(完整版)新人教版八年级数学上册期末考试试题
最新人教版八年级上册数学期末考试试题(附答案)
最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
最新人教版八年级数学上册期末试题
人教版八年级数学上册期末试题一、选择题(本大题共12小题,每小题3分,共42分)1.下列四个图形是四款车的标志,其中轴对称图形有几个()A.1个B.2个C.3个D.4个2.将数据0.0000025用科学记数法表示为()A.25×10﹣7B.0.25×10﹣8C.2.5×10﹣7D.2.5×10﹣6 3.如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD 4.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D 5.若分式有意义,则x的取值范围是()A.x≠0 B.x≠1 C.x≠3 D.x≠0且x≠1 6.下列计算正确的是()A.a6÷a2=a4B.(2a2)3=6a6C.(a2)3=a5D.(a+b)2=a2+b27.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对9.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.如图,在△ABC中,∠A =60度,点D,E分别在AB,AC上,则∠1+∠2的大小为多少度()A.140 B.190 C.320 D.24011.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BAC B.∠EBC=∠ABE C.AE=EC D.AE=BE12.如图,将四边形纸片ABCD沿AE向上折叠,使点B 落在DC边上的点F处.若△AFD的周长为18,△ECF的周长为6,四边形纸片ABCD的周长为()A.20 B.24 C.32 D.4813.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.14.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB 对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形二.填空题(本大题共5小题,每小题3分,共15分)15.因式分解:x3﹣2x2+x=.16.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若k=2,则该等腰三角形的顶角为度.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.如图,∠AOC=∠BOC=15°,CD⊥OA,CE∥OA,若CD=6,则CE=.19.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣2)(b﹣1).现将数对(m,2)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是.(结果要化简)三.解答题(共7小题,63分)20.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.21.(8分)先化简,再求值:(﹣1)÷,其中a=﹣3.22.(8分)解分式方程:.23.(8分)如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.(1)求证:△ABC≌△DBE.(2)若∠CBE=50°,求∠BED的度数.24.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1;(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.(3)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.25.(10分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1﹣5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1﹣5月份每辆车的销售价格是多少万元?26.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.人教版八年级数学上册第三次月考试题一、单项选择题:(本大题共10个小题,每小题3分,共30分.)1.下列四个图案中,不是轴对称图案的是()A.B.C.D.2.已知点A的坐标为(﹣2,3),则点A关于y轴的对称点的坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)3.下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6 4.若x2+mxy+4y2是一个完全平方式,那么m的值是()A.±4 B.﹣2 C.±2 D.45.若3x =4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D .6.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab7.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC8.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,点P是AD上一个动点,则BP+EP 的最小值等于线段()的长度.A.BC B.CE C.AD D.AC9.如图,在△ABC中,AB =AC,BE=CD,BD=CF,则∠EDF的度数为()A.45°∠A B.90∠A C.90°﹣∠A D.180°﹣∠A 10.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.AD 的长是()A.5 B.6 C.7 D.8 二.填空题(本大题共6个小题,每小题3分,共18分.)11.使分式的值为0,这时x=.12.232﹣1可以被10和20之间某两个整数整除,则这两个数是.13.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为米.14.如图,△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,若∠A=∠30°,∠CEB=70°,则∠ACD=°.15.