏电流表的示数最大( )图1A .东西方向B .东偏北45°C .南北方向D .南偏东45°【解析】 地磁场的方向是由南指向北,当电线垂直磁场方向运动,即当电线沿东西方向放置时,感应电流最大,灵敏电流表的示数最大,本题应选A.【答案】 A2.(2018·滨州高二检测)如图2虚线所示的范围内有一匀强磁场,磁场方向垂直纸面向里,矩形线框abcd 沿水平方向并自左向右匀速通过磁场.当线框通过图中①、②、③位置时,线框内的感应电流分别为i 1、i 2、i 3,则( )图2A .i 1>i 3,i 2=0B .i 1<i 3,i 2=0C .i 1=i 3<i 2D .i 1=i 3,i 2=0【解析】 根据感应电流产生条件:穿过线圈的磁通量发生变化,所以当线圈完全进入时,线圈中没有感应电流.因此i 2=0.而线圈正在进入磁场与正在离开磁场时,导致磁通量发生变化,所以i 1、i 3都不等于零. 再根据切割磁感线产生电动势E =BLv 与I =ER 可得:i 1=i 3.故选D.【答案】 D3.穿过某线圈的磁通量随时间变化的关系如图3所示,在下列几段时间内,线圈中感应电动势最小的是( )图3A .0~2 sB .2~4 sC .4~5 sD .5~10 s【解析】 图像斜率的绝对值越小,表明磁通量的变化率越小,感应电动势也就越小.D 正确. 【答案】 D4.如图4所示,一个有弹性的金属圆环被一根橡皮绳吊于通电直导线的正下方,直导线与圆环在同一竖直面内,当通电直导线中电流增大时,弹性圆环的面积S 和橡皮绳的长度l 将( )图4A .S 增大,l 变长B .S 减小,l 变短C .S 增大,l 变短D .S 减小,l 变长【解析】 当通电导线中电流增大时,穿过金属圆环的磁通量增大,金属圆环中产生感应电流,根据楞次定律,感应电流要反抗磁通量的增大,一是用缩小面积的方式进行反抗,二是用远离直导线的方式进行反抗.故D 正确.【答案】 D5.如图5所示,一有限范围的匀强磁场宽度为d ,若将一个边长为L 的正方形导线框以速度v 匀速地通过磁场区域,已知d >L ,则导线框中无感应电流的时间等于( )图5A.d LB.L vC.d -L vD.d -2L v【解析】根据产生感应电流的条件可知:只要穿过闭合电路的磁通量发生变化,电路中就有感应电流,因此线框在进入和穿出磁场的过程中有感应电流.当线框全部处于磁场中时,穿过线框的磁通量不发生变化,没有感应电流产生.根据几何关系易知C选项正确.【答案】 C6.如图6所示,在圆形空间区域内存在关于直径ab对称、方向相反的两个匀强磁场,两磁场的磁感应强度大小相等,一金属导线制成的圆环刚好与磁场边界重合,下列说法中正确的是()图6A.若使圆环向右平动,感应电流先沿逆时针方向后沿顺时针方向B.若使圆环竖直向上平动,感应电流始终沿逆时针方向C.若圆环以ab为轴转动,a点的电势高于b点的电势D.若圆环以ab为轴转动,b点的电势高于a点的电势【解析】若圆环向右平动,由楞次定律知感应电流先沿逆时针方向后沿顺时针方向,A选项正确;若圆环竖直向上平动,由于穿过圆环的磁通量未发生变化,所以圆环中无感应电流产生,B选项错误;若圆环以ab为轴转动,在0~90°内,由右手定则知b点的电势高于a点的电势,在90°~180°内,由右手定则知a点的电势高于b点的电势,以后a、b两点电势按此规律周期性变化,C、D选项错误.【答案】 A7.MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,匀强磁场垂直穿过MN、GH 所在的平面,如图7所示,则()图7A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向由a到b到d到cB.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向由c到d到b到aC.若ab向左、cd向右同时运动,则abdc回路电流为零D.若ab、cd都向右运动,且两棒速度v cd>v ab,则abdc回路有电流,电流方向由c到d到b到a 【解析】若固定ab,使cd向右滑动,由右手定则知,应产生顺时针方向的电流,故选项A错;若ab、cd同向运动且速度大小相同,ab、cd所围的面积不变,磁通量不变,故不产生感应电流,故选项B错误;若ab向左、cd向右同时运动,则abdc中有顺时针方向的电流,故选项C错误;若ab、cd向右运动,且v cd>v ab,则ab、cd所围的面积发生变化,磁通量也发生变化,故由楞次定律可判断出产生由c到d到b 到a的电流,故选项D正确.【答案】 D8.(多选)(2017·广州高二期末)水平放置的平行板电容器图8与线圈连接如图8,线圈内有垂直纸面(设向里为正方向)的匀强磁场,为使带负电微粒静止在板间,磁感应强度B随时间t变化的图像应该是下列选项中的()【解析】要使带负电的微粒静止在板间,电容器上极板应带正电.线圈中感应电流的方向应沿逆时针方向,根据楞次定律可以判断,选项B、C正确.【答案】BC9.(2014·全国卷Ⅰ)如图9(a),线圈ab,cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()(a)(b)图9【解析】由题图(b)可知在cd间不同时间段内产生的电压是恒定的,所以在该时间段内线圈ab中的磁场是均匀变化的,则线圈ab中的电流是均匀变化的,故选项A,B,D错误,选项C正确.10.(多选)如图10所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )图10A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小【解析】 由题意可知,根据安培定则,在轨道内的M 区、N 区通电长直导线产生的磁场分别垂直轨道平面向外和向里,由此可知,当导体棒运动到M 区时,根据右手定则可以判定,在导体棒内产生的感应电流与长直绝缘导线中的电流方向相反,再根据左手定则可知,金属棒在M 区时受到的安培力方向向左,因此A 选项不正确;同理可以判定B 选项正确;再根据导体棒在M 区匀速靠近长直绝缘导线时对应的磁场越来越强,因此产生的感应电动势越来越大,根据闭合电路的欧姆定律和安培力的公式可知,导体棒所受的安培力F M 也逐渐增大,故C 选项正确;同理D 选项正确.【答案】 BCD11.(2018·宿迁高二联考)在半径为r 、电阻为R 的圆形导线框内,以直径为界,左、右两侧分别存在着方向如图11甲所示的匀强磁场.以垂直纸面向外的磁场为正,两部分磁场的磁感应强度B 随时间t 的变化规律分别如图乙所示.则0~t 0时间内,导线框中( )甲 乙图11A .没有感应电流B .感应电流方向为逆时针C .感应电流大小为πr 2B 0/(t 0R )D .感应电流大小为2πr 2B 0/(t 0R )【解析】 圆形导线框左侧磁通量向外增大,右侧磁通量向里减小,总磁通量由向里减小变为向外增大,由楞次定律可知,感应电流方向为顺时针,A 、B 均错误;ΔΦ=B 0·πr 22-⎝⎛⎭⎫-B 0·πr 22=B 0·πr 2,由E =ΔΦΔt ,I =E R 可得:感应电流大小为I =B 0·πr 2t 0R,C 正确,D 错误.12.(2016·江西高三期末)如图12所示,abcd 是由粗细均匀的电阻丝制成的长方形线框,导体棒MN 有电阻,可在ad 边与bc 边上无摩擦滑动,且接触良好,线框处于垂直纸面向里的匀强磁场中,当MN 棒由靠ab 边处向cd 边匀速移动的过程中,下列说法中正确的是( )图12A .MN 棒中电流先减小后增大B .MN 棒两端电压先增大后减小C .MN 棒上拉力的功率先增大后减小D .矩形线框中消耗的电功率先减小后增大【解析】 设MN 左、右两侧电阻丝的并联阻值为R 并,导体棒MN 的电阻为r ,则MN 棒中的电流I =BLvR 并+r,MN 棒两端电压U MN =BLv -I ·r ,因当导体棒MN 在线框中点时R 并最大,故MN 棒运动过程中,电流I 先减小后增大,而U MN 先增大后减小,A 、B 均正确;MN 棒上拉力的功率P F =BIL ·v =B 2L 2v 2R 并+r ,在MN 棒运动过程中,P F 先减小后增大,C 错误;因不知R 并与r 的大小关系,矩形线框中消耗的电功率大小变化情况无法确定,D 错误.【答案】 AB 二、计算题13.把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图13所示,一长度为2a ,电阻等于R ,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v 向右运动经过环心O 时,求:图13(1)棒上电流的大小和方向及棒两端的电压U MN ;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【解析】 (1)金属棒MN 切割磁感线产生的感应电动势为E =BLv =2Bav 外电路的总电阻为R 外=R ·R R +R =12R金属棒上电流的大小为I =E R 外+R =2Bav 12R +R =4Bav3R电流方向从N 到M 金属棒两端的电压为电源的路端电压 U MN =IR 外=23Bav .(2)圆环消耗的热功率为外电路的总功率 P 外=I 2R2=Bav 29R圆环和金属棒上消耗的总热功率为电路的总功率 P 总=IE =Bav 23R.【答案】 (1)4Bav 3R 由N →M 23Bav (2)Bav 29RBav23R14.如图14所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板.R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v .(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .图14【解析】 (1)导体棒匀速下滑时, Mg sin θ=Bil ① I =Mg sin θBl② 设导体棒产生的感应电动势为E 0 E 0=Blv ③由闭合电路欧姆定律得 I =E 0R +R x④ 联立②③④,得 v =2MgR sin θB 2l 2.(2)改变R x ,由②式可知电流不变.设带电微粒在金属板间匀速通过时,板间电压为U ,电场强度大小为EU =IR x ⑤ E =U d ⑥mg =qE ⑦ 联立②⑤⑥⑦,得 R x =mBld qM sin θ.【答案】 (1)2MgR sin θB 2l 2(2)mBldqM sin θ15.(2018·宁波高二检测)如图15所示,两平行导轨间距L =0.1 m ,足够长的光滑的倾斜部分和粗糙的水平部分圆滑连接,倾斜部分与水平面的夹角θ=30°,方向垂直斜面向上的磁场的磁感应强度B =0.5 T ,水平部分没有磁场.金属棒ab 的质量m =0.005 kg ,电阻r =0.02 Ω,运动中与导轨有良好接触,并且垂直于导轨,导轨上接一定值电阻R =0.08 Ω,其余电阻不计,当金属棒ab 从斜面上离地高h =1.0 m 以上的任何地方由静止释放后,在水平面上滑行的最大距离x 都是1.25 m .(g 取10 m/s 2)求:图15(1)金属棒在斜面上的最大速度; (2)水平面的动摩擦因数;(3)从高度h =1.0 m 处滑下后电阻R 上产生的热量.【解析】 (1)金属棒从离地高h =1.0 m 以上任何地方由静止释放后,在到达水平面之前已经开始做匀速运动设最大速度为v ,则感应电动势E =BLv ,感应电流I =ER +r,安培力F 安=BIL 匀速运动时,有mg sin θ=F 安,解得v =1.0 m/s. (2)在水平面上运动时,金属棒所受滑动摩擦力F f =μmg 金属棒在摩擦力作用下做匀减速运动,有 F f =ma ,v 2=2ax ,解得μ=0.04.(3)金属棒从高度h =1.0 m 处下滑的过程中,由动能定理可得mgh -W 安=12mv 2电路中产生的焦耳热等于克服安培力所做的功,有Q =W 安 电阻R 上产生的热量Q R =R R +r Q ,解得Q R =3.8×10-2 J.【答案】 (1)1.0 m/s (2)0.04 (3)3.8×10-2 J。
2017-2018学年第二学期高二数学文科期中考试试卷含答案
