八年级数学上学期期末考试试题 新人教版
人教版八年级上册数学期末考试试题带答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
2023—2024学年最新人教版八年级上学期数学期末考试试卷(含答卷)
最新人教新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图形中,是轴对称图形的是()A.B.C.D.2、若a≠b,则下列分式化简正确的是()A.B.C.D.3、下列计算,正确的是()A.a2⋅a3=a6 B.a2+a2=2a4 C.(﹣a2)3=﹣a6 D.(a﹣1)2=a2﹣1 4、若实数m、n满足|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.10C.8D.10或85、如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD 的长为()A.1.5B.2C.3D.46、某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.C.D.7、若x2﹣x﹣6=(x+a)(x+b),则ab的值为()A.﹣6B.6C.﹣1D.18、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .在∠A 、∠B 两内角平分线的交点处 B .在AC 、BC 两边中线的交点处C .在AC 、BC 两边高线的交点处D .在AC 、BC 两边垂直平分线的交点处9、如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是( )A .45°B .55°C .60°D .75°10、如图,已知∠AOB =120°,点D 是∠AOB 的平分线上的一个定点,点E ,F 分别在射线OA 和射线OB 上,且∠EDF =60°.下列结论:①△DEF 是等边三角形;②四边形DEOF 的面积是一个定值;③当DE ⊥OA 时,△DEF 的周长最小;④当DE ∥OB 时,DF 也平行于OA .其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,满分18分)11、分解因式:2x 2﹣8= .12、已知,则= . 13、一个多边形的内角和为900°,则这个多边形的边数为 .14、已知分式的值为0,则x 的值为 .15、已知点A (a +3,5)与点B (5,b )关于y 轴对称,则b ﹣a 的值是 .16、如图,CD 是△ABC 的角平分线,△ABC 的面积为12,BC 长为6,点E ,F 分别是CD ,AC 上的动点,则AE +EF 的最小值是 .第8题 第9题 第10题最新人教新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣2)2+.18、解分式方程:.19、先化简,再求值:,其中x=3.20、将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE,交DE于点F,DE=4.(1)求证:CF∥AB;(2)求∠DFC的度数;(3)求CE的长.21、(1)用边长分别为a,b的两个正方形和长宽分别为a,b的两个长方形按如图摆放可拼成一个大正方形,用两种不同的方法可以表示图中阴影部分的面积和.请你用一个等式表示(a+b)2,a2+b2,ab之间的数量关系.(2)根据(1)中的数量关系,解决如下问题:①已知m+n=6,m2+n2=26,求m﹣n的值;②已知(x﹣2021)2+(x﹣2023)2=74,求(x﹣2022)2的值.22、如图,在△ABC中,AD是高,点F在AD上,BF的延长线交AC于点E,∠ABC=2∠CAD,点G为BF的中点.(1)求证:△ABC为等腰三角形;(2)若AD=BD,BF=AC.①求证:∠CAD=∠CBE;②求∠EDG的度数.23、服装店经销甲种品牌的服装,受市场影响,现在每件降价50元销售.如果卖出相同件数的服装,原价的销售额为9000元,现价销售额为8000元.(1)销售甲种品牌服装现价每件为多少元?(2)服装店决定增加经销乙种品牌的服装,已知甲种品牌服装每件进价为350元,乙种品牌服装每件进价为300元,服装店用不多于6600元且不少于6400元的资金购进这两种品牌的服装共20件.①问有几种进货方案?②乙种品牌的服装每件售价为370元,服装店决定每售出1件乙种品牌服装,返还顾客a元,要使①中所有方案获利相同,求a的值.24、定义:a,b,c为正整数,若c2=a2+b2,则称c为“完美勾股数”,a,b为c的“伴侣勾股数”.如132=52+122,则13是“完美勾股数”,5,12是13的”伴侣勾股数”.(1)数10 “完美勾股数”(填“是”或“不是”);(2)已知△ABC的三边a,b,c满足a2+b2+c2﹣6a﹣8b﹣10c+50=0.求证:c是“完美勾股数”;(3)已知m,n>0且m>n,c=2m2+2mn+2n2,a=m2+4mn+n2,,c为“完美勾股数”,a,b为c的“伴侣勾股数”.多项式x3﹣3x2+p有一个因式x﹣m+n,求该多项式的另一个因式.25、在平面直角坐标系中,点A(﹣3,0),B(0,3),点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,求证:△AEO≌△BCO;(2)如图②,若点C在x轴正半轴上运动,且OC<3,连接DO.①若∠BAD=∠BOD,求证:∠ABC=∠DOC.②当AD﹣CD=OC时,求的值.。
最新人教版八年级上册数学期末考试试题(附答案)
最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
新人教版八年级数学上期末试题
新人教版八年级数学上期末试题1一.选择题(共10小题,满分30分,每小题3分)B C几根木条?( )第2题 第3题 第4题 第6题 3.如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( ))7.(3分)化简的结果是( ) 8.下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的 B CA.0根B.1根C. 2根D. 3根第19题图10.如图,已知∠1=∠2,要得到△ABD ≌△ACD ,还需从下列条件中补选一个,则错误的选法是( )A. AB=ACB.DB=DCC.∠ADB=∠ADCD.∠B=∠C 10.一副三角板,如图所示叠放在一起,则图中∠α的度数是( )A .75B .60C .65D .55二.填空题(共5小题,满分20分,每小题4分)11.分解因式:x 3﹣4x 2﹣12x= _________ . 12.计算:2421222a a a +-=-+- 13.若分式方程:有无解,则k= _________ .14.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 _____ ____ .(只需填一个即可)第15题 第16题 第17题15.如图,在△ABC 中,AC=BC ,△ABC 的外角∠ACE=100°,则∠A= _________ 度. 16.如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 _________ .17.△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN=______________度.18.如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.三.解答题(共7小题,满分66分)20.(1)(6分)先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a=,b=﹣.第18题图B CE F第24题图(2).(6分)解方程:.21.(6分)给出三个多项式:x 2+2x ﹣1,x 2+4x+1,x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解. 22.(8分)已知:如图,△ABC 和△DBE 均为等腰直角三角形. (1)求证:AD=CE ;(2)求证:AD 和CE 垂直.23.(6分)请你阅读下列计算过程,再回答所提出的问题: (1)解:23333x 11(1)(1)1x x x x x x ---=---+-- ……(A ) 33(1)(1)(1)(1)(1)x x x x x x -+=-+-+-……(B ) 33(1)x x =--+ …………………(C ) =26x -- …………………………(D )24. (8分)在△ABC 中,AB=CB,∠ABC=90º,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.(1)求证:Rt △AB E ≌Rt △CBF; (2)若∠CAE=30º,求∠ACF 度数.(1)上述计算过程中,从哪一步开始出现错误:______________;(2)求解中从(B )到(C )正确吗?若不正确,错误原因是:________________________ (3)请你正确解答;233x 11x x----25.(8分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少? 26、(8分)(1)如图1,在等边△ABC 中,点M 是BC 上的任意一点(不含端点B 、C ),连结AM ,以AM 为边作等边△AMN,连结CN .求证:∠ABC=∠ACN. 【类比探究】(2)如图2,在等边△ABC 中,点M 是BC 延长线上的任意一点(不含端点C ),其它条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由.27. (10分)已知:在△ABC 中,AC=BC ,∠ACB=90°,点D 是AB 的中点,点E 是AB 边上一点. (1)直线BF 垂直于直线CE 于点F ,交CD 于点G (如图①),求证:AE=CG ; (2)直线AH 垂直于直线CE ,垂足为点 H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.。
新人教版八年级数学上册期末试题
新人教版八年级数学上册期末试题校6公里,私家车的速度是每小时50公里,公交车的速度是每小时30公里,问XXX家乘坐私家车上学需要多少时间?解答:私家车比公交车快15分钟,换算成小时就是0.25小时。
距离为6公里,私家车速度为每小时50公里,所需时间为6÷50=0.12小时。
因此,XXX家乘坐私家车上学需要的总时间为0.12-0.25=-0.13小时,即7.8分钟。
但是,时间不能为负数,因此XXX家只能选择乘坐公交车上学。
校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍。
设乘公交车平均每小时走x千米,则乘私家车每小时走2.5x千米。
根据题意可列方程为:8/x = 8/(2.5x),解得x=3.2.所以乘公交车平均每小时走3.2千米,乘私家车平均每小时走8/3.2=2.5千米。
1.x≠1.x≠22.x(x-4)(x-1)3.k=-2或k=34.AB=EF5.1cm6.60°7.1/38.1/49.6/521.先化简,再求值:(112m,其中m=9.+)÷(2m-3m+3m-6m+9) = (112m / 9) ÷ (2m - 6) = (16m / 3) ÷ (m - 3) = 16 / 3 + 16 / (3(m - 3))22.(1) x(x+1)(x-1) (2) (m²-9n²)(m²+9n²)23.x=1或x=-124.(1) 因为∠A和∠B都是直角,所以AD=AB=CE;(2) AD和CE垂直,因为AD和BC互为垂直平分线,CE和AB 互为垂直平分线。
25.作AO和BO的平分线,交于点O。
作OM和ON垂直于AO和BO。
则点P在MN上,且OP垂直于AB,OP=OM=ON。
B。
(1) 甲队完成工程所需时间为20天。
(2) 甲队和乙队合做完成工程所需费用为20×(6500+3500) = 元。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。
人教版数学八年级上学期《期末考试题》带答案解析
[点睛]本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
15.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.