有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A点处行走的路程是.16.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF =EC;④AE=EC,其中正确的是(填序号)三.解答题(共7小题,72分)17.(18分)计算下列各题.①(x2+3)(3x2﹣1)②(4x2y﹣8x3y3)÷(﹣2x2y)③[(m+3)(m﹣3)]2 ④10﹣2×100+103÷105⑤⑥,其中x满足x2﹣x﹣1=0.18.(8分)解方程.①②19.(8分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上.(1)直接写出坐标:A,B;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应).(3)用无刻度的直尺,运用全等的知识作出△ABC的高线BF(保留作图痕迹).20.(8分)仔细阅读下面例题解答问题【例题】已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式及m 的值.解:设另一个因式为(x+n),则x2﹣4x+m=(x+3)(x+n),即x2﹣4x+m=x2+(n+3)x+3n,.∴解得∴另一个因式为(x﹣7),m的值为﹣21.【问题】仿照以上方法解答下面问题:(1)已知关于x的多项式x2+7x+a有一个因式是(x﹣2),求另一个因式及a的值.(2)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求k的值.21.(10分)已知:如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.22.(10分)因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?23.(10分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB =AC,AD=AE,连接CD、AE交于点F.(1)求证:BE=CD.(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.。
2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)
20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级数学上册期末测试题(附参考答案)
人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。
人教版八年级上册数学期末考试及完整答案
4人教版八年级上册数学期末考试及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.—3的倒数是()A.3B.1C.-1 D.—3 3312—的图像上,2.若点A(x,—6), B(x,--2), C(x,2)在反比例函数y—则x,123x1 x2,肯的大小关系是()A.x,x,x123B.x2,x1,x C.x,x,x3231D.x,x32,x13.解分式方程匕二丄-2时,去分母变形正确的是()x—22—xA.-1+x—-1-2(x-2)B.1-x—1-2(x-2)C.—1+x—1+2(2—x…D.1—x——1—2(x—2…a+2…当有意义时,a的取值范围是()a一2Aa ±2 B.a >2 C.a H2 D.a H —25已知点P (a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为 A (4,-2 B.(—4,2) C.(—2,4) D (2,-4)6如图,矩形ABCD 的对角线AC , BC —8,X 过点作0E 丄AC ,交AD 于点E ,则0E +EF 的值A B.32748下列四个图形中,线段BE 是厶ABC 的高的是(C .24D12飞BD 交于点O ,AB —6,AB 8如图,小华剪了两条宽为1的纸条, 交叉叠放在一起,且它们较小的交角为60。
,则它们重叠部分的面积为()AB.2 2爲~3~9 B.40。
如图将直尺与含30°角的三角尺摆放在一起,若€1=20。
,则€2的度数是二、填空题(本大题共6小题,每小题3分,共18分)1. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是-2•计算J27飞3BC ADCA30°B C是中心对称图形的是(C D(2)2x 2-2x -1=0.3・4的平方根是.4•如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),点D 在第二象限,且ABD 与厶ABC 全等,点D 的坐标是・5・如图,一个宽度相等的纸条按如图所示方法折叠一下,则,1=度.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处•若点D 的坐标为(10,8),则点E 的坐标为.三、解答题(本大题共6小题,共72分)1.解方程: (1)x 2一4x 一5=0;2.先化简,再求值:(~-~)…一,其中x 满足X 2—2X —2=0.xx+1x2+2x+13.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是耳''13的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.4.如图,已知AC平分ZBAD,CE丄AB于E,CF丄AD于F,且BC二CD.(1)求证:ABCE竺ADCF;a05.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求ZCPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ZABC=120°6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、B5、A6、C7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、8-v32、33、±2.4、(-4,2)或(-4,3)5、656、(10,3)三、解答题(本大题共6小题,共72分)1+J317-x,,x,—1、(1)x=5,X=-1;(2)12221212、23、(1)a=5,b=2,c=3;(2)±4.4、略5、(1)略(2)90°(3)AP=CE6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。