密 封 装 订 线2017—2018学年度第二学期八县(市)一中期中联考 高中二年数学科(文科)试卷命 题: 复 核:完卷时间:120分钟 满 分:150分第Ⅰ卷一、选择题(每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1、若212(1),1z i z i =+=-,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i --2、在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ) A. 100个吸烟者中至少有99人患有肺癌 B. 1个人吸烟,那么这人有99%的概率患有肺癌 C. 在100个吸烟者中一定有患肺癌的人D. 在100个吸烟者中可能一个患肺癌的人也没有3、下图是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明” 中的思维方法匹配正确的是( ) A .①—综合法,②—反证法 B .①—分析法,②—反证法 C .①—综合法,②—分析法 D .①—分析法,②—综合法4、用三段论推理命题:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的5、已知变量x 与y 负相关,且由观测数据算得样本平均数2, 1.5x y ==,则由该观测数据算得的线性回归方程可能是( )A .y=3x ﹣4.5B .y=﹣0.4x+3.3C .y=0.6x+1.1D . y=﹣2x+5.5 6、极坐标方程2cos 4sin ρθθ=所表示的曲线是( )A .一条直线B .一个圆C .一条抛物线D .一条双曲线7、甲、乙、丙三位同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是( )A .甲B .乙C .丙D .不确定8、如右图所示,程序框图输出的所有实数对(x ,y )所对应的点都在函数( ) A .y =x +1的图象上 B .y =2x 的图象上 C .y =2x 的图象上 D .y =2x -1的图象上 9、定义运算a b ad bc c d=-,若1201812z i i =(i 为虚数单位)且复数z满足方程14z z -=,那么复数z 在复平面内对应的点P 组成的图形为( )A. 以(-1,-2)为圆心,以4为半径的圆B. 以(-1,-2)为圆心,以2为半径的圆C. 以(1,2)为圆心,以4为半径的圆D. 以(1,2)为圆心,以2为半径的圆10、若下列关于x 的方程24430x ax a +-+=,2220x ax a +-=,22(1)0x a x a +-+= (a 为常数)中至少有一个方程有实根,则实数a 的取值范围是( ) A .3(,1)2-- B .3(,0)2- C .3(,][1,)2-∞-⋃-+∞ D .3(,][0,)2-∞-⋃+∞ 11、以下命题正确的个数是( )①在回归直线方程82^+=x y 中,当解释变量x 每增加1个单位时,预报变量^y 平均增加2个单位; ②已知复数21,z z 是复数,若221121z z z z z z ⋅=⋅=,则;③用反证法证明命题:“三角形三个内角至少有一个不大于060”时,应假设“三个内角都大于060”;④在平面直角坐标系中,直线x y l 6:=经过变换⎩⎨⎧==yy x x ''23:ϕ后得到的直线'l 的方程:x y =; A .1B .2C .3D .412、《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。
高二期中考试_数学试卷
一、选择题(本大题共20小题,每小题5分,共100分)1. 已知函数f(x) = 2x - 3,若f(2) = a,则a的值为()A. 1B. 3C. 5D. 72. 若a,b,c是等差数列,且a + b + c = 9,a^2 + b^2 + c^2 = 27,则ab + bc + ca的值为()A. 9B. 15C. 18D. 213. 已知等比数列{an}的公比为q,若a1 = 1,a2 + a3 = 8,则q的值为()A. 2B. 4C. 1/2D. 1/44. 已知函数f(x) = x^3 - 3x^2 + 2x,若f(x)在x = 1处取得极值,则该极值为()A. 0B. 1C. -1D. -25. 若等差数列{an}的前n项和为Sn,且S10 = 100,S20 = 300,则公差d的值为()A. 1B. 2C. 3D. 46. 已知函数f(x) = |x - 2| + |x + 1|,则f(x)的最小值为()A. 1B. 2C. 3D. 47. 若等比数列{an}的公比为q,若a1 = 2,a3 = 8,则q的值为()A. 2B. 4C. 1/2D. 1/48. 已知函数f(x) = (x - 1)^2,若f(x)在x = 2处取得极值,则该极值为()A. 0B. 1C. -1D. -29. 若等差数列{an}的前n项和为Sn,且S10 = 100,S20 = 300,则公差d的值为()A. 1B. 2C. 3D. 410. 已知函数f(x) = |x - 2| + |x + 1|,则f(x)的最大值为()A. 1B. 2C. 3D. 411. 若等比数列{an}的公比为q,若a1 = 1,a2 + a3 = 8,则q的值为()A. 2B. 4C. 1/2D. 1/412. 已知函数f(x) = (x - 1)^2,若f(x)在x = 2处取得极值,则该极值为()A. 0B. 1C. -1D. -213. 若等差数列{an}的前n项和为Sn,且S10 = 100,S20 = 300,则公差d的值为()A. 1B. 2C. 3D. 414. 已知函数f(x) = |x - 2| + |x + 1|,则f(x)的最小值为()A. 1B. 2C. 3D. 415. 若等比数列{an}的公比为q,若a1 = 2,a3 = 8,则q的值为()A. 2B. 4C. 1/2D. 1/416. 已知函数f(x) = (x - 1)^2,若f(x)在x = 2处取得极值,则该极值为()A. 0B. 1C. -1D. -217. 若等差数列{an}的前n项和为Sn,且S10 = 100,S20 = 300,则公差d的值为()A. 1B. 2C. 3D. 418. 已知函数f(x) = |x - 2| + |x + 1|,则f(x)的最大值为()A. 1B. 2C. 3D. 419. 若等比数列{an}的公比为q,若a1 = 1,a2 + a3 = 8,则q的值为()A. 2B. 4C. 1/2D. 1/420. 已知函数f(x) = (x - 1)^2,若f(x)在x = 2处取得极值,则该极值为()A. 0B. 1C. -1D. -2二、填空题(本大题共10小题,每小题5分,共50分)21. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, -2),则a,b,c的值分别为______。
江西省新余市第二中学2024-2025学年七年级上学期英语期中试卷(含答案)
2024-2025学年七年级上学期英语期中试卷一、单项选择(每题 1 分,共 15 分)1. —______ is your father?—He is a doctor.A. WhoB. WhatC. WhereD. How2. —______ are these apples?—They are ten yuan.A. How muchB. How manyC. What colorD. What size3. —______ is your favorite subject?—English.A. WhenB. WhatC. WhyD. How4. —______ do you usually go to school?—By bike.A. WhenB. WhereC. HowD. What5. There ______ some milk and two eggs on the table.A. isB. areC. haveD. has6. I like playing ______ soccer, but my sister likes playing ______ guitar.A. /; theB. the; /C. /; /D. the; the7. —______ your brother have a basketball?—Yes, he ______.A. Do; doB. Do; doesC. Does; doD. Does; does8. My mother often ______ stories to me before I go to sleep.A. tellsB. speaksC. saysD. talks9. —______ is your birthday?—It's on July 10th.A. WhatB. WhenC. WhereD. Why10. —Let's play basketball.—______ I'm late for class.A. Sounds good.B. Thank you.C. You're welcome.D. Sorry,I can't.11. I have a lot of ______ to do every day.A. homeworkB. homeworksC. houseworkD. houseworks12. —______ is your sister?—She's twelve years old.A. How oldB. How longC. How farD. How much13. He ______ his homework at school.A. don't doB. doesn't doC. isn't doD. does not14. —What's your favorite ______?—Pandas. They are cute.A. foodB. colorC. animalD. sport15. We have English class ______ Monday, Wednesday and Friday.A. inB. onC. atD. to二、完形填空(每题 1 分,共 10 分)Hello! My name is Li Hua. I'm a student in No. 1 Middle School. I'm in Class One, Grade Seven. I have a good friend. 16 name is Wang Lin. We are in the same class.Wang Lin is a good student. He 17 hard at school. He often helps other students with their studies. Everyone in our class 18 him.I like to play with Wang Lin after class. We usually play 19 or basketball. His favorite sport is basketball. He plays it very 20. We also like to 21 to music. Wang Lin has a great CD collection. He has 22 all kinds of CDs.Wang Lin is a kind and helpful boy. He often helps his parents 23 the housework at home. He also helps old people cross the street. We should learn from 24.I'm very happy to have such a good friend. I hope our 25 will last forever.16. A. His B. Her C. My D. Your17. A. works B. plays C. reads D. writes18. A. likes B. hates C. misses D. knows19. A. cards B. games C. chess D. tennis20. A. well B. good C. nice D. fine21. A. listen B. listening C. listens D. listened22. A. more than B. less than C. at least D. at most23. A. in B. with C. to D. on24. A. him B. her C. them D. us25. A. friendship B. school C. class D. study三、阅读理解(每题 2 分,共 30 分)(A)My name is Tom. I'm a student in No. 7 Middle School. I have a busy day.I usually get up at 6:30 in the morning. Then I have breakfast at 7:00.I go to school at 7:30. School starts at 8:00. I have four classes in the morning and three classes in the afternoon. My favorite subject is English.I think it's interesting.I have lunch at 12:00 at school. After lunch, I have a short rest. Classes finish at 4:30 in the afternoon. Then I go home and do my homework. I have dinner at 6:30 in the evening. After dinner, I usually watch TV for a while. Then I go to bed at 9:30.26. Tom is a student in ______.A. No. 6 Middle SchoolB. No. 7 Middle SchoolC. No. 8 Middle SchoolD. No. 9 Middle School27. Tom usually gets up at ______.A. 6:00B. 6:30C. 7:00D. 7:3028. Tom has ______ classes every day.A. fourB. fiveC. sixD. seven29. Tom's favorite subject is ______.A. EnglishB. ChineseC. mathD. music30. Tom usually ______ after