[答案]﹣7或5
[解析]
[分析]
利用完全平方公式得到9x2﹣2(m+1)xy+4y2=(3x±2y)2,则﹣2(m+1)xy=±12xy,即m+1=±6,然后解m的方程即可.
[解析]
试题解析:∵x2+(m-2)x+9是一个完全平方式,
∴(x±3)2=x2±2(m-2)x+9,
∴2(m-2)=±12,
∴m=8或-4.
故选D.
10.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()
A. 30°B. 15°C. °D. 35°
[答案]2
[解析]
[分析]
本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.
[详解]解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.
[点睛]本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
[答案]A
[解析]
[分析]
由于点C关于直线MN的对称点是B,所以当 三点在同一直线上时, 的值最小.
[详解]由题意知,当B.P、D三点位于同一直线时,PC+PD取最小值,
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
人教版八年级上册数学期末考试试题及答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.﹣2的绝对值是()A .2B .12C .12-D .2-3.在下列长度的各组线段中,能组成三角形的是()A .1,2,4B .1,4,9C .3,4,5D .4,5,94.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为()A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯5.在211x 13xy 31a x 22πx y m+++,,,,,中,分式的个数是()A .2B .3C .4D .56.下列计算中正确的是()A .()236ab ab =B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-7.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是()A .237442a a -+B .237164a a -+C .237442a a ++D .237164a a ++8.等腰三角形的两边长分别为8cm 和4cm ,则它的周长为()A .12cmB .16cmC .20cmD .16cm 或20cm9.下列条件中,不能判定两个直角三角形全等的是()A .两个锐角对应相等B .一条边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等10.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=6cm ,AB=8cm ,则△EBC 的周长是()A .14cmB .18cmC .20cmD .22cm二、填空题11.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.12.若一个多边形的内角和是900º,则这个多边形是_____边形.13.如图,在△ABC 中,已知AD 是角平分线,DE ⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.14.二元一次方程组128x y x y -=⎧⎨+=⎩的解为_________.15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.16.现在生活人们已经离不开密码,如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是()22()()x y x y x y -++,若取9x =,9y =时则各个因式的值是:0x y -=,18x y +=,22162x y +=,把这些值从小到大排列得到018162,于是就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取10x =,10y =时,请你写出用上述方法产生的密码_________.三、解答题17.计算:102|3|(2----+;18.解方程:32122x x x =---19.先化简,再求值:2()()()x y x y x y x ⎡⎤-+-+÷⎣⎦,其中x =1-,12y =.20.计算:221369324a a a a a a a +--+-÷-+-.21.如图所示,在ABC ∆,A ABC CB =∠∠.(1)尺规作图:过顶点A 作ABC ∆的角平分线AD ,交BC 于D ;(不写作法,保留作图痕迹)(2)在AD 上任取一点E (不与点A 、D 重合),连结BE ,CE ,求证:EB EC =.22.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP 全等;此时点Q的运动速度为多少.24.如图,在四边形ABCD中,//AD BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF ADF∠=∠.(1)求证:ADE∆≌BFE∆.(2)连接EG,判断EG与DF的位置关系并说明理由.25.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).参考答案1.A【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.2.A【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在211133122x xy ax x y mπ+++,,,,,中,分式有131ax x y m++,,∴分式的个数是3个.故选:B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象2xπ-不是分式,是整式.6.D 【分析】根据幂的乘除运算法则运算即可.【详解】A.()2326ab a b =,该选项错误B.34a a a ÷=,该选项错误C.246a a a ⋅=,该选项错误D.()326a a -=-,该选项正确故选D.【点睛】本题考查幂的乘除的运算,关键在于熟悉乘除、乘方的运算规律.7.D 【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++故选:D .【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.C 【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm 和4cm ,∴它的三边长可能为8cm ,8cm ,4cm 或4cm ,4cm ,8cm ,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.9.A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.A【分析】先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB,即可得出结论.【详解】中AC边的垂直平分线,DE是ABC∴=,AE CE∴+==,CE BE AB8cm,=BC6cmEBC ∴ 的周长()BC CE BE BC AB 6814cm =++=+=+=,故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.-2【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.七【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE ⊥AC 于点E ,∴S△ADC =12AC⋅DE=6,即:142⨯⨯DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.14.32 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解128x yx y-=⎧⎨+=⎩①②,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为32 xy=⎧⎨=⎩,故答案为:32 xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.101030【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】4x3−xy2=x(4x2−y2)=x(2x+y)(2x−y),当x=10,y=10时,x=10;2x+y=30;2x−y=10,把它们从小到大排列得到101030.用上述方法产生的密码是:101030.故答案为:101030.【点睛】本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.−1 2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】102|3|(2----=12−3−1+3=−1 2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.x =76【解析】【分析】观察可得方程最简公分母为2(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴x =76,检验:当x =76时,2(x-1)≠0,∴x =76是原分式方程的解.【点睛】此题考查了解分式方程.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.19.2(x-y);-3.【分析】括号内先提取公因式(x-y),整理,再根据整式除法法则化简出最简结果,把x 、y 的值代入求值即可.【详解】2()()()x y x y x y x⎡⎤-+-+÷⎣⎦=(x-y)(x-y+x+y)÷x=2x(x-y)÷x=2(x-y).当x =1-,12y =时,原式=2(x-y)=2×(-1-12)=-3.【点睛】本题考查因式分解的应用——化简求值,正确找出公因式(x-y)是解题关键.20.33a -【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】221369324a a a a a a a +--+-÷-+-=()()2221332(3)a a a a a a a +-+--⋅-+-=1233a a a a +----=33a -.