7. 下列函数中,其图像是抛物线的是__________。
8. 下列图形中,属于中心对称图形的是__________。
9. 下列关于圆的命题中,错误的是__________。
10. 下列关于角的命题中,错误的是__________。
三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。
12. 解不等式:3x 2 < 2x + 5。
13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。
14. 解圆的方程:x² + y² 6x 8y + 9 = 0。
四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。
16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。
八年级上册期末考试数学试卷含参考答案(共5套,最新人教版)
初二年级第一学期期末考试数学试卷本试卷包括两道大题,共24道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共24分)1.-64的立方根是()A.-4B.8C.-4和4D.-8和82.若3-m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>33.如图,在△ABC中,AB=AC,∠A=40︒,AB的垂直平分线交AB于点D,交AC于点E,连结BE,则∠CBE 的度数为()A.70︒B.80︒C.40︒D.30︒第3题图第5题图4.如果a、b、c是一个直角三角形的三边,则a,b,c可能为()A.1,2,4B.1,3,5C.3,4,7D.5,12,13, x15<x≤20S S5. 如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使 BC =CD ,再作出 BF的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图所示) 可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得DE 的长就是 AB 的长,判定△ ABC ≌△EDC ,最恰当的理由是() A .边角边 B .角边角 C .边边边D .边边角AS 3S 2B S1 C第 6 题图第 8 题图6.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交 AD 边于点 E ,且 AE =3,则 AB 的长为().5 A .4B .3C .2D .27. 小 明统计了他家今年 11 月 份打电话的次数及通话时间,并列出了频数分布表:通话时间 x/min 0<x≤5 5<x≤10 10<x≤15 频数(通话次数)1916510则通话时间不超过 15min 的频率为( )A .0.1B .0.4C .0.5D .0.88.如图所示,以 △RtABC 的三边向外作正方形,其面积分别为 S 1,2,3 且 S 1 = 4, S 2 = 8, 则S 3 =()A .4B .8C .12D .32二、填空题(每小题 3 分,共 18 分)9.因式分解: am + an + ap = .10.计算: a 3 ⋅ a 5 =.11.25 的平方根是.12.若代数式 x - 2 - 2 - x 有意义,则 x 的值为.13.如图,△ABC 中,∠C = 90︒ ,AB =10,AD 是△ABC 的一条角平分线,若 CD =3,则△ABD 的面积为.16 - 9 ⎪• 4 18.因式分解 x 3 - 4 x2314.如图, ∠C = ∠ABD = 90︒, AC = 4, BC = 3, BD = 12 ,则 AD=.ACB D第 13 题图第 14 题图三、计算题(每小题 6 分,共 24 分)15. 3a •(a - 4)16.(x3y + 2 x 2 y 2 )÷ xy⎛ 1⎫17.⎝ 2 ⎭四、解答 题:(每小题 8 分,共 32 分)19..先化简,再求值 (x + y )2 - 2 x (x + y ),其中 x=3,y=2.320.已知:a+b=5,a2-b2=10,求a-b的值.21.如图,BD、CE△是ABC的高,且AE=AD,求证:AB=AC.第21题图22.如图,延长□A BCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.第22题图五、解答题(23题10分,24题12分,共22分)23.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.第23题图请根据所给信息解答下列问题:(1)求本次抽取的学生人数;(2)补全条形图,在扇形统计图中的横线上填上正确的数值;(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人.24.如图,在△Rt ABC中,∠B=90,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.xk|b|1(3)P、Q两点运动几秒,AP=CQ.第24题图答案:一、1.A 2.A 3.D 4.D 5.A 6.B7.D8.C二、9.a(m+n+p)10.a811.±512.x=213.1514.13三、15.3a2-12a16.x2+2xy17.018.x(x+2)(x-2)四、19.-x2+y2,-520.221.略22.略五、23.(1)50(2)30%(3)108024.(1)24(2)13(3)24 72C.6D.9B B B八年级上册数学期末试题一.选择题45分1.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB△≌OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS1题图2题图3题图4题图2.某市准备在一块三条公路围成的平地△ABC上设立一个大型超市,要求超市到三条公路的距离相等,则超市应建立在△ABC的()A.两个内角的平分线的交点处C.两边中线的交点处B.两边高线的交点处D.两边的垂直平分线的交点处3.如图,已知∠BAC的平分线与BC的垂直平分线PQ相交于点P,PM⊥AC,PN⊥AB,垂足分别为M、N,AB=3,AC=7,则CM的长度为()A.4B.3C.2D.324.