dinner.A. plays basketballB. plays gamesC. watches TVD. reads books(B)Hello! I'm Mary. I'm an English girl. I'm twelve years old. I'm in Class Two, Grade Seven. I have a brother. His name is Tom. He is in Class Four, Grade Nine.I like English and math. I think they are interesting. I don't like Chinese. It's too difficult. My favorite sport is tennis. I often play tennis with my friends after school.Tom likes sports, too. He likes basketball. He often plays basketball with his classmates on the playground.31. Mary is ______ years old.A. 9B. 10C. 11D. 1232. Mary's brother is in ______.A. Class Four, Grade SevenB. Class Two, Grade NineC. Class Four, Grade NineD. Class Two, Grade Seven33. Mary likes ______.A. ChineseB. mathC. historyD. geography34. Mary's favorite sport is ______.A. tennisB. basketballC. volleyballD. soccer35. Tom often plays basketball with ______.A. his friendsB. his classmatesC. his brotherD. his teachers(C)There are four people in my family. They are my father, my mother, my sister and I.My father is a doctor. He works in a hospital. He likes his job very much. He is always busy with his work.My mother is a teacher. She teaches English in a middle school. She is kind and patient. The students all like her.My sister is a student. She is in Grade Nine. She studies hard. She wants to go to a good high school.I'm a student, too. I'm in Grade Seven. I like playing basketball. I often play basketball with my friends after school.36. How many people are there in the family?A. Three.B. Four.C. Five.D. Six.37. What's the father's job?A. A teacher.B. A doctor.C. A worker.D. A farmer.38. Where does the mother work?A. In a hospital.B. In a bank.C. In a middle school.D. In an office.39. What grade is the sister in?A. Grade Seven.B. Grade Eight.C. Grade Nine.D. Grade Ten.40. What's the writer's hobby?A. Playing football.B. Playing tennis.C. Playing basketball.D. Playing volleyball.四、词汇运用(每题 1 分,共 10 分)A. 根据句意及首字母提示完成单词。
江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析
江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。
江西省南昌市第二中学2024_2025学年高二英语上学期第三次月考试题
江西省南昌市其次中学2024-2025学年高二英语上学期第三次月考试题第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回题和阅读下一小题。
每段对话仅读一遍。
1. What will the speakers buy for Emma's birthday?A. A pet.B. A book.C. Some cakes.2. When did the football match start?A. At 2:15B. At 2:30C. At 2:45.3. Where are the two speakers?A. On a plane.B. In a shop.C. In a restaurant.4. How did the man know Lisa had come back from the U. K.?A. He saw her.B. Peter told him.C. Lisa gave him a call.5. What are the speakers talking about?A. A club.B. A theft.C. A cupboard.其次节(共15小題;每小题1.5分,满分22. 5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C二个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题.每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. How much is the extra large tent per day?A. $ 10.B. $ 50.C. $ 60.7. What do we know about the man?A. He'll return the tent in a month.B. He will not get a discount.C. He'll reserve a tent now.听第7段材料,回答第8、9题。
2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷(含答案)
2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知z =1−i ,则z (1−z )=( )A. −1−iB. −1+iC. 1−iD. 1+i2.已知椭圆方程为x 236+y 264=1,则该椭圆的长轴长为( )A. 6B. 12C. 8D. 163.已知椭圆C:x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 于A 、B 两点,则△AF 1B 的周长为( )A. 2B. 4C. 23 D. 434.已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2,则渐近线方程是( )A. y =±12xB. y =±2xC. y =±3xD. y =±33x 5.已知抛物线的焦点在直线x−2y−4=0上,则此抛物线的标准方程是( )A. y 2=16xB. x 2=−8yC. y 2=16x 或x 2=−8yD. y 2=16x 或x 2=8y6.“a =3”是“直线l 1:ax−2y +3=0与直线l 2:(a−1)x +3y−5=0垂直”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知动圆C 与圆C 1:(x−3)2+y 2=4外切,与圆C 2:(x +3)2+y 2=4内切,则动圆圆心C 的轨迹方程为( )A. 圆B. 椭圆C. 双曲线D. 双曲线一支8.一个工业凹槽的截面是一条抛物线的一部分,它的方程是x 2=4y,y ∈[0,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A. 12B. 1C. 2D. 52二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
江西省部分学校2023-2024学年高二下学期期中考试数学试题
江西省部分学校2023-2024学年高二下学期期中考试数学试题一、单选题1.已知函数()221f x x x =-+,则()f x 从1到1Δx +的平均变化率为( )A .2B .2Δ3x +C .22(Δ)3Δx x +D .22(Δ)Δ1x x -+ 2.曲线()()1e x f x x =+在0x =处的切线方程为( )A .1y x =+B .2y x =+C .22y x =+D .21y x =+ 3.一个质点做直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式522(3)2s t t =+--,则当1t =时,该质点的瞬时速度为( )A .10米/秒B .8米/秒C .6米/秒D .12米/秒 4.下列导数运算正确的是( )A .'=B .()1x x a xa -'= C .1ln x x '⎛⎫= ⎪⎝⎭ D .(sin )cos x x '=-5.已知函数()()32213f x x f x '=++,则()2f =( )A .3B .2C .1-D .1 6.若sin 2()x f x x =,则(π)f '=( ) A .2π B .1π C .2 D .2π7.函数()e 2x f x x =-+在[]22-,上的值域为( ) A .23,e ⎡⎤⎣⎦ B .23,e 4-⎡⎤+⎣⎦ C .22e 4,e -⎡⎤+⎣⎦ D .2e 1,e ⎡⎤+⎣⎦8.某工厂需要建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,则要使砌墙所用材料最省,则堆料场的长和宽各为( )A .16 m ,16mB .32m ,16mC .32 m ,8mD .16m ,8m二、多选题9.若函数()f x 的导函数为()f x ',且()1ln e e f x x f x ⎛⎫=-+ ⎪⎝⎭',则( )A .e e 1f ⎛⎫'= ⎪⎝⎭B .20e f ⎛⎫= ⎪⎭'⎝C .()2ln2f =D .()1e f =10.下列求导运算正确的是( ).A .322113x x x x '⎛⎫+=+ ⎪⎝⎭B .2ln 1ln x x x x '-⎛⎫= ⎪⎝⎭C .()22e 2e '=x xD .()2cos 2sin x x x x '=-11.设函数()f x 在R 上可导,其导函数为f ′ x ,且函数()()1y x f x =-'的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 在()2,∞+上为增函数B .函数()f x 在()2,1-上为增函数C .函数()f x 有极大值()2f 和极小值f 1D .函数()f x 有极大值()2f -和极小值()2f三、填空题12.已知函数()y f x =在1x =处的切线方程为43y x =-,求()(1)1f f '+=.13.已知函数()y f x =的导函数为()y f x ''=,定义方程()()f x f x '=的实数根0x 叫做函数()y f x =的“新驻点”.设()cos f x x =,则()y f x =在区间()0π,上的“新驻点”为. 14.某个体户计划同时销售A ,B 两种商品,当投资额为x ()0x >千元时,在销售A ,B 商品中所获收益分别为()f x 千元与()g x 千元,其中()2f x x =,()()4ln 21g x x =+,如果该个体户准备共投入5千元销售A ,B 两种商品,为使总收益最大,则B 商品需投千元.四、解答题15.求下列函数的导数.(每小题4分,需有答题过程)(1)cos ()e xx f x =; (2)()()22131y x x =-+;(3)()f x = (4)1cos sin x y x+=. 16.已知函数()2ln f x x ax x =++(a ∈R ),且()14f '=.(1)求()f x 的解析式;(2)求函数()f x 的图象在点()()22f ,处的切线方程.17.已知函数2()f x x x =+与函数()ln 2g x x x =+.(1)求曲线()y f x =在点(0,0)处的切线方程;(2)求曲线()y f x =与曲线()y g x =在公共点处的公切线方程.18.已知函数()()21e x f x x x =++.(1)求函数()f x 在0x =处的切线方程;(2)求函数()f x 的单调区间.19.高二学农期间,某高中组织学生到工厂进行实践劳动.在设计劳动中,某学生欲将一个底面半径为20cm ,高为40cm 的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.(1)求该圆柱的侧面积的最大值;(2)求该圆柱的体积的最大值.。