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(1)图见解析(2)证明见解析【分析】(1)利用基本作图(作已知角的平分线)作∠BAC 的平分线交BC 于D ,则AD 为所求;(2)先证明△ABC 为等腰三角形,再根据等腰三角形的性质,由AD 平分∠BAC 可判断AD 垂直平分BC ,然后根据线段垂直平分线的性质可得EB =EC .【详解】(1)解:如图,AD 为所作;(2)证明:如图,∵∠ABC =∠ACB ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ,即AD 垂直平分BC ,∴EB =EC .【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.(1)甲单独20天,乙单独25天完成.(2)方案③最节省.【分析】(1)设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.(2)根据题意可得方案①、③不耽误工期,符合要求,再求出各自的费用,方案②显然不符合要求.【详解】(1)设规定日期x天完成,则有:415xx x+=+解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.(2)方案①:20×1.5=30(万元),方案②:25×1.1=27.5(万元),但是耽误工期,方案③:4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案③最节省.【点睛】本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.23.(1)△BPE与△CQP全等,理由见解析;(2)t=5 2 ,【分析】(1)根据SAS可判定全等;(2)由于点Q的运动速度与点P的运动速度不相等,而运动时间相同,所以BP≠CQ.又△BPE与△CQP全等,则有BP=PC=12BC=5,CQ=BE=6,由BP=5求出运动时间,再根据速度=路程÷时间,即可得出点Q的速度.【详解】(1)△BPE与△CQP全等.∵点Q的运动速度与点P的运动速度相等,且t=2秒,∴BP=CQ=2×2=4厘米,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,{BP CQ BE CP==,∴Rt△BPE≌Rt△CQP;(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=BP522=(秒)此时点Q的运动速度为CQ12t5QV==(厘米/秒).【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.24.(1)见解析;(2)EG DF⊥,见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE ,∵E 为AB 的中点,∴AE =BE ,在△ADE 和△BFE 中,ADE BFE AED BEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BFE (AAS );(2)EG ⊥DF ,理由如下:连接EG,∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE ,∴DG =FG ,由(1)得:△ADE ≌△BFE∴DE =FE ,即GE 为DF 上的中线,又∵DG =FG ,∴EG ⊥DF .【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.25.(1)40°;(2)①补图见解析;②证明见解析.【详解】试题分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)①根据要求作出图形,如图2;②根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q 关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.试题解析:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)①如图2;②∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.考点:三角形综合题.。
最新人教版八年级上册数学期末测试题(附答案)
最新人教版八年级上册数学期末测试题(附答案)过池塘,分别测量AC和BC的长度,再利用勾股定理求出AB的长度。
已知AC=15m,BC=20m,求AB的长度。
解题思路:根据勾股定理,设AB=x,则有x²=15²+20²,解得x=25.因此,AB的长度为25m。
19.(本小题满分6分)已知点A(2,-3),B(5,1),C(-1,4),求三角形ABC的周长。
解题思路:根据两点间距离公式,可求出AB、BC、CA的长度,然后将它们相加即可得到三角形ABC的周长。
计算过程如下:AB的长度:√[(5-2)²+(1-(-3))²] = √34BC的长度:√[(5-(-1))²+(1-4)²] = √41CA的长度:√[(2-(-1))²+(-3-4)²] = √74因此,三角形ABC的周长为√34+√41+√74.20.(本小题满分8分)已知函数f(x)=3x²-4x+5,求f(2a)与f(a+1)的值,并判断它们的大小关系。
解题思路:将2a和a+1代入函数f(x)中,即可求出f(2a)和f(a+1)的值。
计算过程如下:f(2a) = 3(2a)²-4(2a)+5 = 12a²-8a+5f(a+1) = 3(a+1)²-4(a+1)+5 = 3a²+2a+4因此,f(2a) = 12a²-8a+5,f(a+1) = 3a²+2a+4.接下来判断它们的大小关系,即f(2a)与f(a+1)的大小关系。
将它们相减,得到12a²-11a+1,根据一元二次方程的解法,可得a=1或a=1/12.将这两个值代入12a²-11a+1的值,发现当a=1时,f(2a)>f(a+1);当a=1/12时,f(2a)f(a+1)的解集为a∈(0,1/12)U(1/12,∞),而f(2a)<f(a+1)的解集为a=1/12.21.(本小题满分8分)如图,在平面直角坐标系中,点A(1,2)、B(-3,4)、C(-2,-1)、D(2,-3)依次连线,得到四边形ABCD。
人教版数学八年级上册期末考试试卷附答案
人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。
每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。
最新人教版八年级数学上册期末试题
人教版八年级数学上册期末试题一、单项选择题:(本大题共10个小题,每小题2分,共20分.)1.下列运算正确的是()A.3a•4a=12a B.(a3)2=a6C.(﹣2a)3=﹣2a3D.a12÷a3=a42.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,能作为一个三角形的三边边长的是()A.1、2、4 B.8、6、4 C.12、6、5 D.3、3、64.点(4,5)关于y轴对称的点的坐标为()A.(﹣4,5)B.(﹣4,﹣5)C.(4,﹣5)D.(3,5)5.如图①,矩形长为2a,宽为2b(a>b),用剪刀分别沿矩形的两组对边中点连线剪开,把它分成四个全等的矩形,然后按图②拼成一个新的正方形,则图②中阴影部分面积可以表示为()A.ab B.a2﹣b2C.(a﹣b)2D.(a+b)26.若x2﹣kx+25是完全平方式,则k的值为()A.﹣10 B.10 C.5 D.10或﹣107.在Rt△ABC中,∠ACB=90°,点D、E是AB边上两点,且CE垂直平分AD,CD平分∠BCE,AC=6cm,则BD的长为()A.6cm B.7cm C .8cm D.9cm8.若(x﹣2)(3x+m)计算的结果中不含关于字母x的一次项,则m的值为()A.4 B.5 C.6 D.79.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.+B.C.+D.﹣10.如图,△ABE与△CDE是两个全等的等边三角形,EA⊥ED.下列结论不正确的是()A.∠EBC=25°B.直线EB垂直平分CDC.AD∥BCD.四边形ABCD是轴对称图形二.填空题(本大题共9个小题,每小题3分,共27分.)11.影响我国空气质量的“灰霾”天气,其最主要成因是直径小于或等于2.5微米的细颗粒物(即pm2.5),已知2.5微米=0.0000025米,此数据用科学记数法表示为米.12.计算:=.13.如果分式有意义,那么x的取值范围是.14.若点M (m ,﹣1)关于y轴的对称点是N(2,n),则m+n的值是.15.若关于x 的分式方程﹣3=无解,则m=.16.因式分解:2x3y﹣8xy3=.17.如图,在△ABC中,∠A=150°,AB=20,AC=30,则△ABC的面积为.18.在等腰△ABC中,∠A=40°,则∠B=度.19.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n∁n C n+1的周长和为.(n ≥2,且n为整数)三.解答题(6个小题,共53分)20.(8分)(1)化简:(﹣)÷;(2)解分式方程:﹣=1.21.(8分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(8分)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路),现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.(要求不写作法,但保留作图痕迹)23.(9分)感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:(2)在图2中AD平分∠BAC,如果∠B=60°,∠C=120°,DB=2,AC=3,则AB =.24.(10分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.25.(12分)问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.拓展延伸:(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),请直接写出B点的坐标.人教版八年级期中考试数学试题一、选择题.(每小题3分,共30分)1.