如图,在△ABC中,∠C=90°,AC=BC=6,D为AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合)且保持∠EDF=90°,连接EF,在此运动变化过程中,△SCEF的最大值为()A.3B.95.已知A、B两点的坐标分别为(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、关于y轴对称;③A、关于原点对称;④A、之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个6.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形A.八B.十C.十二D.十四7.六边形的对角线共有()A.9条B.15条C.12条D.6条8.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置)她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分9.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③④B.①②③C.②④D.①③11、下列正多边形中,不能铺满地面的是()A、正三角形C、正六边形B、正方形D、正七边形12、若一个三角形三个角度数的比为2:3:4,则这个三角形的()A、直角三角形C、钝角三角形B、锐角三角形D、正三角形13.如图,直线l1、l2、l3表示三条互相交叉的公路,现在建一个货物中转站,要求到三条公路的距离相等,则可选择的地址有()处A.一处B.两处C.三处D.四处14、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.30°或150°B.30°或150°C.60°或150°D.60°或120°15.下列因式分解结果正确的是()A.x2+2x-3=x(x+2)-3B.6p(p+q)-4q(p+q)=(p+q)(6p-4q)C.a2-2a+1=(a-1)2D.4x2-9=(4x+3)(4x-3)二、解答题16.如图,△ABC△和BDE中,AB=BC,BD=BE,∠ABC=∠EDB=90°,G、H分别为AD、CE 中点,试判断△BGH形状并证明17.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点(1)求证:CD=BE(2)若DE⊥AC,求BP的长18.(7分)已知AB∥CD,点E为BC上一点,且AB=CD=BE,AE、DC的延长线交于点F,连BD(1)如图1,求证:CE=CF(2)如图2,若∠ABC=90°,G是EF的中点,求∠BDG的度数已知ABC△和DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上19.△(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD(2)如图2,若AD=AB,求证:AF=AE+BC20.如图,AD△为ABC的高,点H为AC的垂直平分线与BC的交点,HC=AB(1)如图1,求证:∠B=2∠C(2)如图2,若2∠DAF=∠B-∠C①求证:AC=BF+BA②直接写出AC FC的值DF21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F(1)说明BE=CF的理由(2)如果AB=a,AC=b,求AE、BE的长( , a + x a + 1nna (C. = , a ≠ 0)D. =B.=xx 2m ma八年级第一学期期末质量检测试卷数学(总分 150 分,答题时间 120 分钟)A 卷(100 分)一.选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5x67 8 9 10答案1.1 纳米等于 0.0000000001 米,则 35 纳米用科学记数法表示为()A .35×10-9 米B .3.5×10-9 米C .3.5×10-10 米D .3.5×10-8 米2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A .B. C. D.3.下列各式: 1 1- x ) 4 x , x 2 - y 2 , 1 + x, 5x2 其中分式共有( )个 5 π -3 2 x xA.2B.3C.4D.54.下列各式正确的是()A.5.若把分式 x + y中的 x 和 y 都扩大 3 倍,那么分式的值()2 x yA.扩大 3 倍B.不变C.缩小 3 倍D.缩小 6 倍6.若分式 x - 1x 2 - 3x + 2A.-1的值为 0,则 x 等于( )B.1C.-1 或 1D.1 或 27.A 、B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小时,已知水流速度为 4 千米/时,若设该轮船在静水中的速度为 x 千米/时,则可列方程()A.48+=9 B.+=9 C.+4=9 D.+=9CD12.①3a5xy10axy a2-4()y-z x+z x-y,,⎪5122132中得到巴尔末公式,从而打开484848489696x+4x-44+x4-x x x+4x-48.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对9.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()EA.90°B.75°C.70°D.60°A B F10.若平面直角坐标系中,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为()A.(-1,2)B.(-1,-2)C.(1,2)D.(-2,1)二、填空题(每小题3分,共30分)11.如图1,AB,CD相交于点O,AD=△C B,请你补充一个条件,使得AOD≌△COB.你补充的条件是______.A C()a+21=,(a≠0)②=13.分式的最简公分母是。
2024年人教版初二数学上册期末考试卷(附答案)
2024年人教版初二数学上册期末考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个数是负数?A. 3B. 0C. 5D. 82. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1.25. 下列哪个数是负整数?A. 3B. 0C. 5D. 8二、判断题5道(每题1分,共5分)1. 一个数的绝对值总是非负的。