江西省20172018学年度普通中学省级优秀学生、名单
附件1江西省2017/2018学年度普通中学省级优秀学生名单南昌市(4名)杨旭男南昌市第二中学李泓一女南昌大学附属中学陈熊宇男江西师范大学附属中学曾进男江西师范大学附属中学九江市(3名)曹雯女瑞昌市第一中学周烨仪女修水县第一中学刘江浔男九江市同文中学景德镇市(1名)徐明慧女江西省乐平中学萍乡市(1名)欧阳健男萍乡市湘东中学新余市(1名)胡佳婧女新余市第一中学鹰潭市(1名)曾文玥女鹰潭市第一中学赣州市(6名)刘鹏男江西省赣州中学郑鹏男兴国县平川中学第页谢雨曦女赣州市第三中学王璟男江西省南康中学刘佳忆女宁都县宁都中学陈龙男赣县中学北校区宜春市(含丰城市)(4名)敖旭扬男江西省樟树中学谌志弦男江西省宜春中学熊睿女江西省宜丰中学陈爽男江西省丰城中学上饶市(含鄱阳县)(5名)周叶楚源女铅山一中任宇千女上饶市第二中学陈子萌女上饶市第一中学王卓超男江西省鄱阳中学严缪龙飞男弋阳县第一中学吉安市(3名)朱宇辰男吉安县立中学陈路逸男江西省新干中学谭祖玮男吉安市第一中学抚州市(3名)熊凌霄男抚州一中张铎瀚男临川一中龙旭明男临川二中第页附件2江西省2017/2018学年度普通中学省级“三好”学生、优秀学生干部名单南昌市初中三好学生(51名)胡成宇男南昌市第一中学刘晨骏男南昌市心远中学肖子璇女南昌市第二中学罗天阳男江西育华学校刘雨杨男南昌市第八中学喻茗玥女南昌百树学校芦骏豪男南昌市第十二中学李松安男南昌市雷式学校张惟昊男南昌市第十三中学余斌煜男安义县第二中学刘沛扬男南昌第十五中学马亦宸男南昌市育新学校刘昀喆男南昌三中高新校区应青雅女南昌外国语高新学校郑钰婷女南昌市第十八中学潘毅诚男南昌市昌北第一中学杨数男南昌市第十九中学黄雨晗女南昌新城学校骆婷女南昌市第二十中学黄钰婷女南昌市培英学校熊子健男南昌市第二十三中学喻辉阳男南昌二十八中教育集团青云学校万立阳男南昌市第二十四中学陶琦女进贤县第一初级中学杨家浩男南昌市第二十六中学陈汉男进贤县第二中学第页万松毅男南昌市第二十七中学饶煜东男南昌市新建区第五中学杨静仪女南昌市第二十七中学万诗涛男南昌市新建区第六中学刘子旋女南昌市第二十八中学仲承烨男南昌市新建区竞晖学校樊彤琳女南昌市实验中学邹聿华男南昌市新建区育明学校刘子馨女南昌市八一中学万婧蕾女江西省南昌县莲塘四中黄梓翀男南昌市八一中学范吴双男江西省南昌县莲塘五中黄震宇男南昌市洪都中学龚著杰男江西省南昌县武阳中学万欣女南昌市铁路第一中学闵鹰群男江西省南昌县莲塘六中罗荔馨女南昌市外国语学校黄安可男江西省南昌县三江中学刘怿钒男南昌市豫章中学喻亮男江西省南昌县莲塘五中吴丝雨女南昌莲松学校黄晨曦男南昌市红谷滩新区实验学校熊馨女南昌宏宇学校胡旸男南昌市云飞第二学校徐闵煊男南昌市心远中学初中优秀学生干部(10名)陈晨萌萌女南昌市第二中学(初中)骆宗万男江西省安义县第二中学孙雨辰男南昌市第十四中学钟文昊男南昌市心远中学刘文昊男南昌市第二十八中学刘思琪女江西省南昌县莲塘四中林子祺女南昌市洪都中学杨紫瑶女青山湖区义坊学校杨博宇男南昌市外国语学校陈煜东男南昌市新建区第五中学第页高中三好学生(118名)安益汇男南昌市第一中学孙超男江西师范大学附属中学曹茂天男南昌市第一中学曾进男江西师范大学附属中学范婷婷女南昌市第一中学古俊龙男江西师范大学附属中学胡振新男南昌市第一中学王子仪女江西师范大学附属中学涂浪静女南昌市第一中学陈熊宇男江西师范大学附属中学杨伟博男南昌市第一中学廖轶琪女南昌大学附属中学胡皓东男南昌市第二中学李泓一女南昌大学附属中学张清泉男南昌市第二中学万伟男南昌大学附属中学杨旭男南昌市第二中学范嘉颖女南昌大学附属中学陈泽禹男南昌市第二中学敖希希女南昌大学附属中学吴宇澄男南昌市第二中学刘歌灵女江西省安义中学朱玥女南昌市第二中学熊琳清女江西省安义中学齐轩宇男南昌市第二中学谢盼盼男江西省安义中学辛日升男南昌市第三中学刘量男江西省安义中学彭斌男南昌市第三中学熊梓渝男江西省安义中学刘惟怡女南昌市第三中学付欣怡女进贤县第二中学黄一凡男南昌市第三中学付祉航男进贤县第二中学第页陆明昊男南昌市第三中学周睿远男进贤县第二中学唐睿涵女南昌市第三中学付轶晨男进贤县第二中学梅耀霖男南昌市第十中学万荣杰男进贤县第一中学张紫雯女南昌市第十中学曹博男进贤县第一中学龚玮璐女南昌市第十中学胡博韬男进贤县第一中学邹蓉女南昌市第十中学邓珞俊男进贤县第一中学陈子歆女南昌市第十中学熊志康男进贤县第一中学吴萍娟女南昌市第十二中学万碧雯女进贤县李渡中学何雅坤女南昌市第十五中学龚良勇男进贤县李渡中学吴奇男南昌市第十五中学徐立阳女桑海中学陶俊杰男南昌市十七中学丁雅欣女新建区第二中学邓绮悦女南昌市第十九中学陈超男新建区第二中学肖文娟女南昌市第十九中学程建龙男新建区第二中学闵雯慧女南昌市第十九中学高越男新建区第二中学熊悦女南昌市第十九中学雷吾阳男新建区第二中学陈子珊女南昌市第十九中学李瀚冰男新建区第二中学胡文婷女南昌市第二十六中学刘宏源男新建区第二中学欧阳沛琦男南昌市八一中学刘永磊男新建区第二中学沈雨瑄女南昌市八一中学涂景奇男新建区第二中学刘帅男南昌市洪都中学熊泰维男新建区第二中学万义升男南昌市洪都中学曾维权男新建区第二中学黄泽平男南昌市铁路第一中学邱盛鑫男新建区第二中学刘序雄男南昌市铁路第一中学黄民男新建区第二中学刘疏桐男南昌市铁路第一中学缪小米女新建区第二中学曹泽宣男南昌市铁路第一中学熊盛坤男新建区第二中学黄哲淇女南昌市铁路第一中学郭杭轩男南昌县莲塘第一中学陈文扬男南昌市外国语学校涂传奇男南昌县莲塘第一中学殷文静女南昌市外国语学校刘定邦男南昌县莲塘第一中学陶君慧女南昌市外国语学校刘宇浩男南昌县莲塘第一中学罗祎博男南昌市外国语学校涂悦女南昌县莲塘第一中学李柔嘉女南昌市外国语学校万逸博男南昌县莲塘第一中学徐礼辉男南昌市豫章中学卞思宇女南昌县莲塘第一中学杨文兴男南昌市豫章中学仇佳怡女南昌县莲塘第一中学樊佳乐男南昌市豫章中学龚汉文男南昌县莲塘第一中学曾秋云女南昌市第五中学景炜康男南昌县莲塘第一中学熊子慧女南昌市第五中学李韩睿男南昌县莲塘第一中学严子淳男江西科技学院附属中学伍鑫源男南昌县莲塘第一中学何淼男南昌当代学校岳子桐男南昌县莲塘第一中学雷诺男江西育华学校张泽华男南昌县莲塘第一中学金乐彤女致远双语学校章舒磊男南昌县莲塘第一中学朱清如女江西师范大学附属中学郭文婷女南昌县莲塘第二C中学王文杰男江西师范大学附属中学符采荣女湾里区第一中学高中优秀学生干部(25名)黄磊磊男南昌市第一中学余乃嘉女江西师范大学附属中学徐阳男南昌市第一中学王赜涵女江西师范大学附属中学周善昭男南昌市第二中学徐赣飞男南昌大学附属中学高靖航男南昌市第三中学龚兰女江西省安义中学刘志丹男南昌市第十中学江师妮女进贤县第二中学刘婕女南昌市第十九中学袁靓鹏男进贤县第一中学黄敏慧女南昌市第十九中学胡昊男江西省南昌县莲塘第一中学刘昕宇男南昌市铁路第一中学李子晔男江西省南昌县莲塘第一中学齐好女南昌市八一中学万心怡女江西省南昌县莲塘第一中学夏雪女南昌市外国语学校周嘉乐男江西省新建区第二中学刘李欣璐女南昌市豫章中学夏旋女江西省新建区第二中学章利君男南昌市第五中学程涛男江西省新建区第二中学金乐丰男致远双语学校九江市(含共青城市)初中三好学生(45名)罗胜聪女瑞昌市第四中学曹晴女都昌县任远中学柯思颖女瑞昌市第六中学张夏天男湖口中学李心仪女瑞昌市城东学校余高远男湖口县第二中学朱谦女修水县上衫乡中小学王明阳男彭泽县博吾学校阮菲菲女修水县布甲乡中小学樊钰女彭泽县天红镇中学黄玥羚女修水县上奉镇中学户颖女濂溪区第一中学梁艺高男修水县散原中学刘睿之男九江经济技术开发区港城中学冷伟嘉男修水县散原中学余胡杨女九江市柴桑区第二中学欧阳珺琪女修水县散原中学魏子腾男九江市柴桑区第二中学林睿女武宁县第一中学黄皙恬女九江市柴桑区第三中学戴梦云女武宁县第二中学杨轲男九江第一中学闵天豪男永修县第三中学张耀中男九江市同文中学戴骞慧女永修县立新中学王熙雯女九江市第三中学李俊楠女永修县第三中学熊嘉毅男九江市田家炳实验中学吕唐玉女共青城市江益镇中学金健翔男九江外国语学校闵思尹男德安县第二中学陈建行男九江外国语学校闻予彤男德安县第一中学吕彦锟男九江市第六中学赵见阔男庐山市第二中学陈柏芝女九江实验中学邹安琦女庐山市华林中学徐文健男九江市第十一中学何南星男都昌县东湖中学胡扬男九江金安高级中学谭彼得男都昌县东湖中学袁满女九江市民办晨光中学江然男都昌县白洋中学孙从昕男九江市民办晨光中学曹端立男都昌县钱氏宗亲学校初中优秀干部(11名)陈武初男瑞昌市第八中学詹晨女都昌县东湖中学吴佳奕女江西省修水琴海学校沈子腾男湖口县第二中学吴凤娇女修水县四都镇中学石明宽男彭泽县第四中学周梦思女武宁县鲁溪初级中学肖嫚女九江市柴桑区新合中学郝一蔚男永修县外国语学校丁铣鼎男九江市第七中学王靖男庐山市景昌学校高中三好学生(125名)曹雯女瑞昌市第一中学周华丽女都昌县第二中学陈绪烽男瑞昌市第一中学张昭男都昌县第二中学刘忆楠男瑞昌市第一中学石文灏男都昌县第二中学邓浩男瑞昌市第一中学周中正男都昌县第二中学黄方笛男瑞昌市第一中学张立藩男都昌县第三中学周芳妮女瑞昌市第一中学陶祎敏女都昌蔡岭慈济中学黄梓晟男瑞昌市第一中学占萍萍女都昌县任远中学曾双双女瑞昌市第二中学余帆男湖口中学王妍女瑞昌市第二中学王宇驰男湖口中学汪玮鑫男瑞昌市第二中学沈鑫男湖口中学范家楠男瑞昌市第二中学张一心男湖口中学莫蔓莉女修水县第一中学吴甲男湖口县第二中学晏宇荃女修水县第一中学吴超杰男湖口县第二中学何垚男修水县第一中学黄泽煊男湖口县第二中学樊诗响男修水县第一中学杨柳男湖口县第二中学刘洋男修水县第一中学胡生浩男彭泽县第一中学周烨仪女修水县第一中学朱晨瑞男彭泽县第一中学冷崇乐女修水县第四中学朱嘉凡男彭泽县第一中学练青青女修水县第四中学许文杰男彭泽县第一中学熊宾勇男修水县第五中学胡章鉴男彭泽县第一中学卢燊男修水县第五中学江泽松男彭泽县第二高级中学徐红旭男修水县英才高级中学欧阳礼民男彭泽县第二高级中学王潮男修水县英才高级中学汤林森男彭泽县第二高级中学陈贺云男修水县英才高级中学刘钦男彭泽县第二高级中学周坚男修水县英才高级中学方文康男九江市濂溪区第一中学胡琰女江西省修水琴海学校周宇琴女九江市濂溪区第一中学黄子豪男江西省修水琴海学校詹伟杰男九江市濂溪区第一中学刘志聪男江西省修水琴海学校徐心如女九江市濂溪区第一中学吴敏行男江西省修水琴海学校刘子豪男九江市柴桑区第一中学熊云慧女武宁县第一中学王新元女九江市柴桑区第一中学余睿男武宁县第一中学魏梓恒女九江市柴桑区第一中学黄关兴男武宁县第一中学徐锐男九江市柴桑区第一中学董伊扬男武宁县第一中学张兴龙男九江市柴桑区第一中学蔡青男永修县第一中学刘力梦女九江市柴桑区第一中学胡韬男永修县第一中学凌仕稳男九江市柴桑区第二中学罗恺男永修县第一中学周馨女九江市柴桑区第二中学徐泽龙男永修县第一中学王洋洋男九江市柴桑区第二中学熊可轩女永修县第一中学胡旖扬女九江第一中学黄嘉昌男永修县第一中学胡阳子女九江第一中学舒乐女永修县第一中学鲍蓉蓉女九江第一中学黄雯华女永修县第一中学欧阳舒茜女九江第一中学王佳威女永修县第一中学项恒男九江第一中学程羽萌女德安县第一中学赵玉涵女九江第一中学熊胜寒男德安县第一中学陈诚男九江第一中学徐田承男德安县第一中学周亘女九江市同文中学黄安女德安县第二中学刘江浔男九江市同文中学周子超男庐山市第一中学汪美玲女九江市同文中学万仙婷女庐山市第一中学涂敦炜男九江市同文中学于琴女庐山市第一中学胡烨女九江市同文中学姜阳镁女庐山市第一中学陈昊男九江市同文中学周洁女庐山市第一中学桂余梓钰男九江市同文中学刘丹宇女都昌县第一中学毛一帆男九江市同文中学张立志男都昌县第一中学黄雅文女九江市第三中学宋亚棋女都昌县第一中学韩行健男九江市第三中学詹愉女都昌县第一中学李文谦女九江市第三中学邵徽武男都昌县第一中学饶龙男九江市第三中学向中寰男都昌县第一中学周子宇男九江市第三中学张楠女都昌县第一中学江会轩男九江市第三中学刘鑫男都昌县第一中学余麒麟女九江市第三中学周泽楠男都昌县第二中学何立爽男九江市第三中学邱宇杰男都昌县第二中学王洁女九江外国语学校张驰男都昌县第二中学梁欣女九江金安高级中学周超男都昌县第二中学高中优秀学生干部(31名)柯俊宇男瑞昌市第一中学詹世龙男彭泽县第一中学姚南溪女瑞昌市第二中学高向阳男彭泽县第二高级中学熊旭锦男修水县第一中学柯露女濂溪区新港中学李淑妹女修水县第四中学胡梦莹女九江市柴桑区第二中学冷婉如女修水县第五中学王龙华男九江市柴桑区第一中学胡龙男修水县英才高级中学魏嘉潞女九江第一中学梁飞女江西省修水琴海学校韩鹏男九江第一中学江森华女永修县第二中学熊毅男九江第一中学胡慧敏女永修县第二中学周涛女九江第一中学江磊男共青城市中学左志勇男九江市同文中学路敬文女德安县第一中学赖欣儿女九江市同文中学陈胜文女庐山市第一中学谭文萱女九江市同文中学赵宇涵男都昌县第一中学查龙飞男九江市第三中学江昕恒女都昌县第二中学向洋女九江市第三中学刘佳女都昌县任远中学洪贵芝女九江外国语学校周佳晨男湖口中学景德镇市初中三好学生(15名)李思维女江西省景德镇二中刘心悦女景德镇市鱼山中学刘静怡女景德镇市第五中学熊经纬男浮梁县第一中学吴逸丰男景德镇市第七中学章圣钰男浮梁县第一中学郑云昊男景德镇第九中学汪成楠男乐平市第五中学张昊洋男景德镇市第十三中学吴剑文男乐平市湾头中小学胡磊男景德镇市第十六中学胡柳鹏男乐平市第二中学徐露女景德镇市昌河中学汪文轩男乐平市第五中学刘逸扬男景德镇市第二十六中学初中优秀学生干部(4名)程楚晋男江西省景德镇一中王雨欣女景德镇市第五中学周文彬男江西省景德镇二中曹依航男景德镇市第十三中学高中三好学生(35名)巫子辰男江西省景德镇一中邹维女景德镇市昌河中学邓宇凡男江西省景德镇一中蔡晨语女景德镇市昌河中学金一涵男江西省景德镇一中孙一齐男景德镇市昌河中学余文君女江西省景德镇一中徐文凯男景德镇市昌