下列垃圾分类指引标志图形中,其中是轴对称图形的是()A.B.C.D.2.下列长度的三条线段不能组成三角形的是()A.3,4,5B.6,6,6C.8,15,7D.8,8,153.若三角形三个内角度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB ≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS5.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形6.若一个等腰三角形有一个角为110°,那么它的底角的度数为()A.110°B.55°C.110°或35°D.35°7.五边形共有对角线的条数为()A.5B.6C.7D.88.如图,△ABC中,AB=AC,作△BCE,点A在△BCE内,点D在BE上,AD垂直平分BE,且∠BAC=m°,则∠BEC =()A.90°﹣m°B.180°﹣2m°C.30°+m°D.m°9.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…按此规律排列,则第⑥个图形中小圆圈的个数为()A.46B.64C.75D.7710.如图,在边长为6cm的等边△ABC中,点D从A出发沿A→B的方向以1cm/s的速度运动,点E从B出发沿B→C的方向以2cm/s的速度运动,D,E两点同时出发,当点E到达点C时,D,E两点停止运动,以DE为边作等边△DEF(D,E ,F按逆时针顺序排列),点N为线段AB上一动点,点M为线段BC的中点,连MF,NF,当MF+NF取得最小值时,线段BN的长度为()A.5cm B.4.5cm C.4cm D.3cm二、填空题(每小题3分,共18分)11.点(3,6)关于x轴对称的点的坐标为.12.若等腰三角形的两边长是2和5,则此等腰三角形的周长是.13.如图,在△ABC中,BD,CE是角平分线,它们交于点O,∠BOC=140°,则∠A=.14.已知点A(3,3),B(0,t),C(7,0),且AB=AC,则t=.15.如图,在等腰Rt△ABC中,∠ACB=90°,点D为Rt△ABC内一点,∠ADC=90°,若△BCD的面积为8,则CD=.16.如图,已知AB=AC=DE,D为BC延长线上一点,过D作DE⊥BA于E交AC于F,若AB=m,AF=n,则AE+EF=(用含m,n的式子表示).三.解答题(共8小题,72分)17.(8分)△ABC中,∠B=2∠A,∠C=∠B+30°,求△ABC的各内角度数.18.(8分)如图,已知AB=CD,CE=BF,AE⊥BC,DF⊥BC,垂足分别为E,F,求证:CD∥AB.19.(8分)如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.(8分)如图,在等腰△ABC中,CA=CB,点D,E,F分别是AC,BC,AB上的点,且AF=BE,∠DFE=∠A,连DE,GF平分∠DFE,求证:GF⊥DE.21.(8分)在10×10的网格中建立如图的平面直角坐标系,每个小正方形的顶点称为格点,例如图中点A(0,4),B(4,2).仅用无刻度的直尺在给定网格中完成画图,并回答问题:(1)作出线段AB关于y轴对称的线段AD,并写点B的对应点D的坐标;(2)作直线l,使得点A和点B关于直线l对称(保留画图过程的痕迹);(3)在x轴上找一点P,使得∠APB=2∠OAP(保留画图过程的痕迹).22.(10分)如图1,在△ABC中,D为AB边上一点,连CD,E为AB边上一点,若AE平分∠BAC,ED平分∠BDC.(1)求证:2∠BCD+∠ACD=180°;(2)如图2,若AC+DC=AB,且∠ACD=18°,求∠BAC的度数.23.(10分)在等边△ABC中,点P为△ABC所在平面内一点.(1)如图1,点P在△ABC内,以CP为边作等边△CPD,连AP,BD,延长AP交BD 的延长线于点Q,求∠AQB的度数;(2)如图2,点P在△ABC内,且∠APC=120°,M为AC的中点,连PM,PB,求证:PB=2PM;(3)如图3,在(1)的条件下,将等边△CPD绕点C顺时针旋转至B,C,P三点共线,连AP,BD交于点E,连接EC,设AE=a,DE=b,CE=c,若BC=3CP,直接写出的值.24.(12分)平面直角坐标系中,A(0,4),B(﹣4,0),点C为x轴上的点,且△ABC的面积为2.(1)如图1,求点C的坐标;(2)如图2,若点C在点B的右侧,连AC并延长至点D,使得DO=AO,过点B作BE ∥y轴交OD的延长线于点E,求OE﹣BE的值;(3)如图3,若点C在点B的右侧,点P为y轴上一点,CP为腰作等腰△CPQ,其中PC=PQ,且∠CPQ=2∠ACO=2α(α为定值),AC=5,连接OQ,求线段OQ的最小值。
最新人教版八年级上学期数学《期末检测题》含答案
人教版八年级上学期数学期末测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共15小题)1.4的平方根是( )A. 2B. 16C. ±2D. ±2.下列各数:3.1415926,﹣11712π,4.217,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有( )A 4个 B. 3个 C. 2个 D. 1个3.下列计算,正确的是( )A. a 2•a 2=2a 2B. a 2+a 2=a 4C. (﹣a 2)2=a 4D. (a+1)2=a 2+1 4.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( )A. 3xyB. -3xyC. -1D. 15.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( )A. ①②B. ①③C. ②③D. ②④6.若(2x ﹣y )2+M =4x 2+y 2,则整式M 为( )A. ﹣4xyB. 2xyC. ﹣2xyD. 4xy7.若4x 2+kxy +9y 2是一个完全平方式,则k 的值是( )A. 12B. 72C. ±36D. ±128.下列等式从左到右的变形,属于因式分解的是( )A. a (x -y )=ax -ayB. x 2+2x +1=x (x +2)+1C. (x +1)(x +3)=x 2+4x +3D. x 3-x =x (x +1)(x -1)9.下列命题是真命题是( )A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是010. 如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是A ∠A=∠C B. AD=CB C. BE=DF D. AD ∥BC11.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS12.如图,在Rt △ABC 中,∠ACB =90°,若△ACD 的周长为50,DE 为AB 的垂直平分线,则AC +BC =( )A. 25cmB. 45cmC. 50cmD. 55cm 13.下列几组数中,为勾股数的是( ) A. 4,5,6B. 12,16,18C. 7,24,25D. 0.8,1.5,1.7 14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于( )A. 4.1米B. 4.0米C. 3.9米D. 3.8米15.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是( )A. (12)n•75° B. (12)n﹣1•65°C. (12)n﹣1•75° D. (12)n•85°二.填空题(共10小题)16.若264x ,则3x=______.17.若2x=3,4y=5,则2x﹣2y+1的值为_____.18.把命题”在同一平面内,垂直于同一条直线的两条直线平行”改写成”如果……那么……”的形式为____________________________________________________.19.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.20.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是_____.21.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之间罚球20次,共罚进15次,则小亮点罚进的频数是____________. 频率是____________.22.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;23.若代数式x2+6x+8可化为(x+h)2+k的形式,则h=_____,k=_____.24.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.25.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.三.解答题(共8小题)26.计算:()()20382232019π-+-----. 27.计算:(x +3)(x ﹣4)﹣x (x +2)﹣528.因式分解: (1)﹣2x 2﹣8y 2+8xy ;(2)(p +q )2﹣(p ﹣q )229.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.30.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m ,当他把绳子下端拉开4m 后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?31.如图,在△ABC 中,∠A =30°,∠B =60°(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE .32.”安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与”防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中”家长和学生都未参与”的人数.33.问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?答案与解析一.选择题(共15小题)1.4的平方根是( )A. 2B. 16C. ±2D. ± 【答案】C【解析】【分析】根据平方根的概念:如果一个数x 的平方等于a ,即2x a = ,那么这个数x 叫做a 的平方根,即可得出答案.【详解】2(2)4±= ,∴4的平方根是2± ,故选:C .