( )2. 分数和小数都可以表示为整数。
( )3. 任何两个整数相乘的结果都是整数。
( )4. 任何两个正数相加的结果都是正数。
( )5. 任何两个负数相加的结果都是负数。
( )三、填空题5道(每题1分,共5分)1. 一个数的绝对值是它本身的数是______。
2. 下列哪个数是分数?______。
3. 下列哪个数是整数?______。
4. 下列哪个数是负整数?______。
5. 一个数的绝对值总是非负的。
( )四、简答题5道(每题2分,共10分)1. 简述绝对值的概念。
2. 简述分数的概念。
3. 简述整数的概念。
4. 简述负整数的概念。
5. 简述小数的概念。
五、应用题:5道(每题2分,共10分)1. 计算:| 3 | + 2 = ?2. 计算:3/4 + 0.5 = ?3. 计算:0 + 1 = ?4. 计算:3 4 = ?5. 计算:5 2 = ?六、分析题:2道(每题5分,共10分)1. 分析:为什么一个数的绝对值总是非负的?2. 分析:为什么分数和小数都可以表示为整数?七、实践操作题:2道(每题5分,共10分)1. 实践操作:请用尺子和圆规在纸上画一个半径为5cm的圆。
2. 实践操作:请用尺子和圆规在纸上画一个边长为4cm的正方形。
八、专业设计题:5道(每题2分,共10分)1. 设计一个包含10个数的数列,其中前5个数是正整数,后5个数是负整数。
新人教版八年级数学上册数学期末测试卷含答案(精选六套)
新人教版八年级数学上册数学期末测试卷八年级数学试卷(试卷满分150分,考试时间120分钟)一、 选择题(每小题3分,共计30分)1、数—2,0.3,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2²2x 3的正确结果是 ( )A 、1;B 、xC 、4x 6;D 、x 43、一次函数 12+-=x y 的图象经过点 ( )A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( )①1))((122--+=--y x y x y x ②)1(23+=+x x x x③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=-A .1个B .2 个C .3个D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是 ( )A DB C7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 8、下列图案中,是轴对称图形的是 ( ) 9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有() A :1个 B :2个 C :3个 D :4个二、填空题(每小题3分,共计30分)11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。
人教版八年级上学期期末考试数学试卷及答案(共五套)
人教版八年级上学期期末考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.以下列各组数据为三角形的三边,不能构成三角形的是( ) A .4,8,7 B .3,4,7 C .2,3,4 D .13,12,5 2.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2·3ab 3=-3a 2b 5C.ba -b +ab -a =-1 D.a 2-1a ·1a +1=-1 3.如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( ) A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第3题图 第6题图4.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-145.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x 2-4,乙与丙相乘为x 2+15x -34,则甲与丙相加的结果为( ) A .2x +19 B .2x -19 C .2x +15 D .2x -156.如图,在Rt△ABC 中,AB =AC ,点D 为BC 中点,直角∠MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①△DEF 是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确结论是( )A.①②④ B.②③④C.①②③ D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(-2x3)3= ________.8.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3=________.第8题图第10题图9.一个三角形的三个外角之比为5∶4∶3,则这个三角形内角中最大的角是________度.10.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=________.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设列车原来的平均速度为x千米/时,根据题意,可列方程为______________.12.已知C,D两点在线段AB的垂直平分线上,且∠ACB=40°,∠ADB=68°,则∠CAD=__________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(-4b)·(-a2b)2÷(-2a);(2)分解因式:x2(x-2y)+xy2.14.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.15.(1)化简求值:a2a+1-a+1,其中a=99;(2)解方程:xx-1=3x+1+1.16.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB 的度数.17.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边,要求:①仅用无刻度直尺,②保留必要的画图痕迹.四、(本大题共3小题,每小题8分,共24分)18.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.19.