河中学江千童女江西省景德镇一中林广思男浮梁县第一中学杨明烜男江西省景德镇一中赵阳文男江西省乐平中学占思齐女江西省景德镇一中白若文女江西省乐平中学吴迪翔男江西省景德镇一中吴少凡男江西省乐平中学骆愚男江西省景德镇一中徐明慧女江西省乐平中学蒋嘉益男江西省景德镇一中雷宁远女江西省乐平中学余彬杰女江西省景德镇二中华静宜女江西省乐平中学华璞靖男江西省景德镇二中韩俊杰男江西省乐平市第一中学房尹朝男江西省景德镇二中胡正华男江西省乐平市第一中学侯啸洲男江西省景德镇二中叶红女江西省乐平市第三中学王露瑶女江西省景德镇二中谢思为男江西省乐平市第三中学李方位男江西省景德镇二中彭锦雨女江西省乐平市第三中学杜欣烨女景德镇市第十六中学徐苏仁男江西省乐平市第三中学张玉婷女景德镇市第十六中学高中优秀学生干部(10名)王曦聪乐男江西省景德镇一中孙万荃女景德镇市昌河中学吴梦晗女江西省景德镇一中周希平女浮梁县第一中学汤诗韵女江西省景德镇二中曾金燕女江西省乐平市第一中学李浩龙男江西省景德镇二中胡道焱男江西省乐平中学余婕女景德镇市第十六中学蔡成龙男江西省乐平市第三中学萍乡市初中三好学生(17名)陈欣然女安源学校杨欣雨女萍乡经济开发区三田学校何煜洁女安源区第一中学钟润益男萍乡市第七中学王斯宇女萍乡市湘东区新华中学刘曦宇男萍乡市第二中学王羽佳女萍乡市湘东区老关中学陈泠璇女萍乡三中尹昕熙女芦溪县芦溪镇第二中学钟含笑女萍乡市第四中学李雅静女芦溪县宣风镇中学巫依婷女萍乡市第四中学李根秀女上栗县桐木镇中学易嘉懿男萍乡市第六中学周浩彬男莲花县下坊中学林佳丽女萍乡市田家炳中学曾康乐女莲花县城厢中学初中优秀学生干部(4名)李逸璟女萍乡市湘东区湘东镇中学李程英女上栗县长平中学易晨滢女芦溪县芦溪镇中学陈雨洁女萍乡市安源区五陂学校高中三好学生(44名)邱早女安源中学刘瑶女江西省莲花中学谭文珈女萍乡市湘东中学李嘉欣女江西省莲花中学欧阳健男萍乡市湘东中学徐鼎皓男萍乡实验学校余妍莲女萍乡市湘东中学张琦男萍乡中学缪金敏女萍乡市湘东中学董䶮祺男萍乡中学刘思琪女萍乡市芦溪中学陈志臻男萍乡中学曾怡婷女萍乡市芦溪中学谢甜甜女萍乡中学刘荣男萍乡市芦溪中学万钰滋女萍乡中学苏烯元男萍乡市芦溪中学章阅天男萍乡中学曾凤男萍乡市芦溪中学瞿泽宇男萍乡中学夏璐女萍乡市芦溪中学朱茵女萍乡中学黎雨琪女萍乡恩信实验学校康笑天男萍乡中学周沁男萍乡市上栗中学曾涵维女萍乡中学刘唯源男萍乡市上栗中学李若水女萍乡中学张开信女萍乡市上栗中学朱江禹男萍乡中学何瑶女萍乡市上栗中学陶泽睿男萍乡中学张鑫宇男萍乡市上栗中学李家益男萍乡中学张龙男萍乡市上栗中学刘一也男萍乡中学陈瑄男江西省莲花中学吴昱晨女萍乡中学刘波滩女江西省莲花中学宋鸿展女萍乡中学李梦彤女江西省莲花中学万任明男萍乡市第二中学李昊哲男江西省莲花中学张煜璞男萍乡三中高中优秀学生干部(11名)张泽弘男安源中学龚福仪女萍乡中学王嘉郡女萍乡市湘东中学文柯女萍乡中学童奕辉男萍乡市芦溪中学马秀女萍乡市第二中学谢志毫男萍乡市上栗中学李晨曦男萍乡三中刘艳艳女江西省莲花中学周尧女萍乡三中黎盼男萍乡市第七中学新余市初中三好学生(11名)严玉洁女北师大新余附校何宇容女新余市第一中学严先钦男分宜县第二中学刘英琦男新余市第三中学袁河楼男分宜县第三中学章子璇女新余市第四中学万建坤男新余市渝水区良山中学肖艺菲女新余市第五中学欧阳豪智男新余市渝水区罗坊中学陈家捷男新余市新钢中学伍佳晖男新余市高新区马洪中学初中优秀学生干部(3名)邓佳欣女分宜县第六中学王弋阳男新余市第六中学刘可雯女新余市第四中学高中三好学生(35名)吴文平男新余市第七中学章子晴男新余市第三中学何咏凡女新余市第七中学黄誉龙男新余市第三中学胡成源男新余市第七中学刘松睿男新余市第四中学刘佳琪男江西省分宜中学聂翔宇男新余市第四中学晏伟忠男江西省分宜中学钟沛文女新余市第四中学曾文强男江西省分宜中学余克雄男新余市第四中学朱宏道男江西省分宜中学胡天益男新余市第四中学黄乐阳男江西省分宜中学袁清女新余市第四中学陈秭达男江西省分宜中学李思涵女新余市第四中学。
2024-2025学年江西省“上进联考”高二上学期期中调研测试数学试题(含答案)
2024-2025学年江西省“上进联考”高二上学期期中调研测试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知A(1,0,−1),B(−1,2,3),则A,B两点间的距离为( )A. 23B. 26C. 12D. 242.若直线l的斜率为−12,在x轴上的截距为−1,则l的方程为( )A. x+2y+1=0B. x+2y−1=0C. 2x+y+2=0D. 2x+y+1=03.若双曲线C的一个焦点为(2,0),其中一条渐近线与直线3x+3y−1=0平行,则C的标准方程为( )A. x23−y2=1 B. y23−x2=1 C. x2−y23=1 D. y2−x23=14.已知(3−i)(1+ai)(a∈R)在复平面内对应的点的坐标为(x,y),则x,y满足的关系式为( )A. 3x+y−10=0B. 3x+y+8=0C. 3x−y−10=0D. 3x−y+8=05.若存在点P,使得圆C1:x2+y2=4与圆C2:x2+y2−4x+2y+a=0关于点P对称,则a=( )A. 1B. −1C. 2D. −26.如图,在三棱锥A−BCD中,AB⊥平面BCD,BC=CD=4,∠BCD=2π3,点E为AC的中点,则BE⋅CD =( )A. 8B. 4C. −8D. −47.已知抛物线C:x2=4y的焦点为F,P是C上第一象限内的一点,且|PF|=3,直线l过点P,当原点O到l的距离最大时,l的方程为( )A. 2x−y−3=0B. 2x+y−5=0C. 2x−y−2=0D. 2x+y−6=08.函数f(x)=x−21−x的值域为( )A. (−∞,− 33]B. (−∞,− 3]C. (−∞,−2]D. [−2,− 3]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.如图,在四面体ABCD 中,点E ,F 分别为BC ,CD 的中点,则( )A. EF =12BDB. AE +AF =ACC. AD +DC +CB =ABD. AD−12(AB +AC )=ED 10.已知曲线C:|y +1|=2x ,则( )A. C 关于点(0,−1)对称B. C 关于直线y =−1对称C. C 与y 轴围成一个面积为2的三角形D. C 不经过第二、三象限11.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),我们把圆x 2+y 2=a 2+b 2称为C 的蒙日圆,O 为原点,点P 在C 上,延长OP 与C 的蒙日圆交于点Q ,则( )A. |PQ|的最大值为 a 2+b 2−bB. 若P 为OQ 的中点,则C 的离心率的最大值为 63C. 过点Q 不可能作两条互相垂直的直线都与C 相切D. 若点(2,1)在C 上,则C 的蒙日圆面积最小为9π三、填空题:本题共3小题,每小题5分,共15分。
2023-2024学年江西省高二下册期中物理试卷(含答案)
江西省2023-2024学年高二下学期期中物理试题一、单选题(本大题共7小题)1.描述机械振动强弱的物理量是( )A .振幅B .周期C .频率D .回复力2.下列说法正确的是( )A .做匀速圆周运动的物体,其向心加速度不变B .对于一质量不变做平抛运动的物体,在任意相等时间内合外力冲量相同C .冲量的方向与动量的方向一致D .开普勒对天体进行系统观测,获得了大量的精确资料,并发表了开普勒行星运动定律3.如图所示,是一弹簧振子,设向右方向为正,为平衡位置,则振子从运动O a O →时,下列说法正确的是( )A .位移为正值,速度为正值B .位移为正值,加速度为负值C .位移为负值,速度为正值D .位移为负值,加速度为负值4.如图所示为一简谐横波在某时刻的波形图,此时点向轴正方向运动,已知波的P y 周期为,则该波( )1.0s T =A .沿轴正方向传播,波速为B .沿轴正方向传播,波速为x 4.0m /s x 8.0m /sC .沿轴负方向传播,波速为D .沿轴负方向传播,波速为x 4.0m /s x 8.0m /s 5.用如图所示的实验装置观察光的薄膜干涉现象。
皂膜上观察到的干涉图像应是图中的( ). B . . ..固定的半圆形玻璃砖的横截面如图,点为圆心,的垂线,足够大MN 紧靠玻璃右侧且垂直于、两种单色光组成的一束光沿半径方向射PQ B 点,入射光线与区域出现两个光斑,逐渐增大OO NQ 时,光屏光的光斑消失,继续增大时,光屏NQA .玻璃砖对光的折射率比对AB .光在玻璃砖中传播速度比AC .时,光屏上只有αθβ<<D .时,光屏上只有2πβθ<<A .落地时速度相同B .运动时间相同C .重力势能的变化量相同A.汽车在凸形桥上行驶的过程中,所受合力始终为零B.汽车行驶的速度越大,在最高点对桥面的压力就越大C.为了让汽车在最高点不离开桥面,则汽车的速度D.凸形桥的圆弧半径R越小,则汽车在最高点不离开斜面的最大速度就越小A.OA是红光B.OB是复色光C.玻璃对紫光的折射率为23 3A .超声波在血管中的传播速度为31.410m/s ⨯B .内质点M 运动的路程为 1.75mm70~1.2510s -⨯C .质点M 第一次位移为0.2mm 的时刻是7710s6-⨯D .时质点N 恰好处于波谷71.510s -=⨯t (1)在实验中可以不测量速度的具体数值,仅通过测量(选填选项前的字母)问接地解决这个问题。
2017-2018下学期高二期末考试英语试题参考答案
秘密★启用前2017-2018下学期高二年级期末考试英语试题参考答案及评分标准第Ⅰ卷(共100分)第一部分听力(共两节,满分30分)1-5 ACCBC 6-10 ACBAB 11-15 BCBCA 16-20 BACBA第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)21-23 BCD 24-27 CDAB 28-31 BBDC 31-35 ACBD第二节(共5小题,每小题2分,满分10分)36-40 ADGBF第三部分英语知识运用(共两节,满分45分)第一节完形填空(共20 小题;每小题1.5分,满分30分)41-45 CDBAA 46-50 CADBD 51-55 CBACD 56-60 CBDAB第Ⅱ卷(主观题满分50分)第三部分英语知识运用第二节(共10分;每小题1.5分,满分15分)61. a 62. competitive 63. to realize 64. What 65. existing/existent66. luck 67. relatives 68. was 69. better 70. for评分标准:61-70小题,每小题1.5分。
有任何错误,包括用词错误、单词拼写错误(含大小写)或语法形式错误,均不给分。
第四部分写作(共两节,满分35分)第一节短文改错(共10小题;每小题1分,满分10分)Last week I noticed Jack coughing on our math class. See this, I offered to take him to a clinic.in SeeingThere the doctor asked Jack how he had coughed sometimes for long time. Jack nodded his headif/whether aimmediate. The doctor then wrote a prescription with instruction on how to take the Chinese immediately instructionsmedicine. Having tasted the medicine, he almost brings it up. I comforted him with an old sayingbrought“Good medicine for health tastes bitter to the mouth”. Jack managed to swallow them unwillingly.itBut when he had recovered three days later, he felt amazing at the effect of the Chinese medicine.amazed评分标准: 有任何错误, 包括用词、单词拼写(含大小写)或语法形式,均不给分。
江西省吉安市吉安县第三中学2024届数学高一第二学期期末学业水平测试模拟试题含解析
江西省吉安市吉安县第三中学2024届数学高一第二学期期末学业水平测试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为( ) A .48里B .24里C .12里D .6里2.为了得到函数2cos 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数2sin2y x =图象上所有的点( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度 3.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,且3 cos 4a C csin A =,已知ABC ∆的面积等于10,4b =,则a 的值为( ) A .233B .283C .263D .2534.若是的重心,a ,b ,c 分别是角的对边,若3G G GC 03a b c A +B +=,则角( )A .90B .60C .45D .305.若a b >,0ab ≠则下列不等式恒成立的是( ) A .22a b >B .lg()0a b ->C .11a b< D .a b 22>6.已知向量()()2,1,,2a b x ==-,若//a b ,则a b +=( ) A .()2,1--B .()2,1C .()3,1-D .()3,1-7.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移3π个单位长度 B .向左平移6π个单位长度 C .向右平移6π个单位长度D .向右平移3π个单位长度8.若x +2y =4,则2x +4y 的最小值是( )A .4B .8C .D .9.已知两点(0,3)A -,(4,0)B ,若点P 是圆2220x y y +-=上的动点,则△ABP面积的最小值是 A .112B .6C .8D .21210.已知直线1l :10x ay +-=,2l :(1)0a x ay +-=,若p :12l l //;:2q a =-,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。