【点睛】本题主要考查平方根的概念,掌握平方根的概念是解题的关键.2.下列各数:3.1415926,﹣11712π,4.217,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有( )A. 4个B. 3个C. 2个D. 1个 【答案】B【解析】【分析】根据无理数的定义逐个判断即可.【详解】解:无理数有12π,2.1010010001…(相邻两个1之间依次增加1个0),共3个, 故选:B .【点睛】本题考查无理数的定义,属于基础题型,解题的关键是掌握无理数的三种主要形式:①开方开不尽的数;②无限不循环的小数;③含有π的数.3.下列计算,正确的是( )A. a 2•a 2=2a 2B. a 2+a 2=a 4C. (﹣a 2)2=a 4D. (a+1)2=a 2+1 【答案】C【解析】【详解】解:A.224 .a a a ⋅=故错误;B.2222.a a a += 故错误;C.正确;D.()2212 1.a a a +=++故选C .【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.4.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( )A. 3xyB. -3xyC. -1D. 1 【答案】A【解析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .5.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( )A. ①②B. ①③C. ②③D. ②④ 【答案】A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b )(a ﹣b )的形式,由此即可得出结论.解:①(x ﹣2y )(2y+x )=(x ﹣2y )(x+2y )=x 2﹣4y 2;②(x ﹣2y )(﹣x ﹣2y )=﹣(x ﹣2y )(x+2y )=4y 2﹣x 2;③(﹣x ﹣2y )(x+2y )=﹣(x+2y )(x+2y )=﹣(x+2y )2;④(x ﹣2y )(﹣x+2y )=﹣(x ﹣2y )(x ﹣2y )=﹣(x ﹣2y )2;∴能用平方差公式计算的是①②.故选A .点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.6.若(2x ﹣y )2+M =4x 2+y 2,则整式M 为( )A. ﹣4xyB. 2xyC. ﹣2xyD. 4xy【答案】D【解析】【分析】根据完全平方公式,即可解答.【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.7.若4x2+kxy+9y2是一个完全平方式,则k的值是()A. 12B. 72C. ±36D. ±12【答案】D【解析】【分析】根据完全平方公式可知,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.【详解】解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±12.故选:D.【点睛】本题考查完全平方公式的知识,解题的关键是能够理解并灵活应用完全平方公式.8.下列等式从左到右的变形,属于因式分解的是()A. a(x-y)=ax-ayB. x2+2x+1=x(x+2)+1C. (x+1)(x+3)=x2+4x+3D. x3-x=x(x+1)(x-1)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解,解答即可.【详解】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,叫做分解因式,又叫做因式分解,由此判断A、B、C仍是多项式的和或差,只有D选项符合因式分解的定义.【点睛】本题考查因式分解的定义,熟练理解因式分解的定义是解决本题的关键.9.下列命题是真命题的是()A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10. 如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是A. ∠A=∠CB. AD=CBC. BE=DFD. AD∥BC【答案】B【解析】试题分析:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.∵在△ADF和△CBE中,A C{AF CEAFD CEB∠=∠=∠=∠,∴△ADF≌△CBE(ASA),正确,故本选项错误.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确.C .∵在△ADF 和△CBE 中,AF CE{AFD CEB DF BE=∠=∠=,∴△ADF ≌△CBE (SAS ),正确,故本选项错误.D .∵AD ∥BC ,∴∠A=∠C .由A 选项可知,△ADF ≌△CBE (ASA ),正确,故本选项错误.故选B .11.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【解析】【分析】 我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②任意作一点O ',作射线O A '',以O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以C '为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.12.如图,在Rt △ABC 中,∠ACB =90°,若△ACD 的周长为50,DE 为AB 的垂直平分线,则AC +BC =( )A. 25cmB. 45cmC. 50cmD. 55cm【答案】C【解析】【分析】 由垂直平分线的性质可求得AD =BD ,则△ACD 的周长可化为AC +CD +BD ,即AC +BC ,可求得答案.【详解】解:∵DE 为AB 的垂直平分线,∴AD =BD ,∴AC +CD +AD =AC +CD +BD =AC +BC =50,故选:C .【点睛】本题考查线段垂直平分线的知识,解题的关键是掌握线段垂直平分线的性质:线段垂直平分线上的点到这条线段两端点的距离相等.13.下列几组数中,为勾股数的是( )A. 4,5,6B. 12,16,18C. 7,24,25D. 0.8,1.5,1.7【答案】C【解析】【分析】根据勾股数的定义:满足222a b c +=的三个正整数,称为勾股数解答即可.【详解】解:A 、42+52≠62,不是勾股数;B 、122+162≠182,不是勾股数;C 、72+242=252,是勾股数;D 、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C . 【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足222a b c +=,还要是正整数.14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于( )A. 4.1米B. 4.0米C. 3.9米D. 3.8米【答案】A【解析】【分析】根据题意欲通过如图的隧道,只要比较距厂门中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.【详解】车宽2.4米,∴欲通过如图的隧道,只要比较距厂门中线1.2米处的高度与车高,在Rt OCD△中,由勾股定理可得:22222 1.2 1.6CD OC OD=-=-=(m),1.62.5 4.1CH CD DH=+=+=米,∴卡车的外形高必须低于4.1米.故选:A.【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出CD的长是解题关键.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()A. (12)n•75° B. (12)n﹣1•65°C. (12)n﹣1•75° D. (12)n•85°【答案】C 【解析】【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的底角度数.【详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C=1802B︒-∠=75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×75°;同理可得,∠EA3A2=(12)2×75°,∠FA4A3=(12)3×75°,∴第n个三角形中以A n为顶点的底角度数是(12)n﹣1×75°.故选:C.【点睛】本题考查等腰三角形的性质和三角形外角的性质,解题的关键是根据这两个性质求出∠DA2A1,∠EA3A2及∠FA4A3的度数,探索其规律.二.填空题(共10小题)16.若264x==______.【答案】±2【解析】由264x=可得x=±8=22=- 2.17.若2x=3,4y=5,则2x﹣2y+1的值为_____.【答案】65【解析】【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.详解】解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=65.故答案为:65.【点睛】本题考查同底数幂的乘、除法法则,解题的关键是熟练理解:一个幂的指数是相加(或相减)的形式,那么可以分解为同底数幂相乘(或相除)的形式.18.把命题”在同一平面内,垂直于同一条直线的两条直线平行”改写成”如果……那么……”的形式为____________________________________________________.【答案】”在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”【解析】【分析】命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行.【详解】”在同一平面内,垂直于同一条直线的两条直线互相平行”改写成”如果−−−,那么−−−”的形式为:”在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.故答案为在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.19.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.【答案】63°或27°.