2017-2018学年江西师大附中高二(下)期末数学试卷(理科)
2017-2018学年江西师大附中高二(下)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2 C.3 D.42.(5分)已知命题p:∀x∈R,2x>0;q:∃x0∈R,x02+x0=﹣1.则下列命题为真命题的是()A.p∧q B.(¬p)∧(¬q)C.(¬p)∧q D.p∧(¬q)3.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β其中真命题的个数为()A.1 B.2 C.3 D.44.(5分)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由算得,.参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”5.(5分)已知a>0,b>0且a≠1,则“log a b>0”是“(a﹣1)(b﹣1)>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)函数f(x)=ln(x﹣)的图象是()A.B.C.D.7.(5分)设X~N(1,δ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()附:(随机变量ξ服从正态分布N(μ,δ2),则P(μ﹣δ<ξ<μ+δ)=68.26%,P (μ﹣2δ<ξ<μ+2δ)=95.44%A.6038 B.6587 C.7028 D.75398.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.16 B.(10+)πC.4+(5+πD.6+(5+π9.(5分)将红、黑、黄、蓝4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放到同一个盒子,则不同放法的种数为()A.18 B.24 C.30 D.3610.(5分)如图梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1 B.2 C.3 D.411.(5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b12.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0二、填空题:本大题共有4个小题,每小题5分,共20分.13.(5分)若不等式|x﹣a|<1的解集为{x|1<x<3},则实数a的值为.14.(5分)已知变量x,y具有线性相关关系,它们之间的一组数据如表所示,若y关于x的线性回归方程为=1.3x﹣1,则m=;15.(5分)设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(﹣x)=0;②f(﹣x﹣2)+f(x)=0;③当x∈[0,1)时,f(x)=lg(x+1).则f()+lg14=.16.(5分)已知m>0,函数f(x)=.若存在实数n,使得关于x的方程f2(x)﹣(2n+1)f(x)+n2+n=0有6个不同的根,则m的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.18.(12分)已知一次函数f(x)满足:f(1)=2,f(2x)=2f(x)﹣1.(1)求f(x)的解析式;(2)设g(x)=,若|g(x)|﹣af(x)+a≥0,求实数a的取值范围.19.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)20.(12分)袋中装有黑色球和白色球共7个,从中任取2个球都是白色球的概率为.现有甲、乙两人从袋中轮流摸出1个球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后终止.每个球在每一次被摸出的机会都是等可能的,用X表示摸球终止时所需摸球的次数.(1)求随机变量X的分布列和均值E(X);(2)求甲摸到白色球的概率.21.(12分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求点D到平面PBC的距离;(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求二面角B ﹣CQ﹣D的余弦值.22.(12分)已知函数f(x)=e x,g(x)=lnx.(1)设f(x)在x1处的切线为l1,g(x)在x2处的切线为l2,若l1∥l2,求x1+g (x2)的值;(2)若方程af2(x)﹣f(x)﹣x=0有两个实根,求实数a的取值范围;(3)设h(x)=f(x)(g(x)﹣b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.2017-2018学年江西师大附中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2 C.3 D.4【分析】根据并集的定义,结合题意写出对应集合X,即可得出结论.【解答】解:集合M={1,3},N={1,3,5},若M∪X=N,则集合X={5}或{1,5}或{3,5}或{1,3,5},共4个.故选:D.【点评】本题考查了并集的定义与应用问题,是基础题.2.(5分)已知命题p:∀x∈R,2x>0;q:∃x0∈R,x02+x0=﹣1.则下列命题为真命题的是()A.p∧q B.(¬p)∧(¬q)C.(¬p)∧q D.p∧(¬q)【分析】利用指数函数的值域判断p;利用配方法说明x2+x+1>0恒成立判断q.再由复合命题的真假判断得答案.【解答】解:∵指数函数的值域为(0,+∞),∴对任意x∈R,y=2x>0恒成立,故p为真命题;x2+x+1=(x+)2+>0恒成立,不存在x0∈R,使x02+x0=﹣1成立,故q为假命题.则p∧q,¬p为假命题,¬q为真命题,(¬p)∧(¬q),(¬p)∧q为假命题,p∧(¬q)为真命题.故选:D.【点评】本题主要考查复合命题之间的关系,考查函数值域的求法,比较基础.3.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β其中真命题的个数为()A.1 B.2 C.3 D.4【分析】①根据线面垂直的性质定理进行判断.②根据线面平行的判定定理进行判断.③根据线面平行的判定定理进行判断.④根据线面垂直和面面垂直的判定定理进行判断.【解答】解:①若m∥n,m⊥β,则n⊥β成立,故①正确;②若m∥α,m∥β,则α∥β不一定成立,有可能相交,故②错误;③若m∥n,m∥β,则n∥β或n⊂β;故③错误,④若m⊥α,m⊥β,则α∥β,故④错误,故正确的是①,故选:A.【点评】本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定,根据相应的判定定理是解决本题的关键.4.(5分)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由算得,.参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【分析】题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.【解答】解:由题意算得,.∵7.8>6.635,∴有0.01=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选:C.【点评】本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.5.(5分)已知a>0,b>0且a≠1,则“log a b>0”是“(a﹣1)(b﹣1)>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】已知log a b>0,解出a,b的值,再根据充分条件和必要条件的定义进行求解;【解答】解:∵a>0,b>0且a≠1,若log a b>0,∴a,b>1或0<a<1,0<b<1,⇒(a﹣1)(b﹣1)>0,若“(a﹣1)(b﹣1)>0,∴或,可以推出a,b>1或0<a<1,0<b<1,∴“log a b>0”是“(a﹣1)(b﹣1)>0”的充分必要条件,故选:C.【点评】本题以对数的定义与运算为载体,考查了必要条件、充分条件与充要条件的判断,属于基础题.6.(5分)函数f(x)=ln(x﹣)的图象是()A.B.C.D.【分析】首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f(x)的单调性,问题得以解决.【解答】解:因为x﹣>0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x﹣)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、D不正确.当x∈(﹣1,0)时,g(x)=x﹣是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x+)是增函数.故选:B.【点评】本题主要考查了对数函数的定义域和复合函数的单调性,属于基础题.7.(5分)设X~N(1,δ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()附:(随机变量ξ服从正态分布N(μ,δ2),则P(μ﹣δ<ξ<μ+δ)=68.26%,P (μ﹣2δ<ξ<μ+2δ)=95.44%A.6038 B.6587 C.7028 D.7539【分析】求出P(0<X≤1)=1﹣×0.6826=1﹣0.3413=0.6587,即可得出结论.【解答】解:由题意P(0<X≤1)=1﹣×0.6826=1﹣0.3413=0.6587,则落入阴影部分点的个数的估计值为10000×0.6587=6857,故选:B.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.16 B.(10+)πC.4+(5+πD.6+(5+π【分析】由该几何体的三视图判断出组合体各部分的几何特征,以及各部分的几何体相关几何量的数据,由面积公式求出该几何体的表面积.【解答】解:由三视图可知其直观图如下,半个圆柱的表面积为π×1×(2+2)+π×12+2×2×1=5π+4,两个半圆锥的表面积为π×1×=π,故表面积为4+(5+)π.故选:C.【点评】本题考查了由三视图求几何体的表面积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据.9.(5分)将红、黑、黄、蓝4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放到同一个盒子,则不同放法的种数为()A.18 B.24 C.30 D.36【分析】根据题意,用间接法求解,先由分步计数原理计算个小球放入3个不同的盒子的放法数目,再计算红球和蓝球放到同一个盒子的放法数目,两个相减得到结果.【解答】解:将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其他2个小球对应3个盒子,共有C42A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36﹣6=30种;故选:C.【点评】本题考查排列组合及简单的计数原理的应用,是基础题,注意用间接法,可以避免分类讨论,简化计算.10.(5分)如图梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1 B.2 C.3 D.4【分析】画出图形,利用直线与直线的位置关系以及射影,直线与平面垂直的判定,平面与平面垂直的判断定理,判断结论的正误即可.【解答】解:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选:B.【点评】本题考查平面与平面的位置关系,直线与平面的位置关系的应用,考查空间想象能力以及计算能力.11.(5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【分析】直接利用对数的运算性质化简即可得答案.【解答】解:∵a=log0.20.3=,b=log20.3=,∴=,,∵,,∴ab<a+b<0.故选:B.【点评】本题考查了对数值大小的比较,考查了对数的运算性质,是中档题.12.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.