【解析】试题分析:等腰三角形分锐角和钝角两种情况,求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=12×(180°-54°)=63°.(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,∵∠HFE=36°,∴∠HEF=90°-36°=54°,∴∠FEG=180°-54°=126°.∵EF=EG,∴∠EFG=∠G=12×(180°-126°),=27°.考点:1.等腰三角形的性质;2.三角形内角和定理;分类思想的应用.20.三条公路将A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是_____.【答案】∠A 、∠B 、∠C 的角平分线的交点处【解析】【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A 、∠B 、∠C 的角平分线的交点处.故答案为:∠A 、∠B 、∠C 的角平分线的交点处.【点睛】本题考查三角形三条角平分线交点的性质,解题的关键是理解掌握三角形三条角平分线交点的性质.21.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之间罚球20次,共罚进15次,则小亮点罚进的频数是____________. 频率是____________.【答案】 (1). 15 (2). 0.75【解析】根据频数的定义,知小亮点球罚进的频数为15,罚球的总数为20,根据频率=频数÷总数可得频率为1520=0.75. 故答案为15;0.75.22.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;【答案】25或7【解析】 试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:22437-=;②长为3、4的边都是直角边时:第三边长的平方为:224325.+=综上,第三边长的平方为:25或7.故答案为25或7.23.若代数式x 2+6x +8可化为(x +h )2+k 的形式,则h =_____,k =_____.【答案】 (1). 3, (2). ﹣1.【解析】【分析】二次项系数为1,则常数项是一次项系数的一半的平方即可求解.【详解】解:x 2+6x +8=x 2+6x +9﹣1=(x +3)2﹣1,则h =3,k =﹣1.故答案为:3,﹣1.【点睛】本题考查配方法的应用,解题的关键是掌握配方的方法和完全平方公式的结构.24.如图,在一根长90cm 的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm ,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.【答案】150cm【解析】试题解析:如图,彩色丝带的总长度为2290120+=150cm.25.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.【答案】1或7【解析】【分析】分点P 在线段BC 上和点P 在线段AD 上两种情况解答即可.【详解】设点P 的运动时间为t 秒,则BP=2t ,当点P 在线段BC 上时,∵四边形ABCD 为长方形,∴AB=CD ,∠B=∠DCE=90°,此时有△ABP ≌△DCE ,∴BP=CE ,即2t=2,解得t=1;当点P 在线段AD 上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16-2t ,此时有△ABP ≌△CDE ,∴AP=CE ,即16-2t=2,解得t=7;综上可知当t 为1秒或7秒时,△ABP 和△CDE 全等.故答案为1或7.【点睛】本题考查了全等三角形的判定,判定三角形全等方法有:ASA 、SAS 、AAS 、SSS 、HL .解决本题时注意分情况讨论,不要漏解.三.解答题(共8小题)26.计算()022019π+----.【答案】4-【解析】【分析】根据实数运算的法则化简计算即可.【详解】解:原式=2231-+-4-【点睛】本题考查实数的混合运算,解题的关键是掌握实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的,同级运算按从左往右的顺序进行.27.计算:(x +3)(x ﹣4)﹣x (x +2)﹣5【答案】﹣3x ﹣17.【解析】【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【详解】解:原式=22431225x x x x x +-----=317x --. 【点睛】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则. 28.因式分解:(1)﹣2x 2﹣8y 2+8xy ;(2)(p +q )2﹣(p ﹣q )2【答案】(1)()222x y --;(2)4pq 【解析】【分析】 (1)先提取公因数﹣2,再利用完全平方公式进行分解即可;(2)先利用平方差公式进行分解,再对括号内的式子进行合并即可.【详解】解:(1)原式=()2224x y xy -+-4=()222x y --(2)原式=()()p q p q p q p q ++-+-+=4pq【点睛】本题考查因式分解,解题的关键是熟练运用完全平方公式和平方差公式.29.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.【答案】5y +x ,3.【解析】【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y +÷=5y x +, 当21x y =-,=时, 原式=523-=【点睛】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式. 30.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m ,当他把绳子下端拉开4m 后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【答案】旗杆的高度为9.6 m ,见解析.【解析】【分析】设旗杆高为x 米,那么绳长为()08x +.米,由勾股定理得()222408x x ++=.,解方程即可; 【详解】解:设旗杆高为x 米,那么绳长为()08x +.米, 由勾股定理得()222408x x ++=.,解得9.6x =.答:旗杆的高度为9.6 m .【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方,即222a b c +=.31.如图,在△ABC 中,∠A =30°,∠B =60°(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE .【答案】(1)作图见解析;(2)证明见解析.【解析】【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于12FN长为半径画弧,两弧交于点M,过B、M作射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于12AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【详解】解:(1)作图如下:(2)证明:∵∠ABD=12×60°=30°,∠A=30°∴∠ABD=∠A.∴AD=BD又∵AE=BE,∴△ADE≌△BDE(SAS)32.”安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与”防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中”家长和学生都未参与”的人数.【答案】(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中”家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×60400=54°;(3)估计该校2000名学生中”家长和学生都未参与”的人数为2000×20400=100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.33.问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?【答案】(1)见解析;(2)见解析;(3)6.【解析】【分析】(1)求出∠BDA=∠AFC=90°,∠ABD=∠CAF ,根据AAS 证△ABD ≌△CAF 即可;(2)根据题意和三角形外角性质求出∠ABE=∠CAF ,∠BAE=∠FCA ,根据ASA 证△BAE ≌△CAF 即可; (3)求出△ABD 的面积,根据△ABE ≌△CAF 得出△ACF 与△BDE 的面积之和等于△ABD 的面积,即可得出答案.【详解】(1)证明:如图②,∵CF ⊥AE ,BD ⊥AE ,∠MAN =90°,∴∠BDA =∠AFC =90°,∴∠ABD +∠BAD =90°,∠BAD +∠CAF =90°,∴∠ABD =∠CAF ,在△ABD 和△CAF 中,ADB CFA ABD CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAF (AAS );(2)证明:如图③,∵∠1=∠2=∠BAC ,∠1=∠BAE +∠ABE ,∠BAC =∠BAE +∠CAF ,∠2=∠FCA +∠CAF ,∴∠ABE =∠CAF ,∠BAE =∠FCA ,在△BAE 和△CAF 中,ABE CAF AB ACBAE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAE ≌△CAF (ASA );(3)如图④,∵△ABC 的面积为18,CD =2BD ,∴△ABD的面积1186 3=⨯=,由(2)可得△BAE≌△CAF,即△BAE的面积=△ACF的面积,∴△ACF与△BDE的面积之和等于△BAE与△BDE的面积之和,即△ACF与△BDE的面积之和等于△ABD的面积6.【点睛】本题主要考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,具备较强的分析问题和解决问题的能力是关键,题目比较典型,证明过程有类似之处.。
2023—2024学年最新人教版八年级上学期数学期末考试试卷 (最新)