二、填空题:本大题共有4个小题,每小题5分,共20分.13.(5分)若不等式|x﹣a|<1的解集为{x|1<x<3},则实数a的值为2.【分析】解绝对值不等式|x﹣a|<1,可求得其解为a﹣1<x<a+1,依题意知,a ﹣1=1且a+1=3,从而可得实数a的值.【解答】解:∵|x﹣a|<1,∴﹣1<x﹣a<1,∴a﹣1<x<a+1,∴不等式|x﹣a|<1的解集为{x|a﹣1<x<a+1},∵不等式|x﹣a|<1的解集为{x|1<x<3},∴a﹣1=1且a+1=3,解得:a=2.故答案为:2.【点评】本题考查绝对值不等式的解法,考查等价转化思想与方程思想的应用,属于中档题.14.(5分)已知变量x,y具有线性相关关系,它们之间的一组数据如表所示,若y关于x的线性回归方程为=1.3x﹣1,则m= 3.1;【分析】利用线性回归方程经过样本中心点,即可求解.【解答】解:由题意,=2.5,代入线性回归方程为=1.3x﹣1,可得=2.25,∴0.1+1.8+m+4=4×2.25,∴m=3.1.故答案为3.1.【点评】本题考查线性回归方程经过样本中心点,考查学生的计算能力,比较基础.15.(5分)设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(﹣x)=0;②f(﹣x﹣2)+f(x)=0;③当x∈[0,1)时,f(x)=lg(x+1).则f()+lg14=1.【分析】由①②知函数f(x)是周期为2的奇函数,结合当x∈[0,1)时,f(x)=lg(x+1)和对数的运算性质,可得答案.【解答】解:由①②知函数f(x)是周期为2的奇函数,于是f()=f()=f(﹣)=﹣f(),又当x∈[0,1)时,f(x)=lg(x+1),所以f()=﹣f()=﹣lg=lg,故f()+lg14=lg+lg14=lg10=1.故答案为:1【点评】本题考查的知识点是函数的奇偶性,函数的周期性,函数求值,对数的运算性质,难度中档.16.(5分)已知m>0,函数f(x)=.若存在实数n,使得关于x的方程f2(x)﹣(2n+1)f(x)+n2+n=0有6个不同的根,则m的取值范围是(,+∞).【分析】画出分段函数的图象,通过方程f2(x)﹣(2n+1)f(x)+n2+n=0有6个不同的根,求出f(x)的值,结合函数的图象列出不等式求解即可.【解答】解:作出f(x)的图象如图所示.当x>m时,x2﹣2mx+4m=(x﹣m)2+4m﹣m2,f2(x)﹣(2n+1)f(x)+n2+n=0即[f(x)﹣n][f(x)﹣(n+1)]=0即f(x)=n或f(x)=n+1,∴要使方程f2(x)﹣(2n+1)f(x)+n2+n=0有6个不同的根,则4m﹣m2+1<m,即m2﹣3m﹣1>0.又m>0,解得m>.故答案为:(,+∞).【点评】本题考查函数与方程的应用,考查数形结合以及转化思想的应用,难度比较大.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].【点评】本题主要考查绝对值不等式的解法,集合间的包含关系,属于中档题.18.(12分)已知一次函数f(x)满足:f(1)=2,f(2x)=2f(x)﹣1.(1)求f(x)的解析式;(2)设g(x)=,若|g(x)|﹣af(x)+a≥0,求实数a的取值范围.【分析】(1)设f(x)=kx+b,由条件可得k,b的方程,解方程可得f(x)的解析式;(2)求得g(x)的解析式,以及|g(x)|的解析式,由|g(x)|≥ax可分两种情况讨论,运用参数分离和分类讨论,运用导数判断单调性,化简整理,即可得到所求范围.【解答】解:(1)设f(x)=kx+b,则k+b=2,2kx+b=2kx+2b﹣1,解得k=b=1,故f(x)=x+1;(2)由(1)得:g(x)=,|g(x)|﹣af(x)+a≥0可化为|g(x)|≥ax,∵|g(x)|=,∴由|g(x)|≥ax可分两种情况:①恒成立,若x=0,不等式显然成立;若x<0时,不等式等价于x﹣2≤a.∵x﹣2<﹣2,∴a≥﹣2;②恒成立,方法一[分离参数]:可化为a≤在(0,+∞)上恒成立.令h(x)=,则h′(x)=,令t(x)=x﹣(x+1)ln(x+1),则由t′(x)=﹣ln(x+1)<0知t(x)在(0,+∞)上单调递减,故t(x)<t(0)=0,于是h′(x)<0,从而h(x)在(0,+∞)上单调递减,又当x>0时,恒有h(x)=>0,于是a≤0.方法二[分类讨论]:ln(x+1)≥ax等价为ln(x+1)﹣ax≥0,令φ(x)=ln(x+1)﹣ax,则φ′(x)=﹣a=,当a≤0时,φ(x)在(0,+∞)上单调递增,故有φ(x)>φ(0)=0成立;当0<a<1时,φ(x)在(0,﹣1)上单调递增,在(﹣1+∞)是递减.取x=﹣1,易知φ(﹣1)=﹣2lna+a﹣<0,故不合题意;当a≥1时,φ(x)在(0,+∞)上单调递减,显然不合题意.所以a≤0.综合①②得﹣2≤a≤0.【点评】本题考查函数的解析式的求法,注意运用待定系数法,考查不等式恒成立问题解法,注意运用分类讨论和参数分离,考查化简整理的运算能力,属于中档题.19.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)【分析】(1)由年利润W=年产量x×每千件的销售收入为R(x)﹣成本,又由,且年固定成本为10万元,每生产1千件需另投入2.7万元.我们易得年利润W(万元)关于年产量x(千件)的函数解析式;(2)由(1)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.【解答】解:(1)当;当x>10时,W=xR(x)﹣(10+2.7x)=98﹣﹣2.7x.∴W=(2)①当0<x<10时,由W'=8.1﹣=0,得x=9,且当x∈(0,9)时,W'>0;当x∈(9,10)时,W'<0,∴当x=9时,W取最大值,且②当x>10时,当且仅当,即x=时,W=38,故当x=时,W取最大值38.综合①②知当x=9时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.【点评】本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.20.(12分)袋中装有黑色球和白色球共7个,从中任取2个球都是白色球的概率为.现有甲、乙两人从袋中轮流摸出1个球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后终止.每个球在每一次被摸出的机会都是等可能的,用X表示摸球终止时所需摸球的次数.(1)求随机变量X的分布列和均值E(X);(2)求甲摸到白色球的概率.【分析】设袋中白色球共有x个,x∈N*且x≥2,则依题意知=,解得x=3,(1)袋中的7个球,3白4黑,随机变量X的所有可能取值是1,2,3,4,5.求出概率,得到随机变量X的分布列然后求解期望.(2)记事件A为“甲摸到白色球”,则事件A包括以下三个互斥事件:A1=“甲第1次摸球时摸出白色球”;A2=“甲第2次摸球时摸出白色球”;A3=“甲第3次摸球时摸出白色球”.求出概率,利用互斥事件概率的和求解即可.【解答】解:设袋中白色球共有x个,x∈N*且x≥2,则依题意知=,所以=,即x2﹣x﹣6=0,解得x=3(x=﹣2舍去).(1)袋中的7个球,3白4黑,随机变量X的所有可能取值是1,2,3,4,5.P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==.随机变量X的分布列为所以E(X)=1×+2×+3×+4×+5×=2.(2)记事件A为“甲摸到白色球”,则事件A包括以下三个互斥事件:A1=“甲第1次摸球时摸出白色球”;A2=“甲第2次摸球时摸出白色球”;A3=“甲第3次摸球时摸出白色球”.依题意知,P(A1)==,P(A2)==,P(A3)==,所以甲摸到白色球的概率为P(A)=P(A1)+P(A2)+P(A3)=++=.【点评】本题考查离散型随机变量的分布列以及期望的求法,互斥事件的概率的求法,考查计算能力.21.(12分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求点D到平面PBC的距离;(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求二面角B ﹣CQ﹣D的余弦值.=S△BCD×PA=.设点D到平面PBC的距离为h.由【分析】(1)推导出V P﹣BCDPA⊥平面ABCD得PA⊥BC,从而BC⊥平面PAB,进崦BC⊥PB.由V D﹣BCP=S△BCP =V D﹣BCP,能求出点D到平面PBC的距离.×h=h,V P﹣BCD(2)以{,,}为正交基底建立如图所示的空间直角坐标系A﹣xyz,利用向量法能求出二面角B﹣CQ﹣D的余弦值.=BC×AB=,由于PA⊥平面ABCD,从而PA即为三棱【解答】解:(1)S△BCD锥P﹣BCD的高,=S△BCD×PA=.故V P﹣BCD设点D到平面PBC的距离为h.由PA⊥平面ABCD得PA⊥BC,又由于BC⊥AB,故BC⊥平面PAB,所以BC⊥PB.由于BP==,=BC×PB=.故V D﹣BCP=S△BCP×h=h所以S△PBC因为V P=V D﹣BCP,所以点D到平面PBC的距离h=.﹣BCD(2)以{,,}为正交基底建立如图所示的空间直角坐标系A﹣xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).设=λ,(0≤λ≤1)因为=(﹣1,0,2),所以=(﹣λ,0,2λ),由=(0,﹣1,0),得=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==.设1+2λ=t,t∈[1,3],则cos2<,>==≤.当且仅当t=,即λ=时,|cos<,>|的最大值为.∵y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又因为BP==,所以BQ=BP=.=(0,﹣1,0),=(1,1,﹣2)设平面PCB的一个法向量为=(x,y,z),则•=0,•=0,即,得:y=0,令z=1,则x=2.∴=(2,0,1)是平面PCB的一个法向量.又=+=(﹣λ,﹣1,2λ)=(﹣,﹣1,),=(﹣1,1,0)设平面DCQ的一个法向量为=(x,y,z),则•=0,•=0,即,取x=4,则y=4,z=7,∴=(4,4,7)是平面DCQ的一个法向量.从而cos<,>==,又由于二面角B﹣CQ﹣D为钝角,∴二面角B﹣CQ﹣D的余弦值为﹣.【点评】本题考查点到平面的距离的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.22.(12分)已知函数f(x)=e x,g(x)=lnx.(1)设f(x)在x1处的切线为l1,g(x)在x2处的切线为l2,若l1∥l2,求x1+g (x2)的值;(2)若方程af2(x)﹣f(x)﹣x=0有两个实根,求实数a的取值范围;(3)设h(x)=f(x)(g(x)﹣b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.【分析】(1)求出函数的导数,根据直线的斜率相等,求值即可;(2)得到a=,令φ(x)=,根据函数的单调性求出φ(x)的最大值,从而求出a的范围即可;(3)求出h(x)的导数,问题转化为b≥lnx+在[ln2,ln3]内恒成立,令t(x)=lnx+,根据函数的单调性求出b的范围即可.【解答】解:(1)f′(x)=e x,g′(x)=由题意知:=,故x1+g(x2)=x1﹣ln=0.(2)方程af2(x)﹣f(x)﹣x=0ae2x﹣e x﹣x=0a=,令φ(x)=,则φ′(x)=﹣,当x<0时,e x<1,e x﹣1<0,所以e x+2x﹣1<0,所以φ′(x)>0,故φ(x)单调增;当x>0时,e x>1,e x﹣1>0,所以e x+2x﹣1>0,所以φ′(x)<0,故φ(x)单调减.从而φ(x)max=φ(0)=1又,当x>0时,φ(x)=>0,原方程有两个实根等价于直线y=a与φ(x)的图象有两个交点,故0<a<1.(3)由题意h(x)=f(x)(g(x)﹣b)=e x(lnx﹣b),得h′(x)=e x(lnx+﹣b)因为h(x)在[ln2,ln3]内单调递减,所以h′(x)=e x(lnx+﹣b)≤0在[ln2,ln3]内恒成立,由于e x>0,故只需lnx+﹣b≤0在[ln2,ln3]内恒成立,即b≥lnx+在[ln2,ln3]内恒成立,令t(x)=lnx+,t′(x)=﹣=,当ln2≤x<1时,t′(x)<0,故t(x)单调减;当1≤x≤ln3时,t′(x)>0,故t(x)单调增.下面只要比较t(ln2)与t(ln3)的大小.思路:[详细过程略]t(x)=lnx+先证明:x1+x2>2又,ln2+ln3=ln6<2故当x1=ln2时,ln3<x2即t(ln3)<t(ln2)所以t(x)max=t(ln2)=ln2+所以b≥ln2+.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,数形结合思想,是一道综合题.。
江西省吉安县第三中学、泰和县第二中学2023届数学高一上期末含解析
5、A
【解析】对于①, 都在平面 内,故错误;对于②, 为在两个平行平面中且不平行的两条直线,底面三角形 是正三角形, 是 中点,故 与 是异面直线,且 ,故正确;对于③,上底面 是一个正三角形,不可能存在 平面 ,故错误;对于④, 所在的平面与平面 相交,且 与交线有公共点,故错误.
【详解】解:由题得 ,所以排除选项A,D.
,所以排除选项C.