2023—2024学年最新人教版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图标中,是轴对称图形的是()A.B.C.D.2、光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米3、下列长度的三条线段能组成三角形的是()A.2,3,5B.5,6,10C.1,1,3D.3,4,94、下列计算正确的是()A.(a+b)2=a2+b2B.(﹣a+b)(﹣b+a)=a2﹣b2C.(﹣a+b)2=a2+2ab+b2D.(﹣a﹣1)2=a2+2a+15、如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A=()A.40°B.60°C.80°D.120°6、如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN∥OB交OA于点N,若PM=1,则PN的长为()A.1B.1.5C.3D.27、如图,△ABC的面积为6cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.2cm2B.2.5cm2C.3cm2D.3.5cm2第5题第6题第7题8、如果把的x与y(x,y均为正)都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的9、已知,则分式的值为()A.8B.C.D.410、中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13、若10x=a,10x+y+2=100ab,则10y=.14、已知x2﹣4x+1=0,则x2+的值是.15、若关于x的分式方程=3的解是非负数,则m的取值范围是.16、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.最新人教版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知m2+m﹣2=0,求代数式(m+)÷的值.19、先化简,再求值:(a+3b)(2a﹣b)﹣2(a﹣b)2,其中|a+2|+(b﹣1)2=0.20、如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)若点A、B、C关于x轴的对称点分别为A1、B1、C1,则A1(,),B1(,),C1(,),并在图中画出△A1B1C1.(2)求△ABC的面积;(3)在x轴上求一点P,使△P AB周长最小,请画出△P AB,并通过画图求出P点的坐标.21、某中学开学初在商场购进A,B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍.已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)该中学响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的九折出售.如果该中学此次购买A、B两种品牌足球的总费用不超过3260元,那么该中学此次最多可购买多少个B品牌足球?22、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.23、完全平方公式:(a±b)2=a2±2ab+b2,适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4﹣x)(x﹣5)=﹣8,求(4﹣x)2+(x﹣5)2的值;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.24、若整式A只含有字母x,且A的次数不超过3次,令A=ax3+bx2+cx+d,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M(b+d,a+b+c+d)为整式A的中雅点,我们规定次数超过3次的整式没有中雅点.例如,若整式A=2x2﹣5x+4,则a=0,b=2,c=﹣5,d=4,故A的中雅点为(6,1).(1)若A=x3+x2﹣2x+4,则A的中雅点坐标为.(2)若整式B=﹣9x+8,整式C是整式B与(x+3)2的乘积,求整式C的中雅点坐标.(3)若整式D=x﹣3,整式E是只含有字母x的一次一项式,整式F是整式E的平方与整式D的乘积,若整式F的中雅点为(﹣3,﹣2),求整式E的表达式.25、如图,在平面直角坐标系中,A(a,0),B(0,b),且a,b满足:2a2+2ab+b2﹣8a+16=0,点C,B关于x轴对称.(1)求A,C两点坐标;(2)如图1,点M为射线OA上A点右侧一动点,过点M作MN⊥CM交直线AB于N,连BM,是否存在点M,使S△AMN =S△AMB?.若存在,求M点坐标;若不存在,说明理由.(3)如图2,点M为x轴正半轴上一动点,点D为第一象限内一动点,且∠DBM=∠DCM,过点M作MN⊥BD于N点.①若点E在CD的延长线上,求证:DM平分∠EDB;②的值是否发生变化?若不变,求其值,若变化,请说明理由.。
新人教版八年级数学上学期期末考试试卷
17.(6分)先化简,再求值: ,其中x=﹣1, .
18、(10分)因式分解:(1) (2)
19、( 8分)解方程:(1) ;(2)
20、( 9分)如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.
21.( 9分)如图求 的度数.
22.(10分)甲、乙两个工程队共同完成一项工程,乙队先单独做一天后,再由两队合作2天就完成全部工程,已知甲队和乙队的工作效率之比为3:2,求甲、乙两队单独完成此工程各需多少天。
C.(x-2)2=x2-42D.
4、如图,在△ABC中,∠A= 36°,∠C=72°,∠ABC的平分线交AC于点D,则图中共有等腰三角形( ).
A.0个B.1个C.2个D.3个
5、分式方程 的根是( ).
A. B. C. D.
6、下列四个图形中,不是轴对称图形的是( ).
7.如图,已知OP平分∠AOB,∠AOB=60°,PE=2,PD⊥OA于点D,PE⊥OB于
点E.如果点M是OP的中点,则DM的长是( ).
A.1B.2C.3D.4
8.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E
两点,并连接BD、DE.若∠ A= 30°,AB= AC,则∠ BDE的度数为( ).
A.45° B.52.5°C.67.5°D.75°
9.若一个多边形的内角和小于其外角和,则这个多边形的边数是( ).
A、3B、4C、5D、6
10.如图,图1、图2、图3分别表示甲、乙、丙三人由甲A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH> HB,判断三人行进路线长度的大小关系为().
A.甲< 乙< 丙B.乙< 丙< 甲C.丙< 乙< 甲D.甲=乙=丙
八年级上册期末考试数学试题及答案【新课标人教版】
八年级上册期末考试一、选择题:1. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 92.与3-2相等的是( )A.91 B.91- C.9 D.-9 3.当分式21-x 有意义时,x 的取值范围是( ) A.x <2 B.x >2 C.x ≠2 D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A.1,2,3 B.1,5,5 C.3,3,6 D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+B.632a a a =•C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。
A.2.5×106 B.2.5×105 C.2.5×10-5 D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x -D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。
A.2x+1 B.x (x+1)2 C.x (x 2-2x ) D.x (x-1)11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( )A.20°B.40°C.50°D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。
新人教版八年级数学上期期末试题
AB DEF第7题图O新人教版八年级数学上期末试题一.选择题(共7小题,满分21分,每小题3分)1.下列图形不是轴对称图形的是( )2.如果分式223y x中,x 、y 的值都变为原来的2倍,则分式的值( ) A. 不变 B.缩小原来的12C.扩大2倍D.不能确定 3.分式方程11122x x x--=--的两边同时乘以(x-2),约去分母得:( ) A.1+(1-x )=x-2 B.1-(1-x )=x-2 C.1-(1-x )=1 D.1+(1-x )=1 4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A.11㎝B.7.5㎝C. 11㎝ 或7.5㎝D.以上都不对 5、下列计算中正确的是( )A 、 933842x x x ÷= B 、 2323440a b a b ÷= C 、22m m aa a ÷= D 、2212()42ab c ab c ÷-=-6. 下列算式中,你认为正确的是( )A 1-=---a b a b a b B.11=⨯÷b a a b C .3131a a -= D .b a b a b a b a +=--∙+1)(12227.如图,AC ∥BD ,AB 交CD 于点O ,过O 的直线EF 分别交AC 、BD 于E 、F ,DF=CE ,则图中全等的三角形的对数共有( ) A. 1对 B. 2对 C. 3对 D. 4对 二.填空题(满分33分) 8.分式53bb-有意义的b 的取值范围是____________________ 9、已知点P (2a+b,b )与P 1(8,-2)关于Y 轴对称,则a+b=____ 10.化简:2211366a a a÷--的结果是_________________. 11.AD 是△ABC 中BC 边上的中线,若AB=3,AD=4,则AC 的取值范围是___________; 12.已知115a b -=则2322a ab b a ab b+---=________________ 13、.若关于x 的分式方程233x m m x x -=--无解,则m 的值为 .14.如图,已知∠1=∠2,要得到△ABD ≌△ACD ,还需从下列条件中补选一个,则错误的选法是( ) A. AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=15.