故选:B
12、B
【解析】由已知及一元二次不等式的性质可得 ,讨论a结合原不等式整数解的个数求 的范围,
【详解】由 恰有2个整数解,即 恰有2个整数解,
所以 ,解得 或 ,
①当 时,不等式解集为 ,因为 ,故2个整数解为1和2,
则 ,即 ,解得 ;
由 得 ,由 得 ,
因此,函数 在 上单调递增,函数值从 增到2,在 上单调递减,函数值从2减到1,
一、选择题(本大题共12小题,共60分)
1.函数 的图象可由函数 的图像()
A.向左平移 个单位得到B.向右平移 个单位得到
C.向左平移 个单位得到D.向右平移 个单位得到
2.已知角 的顶点在坐标原点,始边在 轴非负半轴上,且角 的终边上一点 ,则 ()
A. B.
C. D.
3.直线 与圆 交点的个数为
t 2+2k在[1,2]上有解,
令函数g(t)=t ,
在(0,1)单调递减,在(1,+∞)单调递增
所以g(1)≤2+2k≤g(2),
即2≤2+2t ,
解得0≤t
(3)若对任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,
若对任意的x1,x2∈(1,2],任意的p∈[﹣1,1],
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰和二中吉安县三中2017-2018学年高二下学期期中考试物理试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,第1—6题只有一项符合题目要求,第7—10题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1. 如图所示是一交变电流的i-t图象,则该交变电流的有效值为( )D.【答案】C【解析】根据交变电流的有效值可知:故C正确。
2. 如图所示,有一台交流发电机E.通过理想升压变压器T1和理想降压变压器T2向远处用户供电,输电线的总电阻为R,T1的输入电压和输入功率分别为U1和P1,它的输出电压和输出功率分别为U2和P2;T2的输入电压和输入功率分别为U3和P3,它的输出电压和输出功率分别为U4和P4,设T1的输入电压U1一定,当用户消耗的电功率变大时,有()A. P1变小,P2变小B. P2变大,P3变大C. U2变小,U3变小D. U2变小,U4变大【答案】B【解析】A变大,的输入电压R的电流变大,所以故A错误;BB正确;CR消耗的功率也变大,电阻变小,CD错误。
点睛:理想变压器的输入功率与输出功率相等,且没有漏磁现象.输电线上的损失功率与其电流的平方成正比,而与输电线两端的电压的平方成反比。
3. 如图所示的电路中,R是光敏电阻,其阻值随光照强度增加而减小,R1、R2是定值电阻,电源的内阻不能忽略,电压表和电流表均为理想电表,闭合开关S,当光敏电阻处的光照强度增大时,下列说法正确的是A. 电流表示数变大B. 电压表示数变大C. 电容器C所带的电荷量增加D. 电源的效率增大【答案】B【解析】A项:当光敏电阻处的光照强度增大时,光敏电阻减小,外电路总电阻减小,总电流增大,路端电压减小,所以电流表示数减小,故A错误;B项:根据串联电路电压按电阻分配,光敏电阻减小,所以电压表示数增大,故B正确;C荷量减小,故C错误;D D错误。
点晴:解决本题关键理解当光敏电阻处的光照强度增大时,光敏电阻减小,外电路总电阻减小,总电流增大,路端电压减小,所以电流表示数减小,结合电容的定义式进行处理。
4. 压敏电阻的阻值会随所受压力的增大而减小。
一同学利用压敏电阻设计了判断升降机运动状态的装置,如图甲所示,将压敏电阻平放在升降机内,受压面朝上,在上面放一物体m,升降机静止时电流表示数为I0。
某过程中电流表的示数如图乙所示,则在此过程中( )A. 升降机一定是先向上做匀加速运动然后做匀减速运动B. 升降机可能是先向上做匀减速运动然后做匀加速运动C. 物体一定是先超重后失重D. 物体一定是先失重后超重【答案】C【解析】升降机静止时电流表示数为I0,某过程中电流表示数为2I0,由欧姆定律分析压敏电阻的阻值变小,说明压敏电阻所受压力增大,则物体处于超重状态;当电流表示数为0.5I0,由欧姆定律分析压敏电阻的阻值变大,说明压敏电阻所受压力减小,则物体处于失重状态;物体处于超重状态时,加速度方向向上,故升降机可能向上加速运动,也可能向下减速运动;物体处于失重状态时,加速度方向向下,故升降机可能向下加速运动,也可能向上减速运动;故C正确,ABD错误;故选D。
【点睛】根据I-t图象得到电流变化情况,然后结合电路特点得到电阻变化情况,再有压敏电阻特性得到压力变化情况,最后得到加速度变化情况。
5. 酒精测试仪(主要部件是二氧化锡半导体型酒精气体传感器)用于测试机动车驾驶人员是否酒驾。
酒精气体传感器的电阻与酒精气体的浓度成反比,那么电压表的示数U与酒精气体浓度C之间的对应关系正确的是()A. U越大,表示C越小,C与U成反比B. U越大,表示C越大,C与U成正比C. U越大,表示C越小,但是C与U不成反比D. U越大,表示C越大,但是C与U不成正比【答案】D【解析】题中给出传感器电阻的倒数与酒精气体浓度,电压表示数,可以看出电压与浓度的关系不是正反比关系,但随浓度的增大而增大.故D正确;综上所述本题答案是:D6. 如图所示,矩形线圈有N匝,长为a,宽为b,每匝线圈电阻为R,从磁感应强度为B的匀强磁场中以速度v匀速拉出来,那么,产生的感应电动势和流经线圈中的感应电流的大小分别为()A. E = NBav E =C. E = BavD. E = Bav【答案】A【解析】在将线圈匀速拉出的过程中切割磁感线的导体长度为a,根据E=BLv知,每匝线圈产生感应电动势E=Bav,N匝线圈相当于N个线圈产生的感应电动势的串联,即整个线圈产生的总电动势为:E总=NE=NBLv=NBav,对于线圈中的电流,由欧姆定律可知,电流为A正确,BCD错误。
7. 如图所示,正方形单匝铝质线圈abcd和efgh分别在外力作用下以相同速度v向右匀速进入同一匀强磁场中。
已知两线圈导线的横截面积相同,所用材料也相同,两线圈的边长之比为1:2,则()A. 两线圈的右边刚进入磁场时,产生的感应电流之比为1:2B. 两线圈的右边刚进入磁场时,所加的外力大小之比为1:2C. 两线圈在进入磁场的整个过程中,通过导体横截面的电荷量之比为1:2D. 两线圈在进入磁场的整个过程中,产生的焦耳热之比为1:4【答案】BCDB1:2,B正确;C、,又,故电荷量之比等于边长之比,为1:2,C正确;D,故产生的焦耳热之比为边长的平方比,为1:4,D正确;故选BCD8. 如图甲所示,AB两端接直流稳压电源,其电压U AB=100V,R0=40Ω,滑动变阻器的总电阻R=20Ω,滑动片处于滑动变阻器R的中点;如图乙所示,自耦变压器输入端A、B接交流电源,其电压有效值U AB=100V,R0=40Ω,滑动片处于线圈中点位置.则下列分析中正确的是()A. 甲图中U CD=80V,且R0中的电流为2AB. 乙图中U CD=200V,且R0中的电流的有效值为5AC. 甲图中U CD=50V,且R0中的电流为1.25AD. 乙图中U CD=80V,且R0【答案】AB【解析】AC、R的上半部分与R0串联的总电阻为:R′=R0Ω;由欧姆定律可得流过R0的电流为:I0=2A;R0两端的电压为:U0=I0R0=2A×40Ω=80V;即CD两端的电压为80V,通过R0的电流为2A,故A正确,C错误.BD、由乙图可知AB之间的线圈是原线圈,CD之间的线圈是副线圈,滑片处于线圈中点位置时原副线圈匝数比为1:2,根据电压与匝数成正比可求出CD两端的电压为:U2=2U1=200V,通过R0的电流为:I A,故B正确,D错误;故选:AB.点睛:由图可知R的上端与R0串联后与R的下端并联;两支路两端的电压均为U AB,由欧姆定律可求得通过R0的电流,及R0两端的电压;滑片处于线圈中点位置时原副线圈匝数比为1:2,根据电压与匝数成正比可求出CD两端的电压,知道了CD两端的电压就能救出通过R0的电流.本题考查欧姆定律的就用,只需明白电路结构即可顺利求解.对变压器要知道输入电压和输出电压的关系该题就能顺利解出.9. 、如图甲,圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q,P和Q共轴。
Q 中通有变化电流,电流随时间变化的规律如图乙所示。
P所受的重力为G,桌面对P的支持力为N,则()A. t1时刻,N>GB. t2时刻,N>GC. t3时刻,N<GD. t4时刻,N=G【答案】AD向下运动的趋势,,时刻无电流变化,Q中没有电流;AD正确.【点睛】由电流变化而产生的感应磁场去阻碍线圈磁通量的变化.同时可知:同向电流相吸,异向电流相斥.10. 如图所示,宽度为L的倾斜光滑导轨处在匀强磁场中,倾角为θ,匀强磁场磁感应强度大小为B1,磁场方向垂直导轨平面斜向上,两导轨分别与平行板电容器两极板相连,极板间距离为d,板间存在磁感应强度大小为B2的匀强磁场,磁场方向垂直纸面向里,质量为m、带电荷量为+q的小球恰好能在电容器内的竖直平面内做匀速圆周运动,运动半径为r,已知重力加速度为g,下列说法正确的是A. 带点小球一定做顺时针方向的圆周运动B.C. 导体棒ab一定受沿斜面向上的拉力FD. 导体棒ab【答案】BC【解析】A项:小球恰好能在电容器内的竖直平面内做匀速圆周运动,即洛伦兹力提供向心力,由左手定则可知,带电小球一定做逆时针方向的圆周运动,故A错误;B B正确;C、D项:小球恰好能在电容器内的竖直平面内做匀速圆周运动,洛伦兹力提供向心力,重力与电场力等大反向,所以电场强度应上,即上板带负电,根据“右手定则”可知,棒应向上C正确,D错误。
点晴:解决本题关键理解小球恰好能在电容器内的竖直平面内做匀速圆周运动的条件:1、重力与电场力等大反向,2、洛伦兹力提供向心力。
二、实验题(每空2分,共14分)11. 在“探究电磁感应现象”的实验中,按如图连接电路,在闭合S1瞬间发现灵敏电流计G 指针向左偏,则将L2从L1中拔出,电流表指针______________,将滑动变阻器滑片迅速右移,电流表指针_______,断开S2,电流表指针_______________(填“左偏”、“右偏”或“不偏”)。
从该实验的探究可以得到的结论是________________________________________。
【答案】 (1). 右偏 (2). 左偏 (3). 不偏 (4). 穿过闭合线圈中的磁通量变化,则会产生感应电流【解析】在闭合S1瞬间,穿过L1的磁通量增大时灵敏电流计G指针向左偏,当L2从L1中拔出,穿过L1的磁通量减小,所以电流表指针向右偏,将滑动变阻器滑片迅速右移,电路中的电阻减小,电流变大,穿过L1的磁通量增大,所以灵敏电流计G指针向左偏,断开S2,电路中无电流,穿过L1的磁通量不变,所以电流表指针不偏,由上可得出穿过闭合线圈中的磁通量变化,则会产生感应电流。
12. 实际电流表有内阻,可等效为理想电流表与电阻的串联,测量实际电流表G1内阻r1的电路如图1所示,供选择的仪器如下:①待测电流表G1(0~5mA,内阻约300Ω);②电流表G2(0~10mA,内阻约100Ω);③定值电阻R1(300Ω);④定值电阻R2(10Ω);⑤滑动变阻器R3(0~1000Ω);⑥滑动变阻器R4(0~20Ω);⑦干电池(1.5V);⑧电键S及导线若干.按电路连接电路,多次移动滑动触头,记录相应的G1、G2读数I1、I2,作出相应的图线,如图所示(1)定值电阻应选_______,滑动变阻器应选________.(在空格内填写序号);(2)根据I2-I1图线的斜率k及定值电阻,写出待测电流表内阻的表达式_______。
【答案】【解析】(12倍;滑动变阻器的电阻不要太大,故定值电阻选③,滑动变阻器选⑥;(2点睛:本题考查测量实际电流表内阻的实验器材选择,滑动变阻器采用的分压式接法,其电阻不要太大,根据实验原理和串并联特点,分析电流表内阻的表达式。