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_________;16、如图,在△ABC 中,∠C=90o,AD 平分∠ABC, BC=10cm,BD=6cm,则点D 到AB 的距离是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年第一学期期末考试八年级数学试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共36分,答案请填在题后答题栏内;第Ⅱ卷为非选择题,共64分.Ⅰ、Ⅱ卷合计100分,考试时间为90分钟.第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分.请将答案填入答案表格内.) 1. 已知a <b ,则下列式子中成立的是( ). A. a +3>b +3 B. 3-a >3-b C. a -3>b -3D. –3a <–3b2. 已知等腰三角形的两边长分别为5cm 、2cm ,则该等腰三角形的周长是( ). A .7cmB .9cmC .12cm 或者9cmD .12cm3. 直角三角形的两直角边分别为5厘米.12厘米,则斜边上的高是( ). A .1360厘米 B .8厘米 C .1380厘米 D .6厘米 4. 若点(,1)P m 在第二象限内,则点Q (,0m -)在( )上. A .x 轴正半轴 B .x 轴负半轴 C .y 轴正半轴 D .y 轴负半轴5. 下列命题是假命题的是( ).A. 如果m ∥n ,n ∥l ,那么m ∥l (m 、n 、l 为三条不重合的直线)B. 三角形中至少有一个角大于或等于60°C. 平行四边形的对角线相交且互相平分D. 两条直线被第三条直线所截,同位角相等6.如图所示,函数y=-mx 与函数m mx y +=的图象可能是下列图象中( ).7. 一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、 (3,– 1),则第四个顶点的坐标为( ).ABCA .(2,2)B .(3,2)C .(3,3)D .(2,3)8. 如图,学校有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了( )步路(假设2步为1米),却踩伤了花草. A.4 B.5 C.6 D.89. 如图,直线l 1∥l 2,∠1=∠2=35°,∠P =90°,则∠3等于( ). A .50° B .55° C .60° D .65°第8题 第9题 第10题10.早晨,小明去桃花山公园晨练,如图是他离家的距离y (千米)与时间x (分钟)的函数图象,根据图象信息,下列说法正确的是( ). A .小明去时所用的时间多于回家所用的时间B .小明在公园里锻炼了20分钟C .小明去时的速度大于回家的速度D .小明去时走上坡路,回家时走下坡路 11. 当x 满足( )A. x >-1B. x ≥1且x ≠0C. x ≥-1D. x ≥-1且x ≠012.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是 ( ). A .⎩⎨⎧=-=+360)(24360)(18y x y x B .⎩⎨⎧=+=+360)(24360)(18y x y x C .⎩⎨⎧=-=-360)(24360)(18y x y x D .⎩⎨⎧=+=-360)(24360)(18y x y x选择题答题栏 第Ⅱ卷(非选择题 共64分)二、填空题(每小题3分,共18分). 13.若2(5212)3260x y x y +-++-=,则24____xy +=.14.直线y = 16x - 5经过第 象限,与y 轴的交点坐标为 .15.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_____________,标准差为 .16. 直线l 1∥l 2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= . 17.今年,章丘市经历百年一遇的干旱,驻地部队官兵开展“军民一家亲,鱼水情意深”的活动,帮助驻地周边农村运水,现需8组战士步行运送水,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是 .18.如图,在平面直角坐标系中,已知点A (2,3),点B (﹣2,1),在x 轴上存在点P 到A ,B 两点的距离之和最小,则P 点的坐标是 .16题 18题 三、解答题(共46分) 19.计算题(本小题3分) 0-11(1)23π-+-()20.(每小题3分,共6分)(1)解不等式组{43421x xx x ->+<-,并把解集在数轴上表示出来(2)解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩21.(本小题4分)如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,求∠ADE 的大小.22.(本小题4分)如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD =CD . 求证:D 在∠BAC 的平分线上.23.(本小题5分)如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离C 点5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?24.(本小题5分)植树节期间,市团委组织部分中学的团员去胡山林场植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵?25.(本小题6分)加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:(1)根据上表提供的数据填写下表:(2)根据以上信息,你认为应该把冠军发给哪一个班级? 简述理由.(3)现在若想派一支代表队外出参加一次比赛,根据以往经验,个人超过115个才有可能获奖,则应该选派哪个代表队?简述理由.26.(本小题6分)④BD=CE.以其中..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知: .求证: .证明:27.(本小题7分)如图,在平面直角坐标系中,直线1l :43y x =与直线2:l y kx b =+相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OA =12OB . (1)试求直线2l 的函数表达式;(2)若将直线1l 沿着x 轴向左平移3个单位,交y 轴于点C ,交直线2l 于点D .试求 △BCD 的面积.八年级数学试题参考答案一.选择题(共36分,每题3分)BDAAD CBABC DA二.填空题(共18分,每题3分)13.0 14.一三四(0,-5) 15.2 2 16.40° 17. 12 18. (-1,0)三.解答题(共46分)19.(3分):2………………………………………………………………3分20.每题3分,共6分:(1)x>5 数轴略……………………………………3分(2)……………………………………………………………………3分21.(4分)以下仅供阅卷教师参考.∵∠B=46°,∠C=54°∴∠BAC=80°…………………………………………1分又∵AD平分∠BAC∴∠BAD=∠CAD=40°………………………………3分又∵DE∥AB∴∠ADE=∠BAD=40°…………………………………………4分22.(4分)∵∠BED=∠CFD=90°,∠BDE=∠CDF,BD=CD∴△BED≌△CFD ………………………………2分∴DE=DF………………………………3分又∵DE⊥AB,DF⊥AC∴点D在∠BAC的平分线上………………………………4分23.(5分)分数视学生答题情况而定.计算过程应有两种情况比较接近,如图中,(1)AB= cm………………………………3分;(2)AB=25cm……………………………………4分∴最短路径为25cm. ……………………5分24.(5分)设共有x人,则有4x+37棵树,由题意得:…………………………………………………………2分解之得:20<x<…………………………………………3分∴x=21∴4x+37=121 (棵)…………………………………………4分答:这批树苗共有121棵. ……………………………………5分25.(6分)(1)2分,错一空扣0.5分40%(2)选择甲班,理由略.…………………………………………4分(3)选择乙班,理由略.…………………………………………6分26. (6分)此题无论选择什么作为题设,什么作为结论,它有一个相同点--都是通过证明△ABD≌△ACE,然后利用全等三角形的性质解决问题.【解析】解法一:如果AB=AC,AD=AE,BD=CE,那么∠1=∠2.已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,……2分求证:∠1=∠2.…………………………………………………………3分证明:∵AB=AC,AD=AE,BD=CE,∴△ABD≌△ACE,…………………………………………………………5分∴∠BAD=∠CAE,∴∠1=∠2.……………………………………………………………………6分解法二:如果AB=AC,AD=AE,∠1=∠2,那么BD=CE.已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2,……2分求证:BD=CE.…………………………………………………………3分证明:∵∠1=∠2∴∠BAD=∠CAE,而AB=AC,AD=AE,∴△ABD≌△ACE…………………………………………………………5分∴BD=CE.……………………………………………………………………6分(其他方法略)27.(7分)解:(1)根据题意,点A的横坐标为3,代入直线l1:43y x中,得点A的纵坐标为4,即点A(3,4);即OA=5,又|OA|=12|OB|.即OB=10,且点B位于y轴上,即得B(0,﹣10);……………………………………………………………………2分将A、B两点坐标代入直线l2中,得4=3k+b;﹣10=b;解之得,k=143,b=﹣10;即直线l2的解析式为y=143x﹣10;…………………………………………3分(2)根据题意,平移后的直线l1的直线方程为44(3)433y x x=+=+;……4分即点C的坐标为(0,4);………………………………………………………5分联立线l2的直线方程,解得x=215,y=285,即点D(215,285);………………………………6分又点B(0,﹣10),如图所示:故△BCD的面积S=12114714255⨯⨯=.…………………………7分11。