(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.20.现定义运算“△”,对于任意实数a、b,都有a△b=a2-2ab+b2,请按上面的运算计算(3x+5)△(2-x)的值,其中x满足xx-1-3x=1.五、(本大题共2小题,每小题9分,共18分)21.在我市开展的“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?22.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数;(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.六、(本大题共12分)23.如图①,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB,OB于E,F 两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图②,若∠ECF=45°,给出两个结论:①OF+AE-EF的值不变;②OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.参考答案与解析 1.B 2.C 3.C 4.C5.A 解析:∵x 2-4=(x +2)(x -2),x 2+15x -34=(x +17)(x -2),∴乙为x -2,∴甲为x +2,丙为x +17,∴甲与丙相加的结果为x +2+x +17=2x +19.故选A.6.C 解析:∵在Rt△ABC 中,AB =AC ,点D 为BC 中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.7.-8x 98.55° 9.90 10.36° 11.1480x =1480x +70+312.126°或14° 解析:分C 、D 在线段AB 同侧和异测两种情况讨论.(1)如图①.∵点C 、D 为线段AB 的垂直平分线上的两点,∴CA =CB ,DA =DB .∵∠ACB =40°,∠ADB =68°,∴∠CAB =∠CBA =12(180°-40°)=70°.∴∠DAB =∠DBA =12(180°-68°)=56°,∴∠CAD =∠CAB +∠DAB =126°;(2)如图②.同(1)可得∠CAB =70°,∠DAB =56°,∴∠CAD =∠CAB -∠DAB =70°-56°=14°.综上所述,∠CAD =126°或14°.13.解:(1)原式=4b ·a 4b 2·12a=2a 3b 3.(3分) (2)原式=x (x 2-2xy +y 2)=x (x -y )2.(6分)14.证明:∵∠OBC =∠OCB ,∴OB =OC .(2分)在△AOB 和△DOC 中,⎩⎨⎧OA =OD ,∠AOB =∠DOC ,OB =OC ,∴△AOB ≌△DOC (SAS),(4分)∴∠1=∠2.(6分) 15.解:(1)原式=a 2-(a +1)(a -1)a +1=1a +1.(2分)将a =99代入得原式=1100.(3分) (2)方程两边同乘x 2-1,得x (x +1)=3(x -1)+x 2-1,解得x =2.(5分)检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2.(6分)16.解:∵∠D +∠C +∠DAB +∠ABC =360°,∠D +∠C =220°,∴∠DAB +∠ABC =360°-220°=140°.(2分)∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°.(4分)∴∠AOB =180°-70°=110°.(6分)17.解:如图所示,∠ABC =45°(AB ,AC 是小长方形的对角线,答案不唯一).(6分)18.解:(1)如图所示.(3分) (2)如图所示.(6分)(3)点B ′的坐标为(2,1).(8分)19.解:(1)a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(4分)(2)∵3x +2·5x +2=153x -4,∴(3×5)x +2=153x -4,即x +2=3x -4,解得x =3.(6分)又∵(2x -1)2-4x 2+7=4x 2-4x +1-4x 2+7=-4x +8,∴当x =3时,原式=-4×3+8=-4.(8分)20.解:去分母得x 2-3(x -1)=x (x -1),解得x =32.(3分)经检验,x =32是原方程的解,(4分)∴(3x +5)△(2-x )=(3x +5)2-2(3x +5)(2-x )+(2-x )2=(3x +5-2+x )2=(4x +3)2=⎝⎛⎭⎪⎫4×32+32=81.(8分)21.解:设引进新设备前工程队每天改造管道x 米.(1分)由题意得360x+900-360(1+20%)x =27,(4分)解得x =30.(6分)经检验,x =30是原分式方程的解且符合实际.(8分)答:引进新设备前工程队每天改造管道30米.(9分)22.解:(1)∵AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,∴∠ACE =∠ACF ,∠AEC =∠AFC =90°,∴AE =AF .(1分)在Rt△ABE 和Rt△ADF 中,⎩⎨⎧AE =AF ,AB =AD ,∴Rt△ABE ≌Rt△ADF (HL),(3分)∴∠ADF =∠ABE =60°,∴∠CDA =180°-∠ADF =120°.(4分)(2)由(1)知Rt△ABE ≌Rt△ADF ,∴FD =BE =1,AF =AE =2.在△AEC 和△AFC 中,⎩⎨⎧∠ACE =∠ACF ,∠AEC =∠AFC ,AC =AC ,∴△AEC ≌△AFC (AAS),∴CE =CF =CD +FD =5,(7分)∴S 四边形AECD=S △AEC +S △ACD =12EC ·AE +12CD ·AF =12×5×2+12×4×2=9.(9分)23.(1)解:(m -4)2+n 2-8n =-16,即(m -4)2+(n -4)2=0,则m -4=0,n -4=0,解得m =4,n =4.则A 点的坐标是(4,4).(3分)(2)证明:∵AB ⊥x 轴,AC ⊥y 轴,A (4,4),∴AB =AC =OC =OB ,∠ACO =∠COB =∠ABO =90°.又∵四边形的内角和是360°,∴∠A =90°.∵OF +BE =AB =BE+AE ,∴AE =OF .(5分)在△COF 和△CAE 中,⎩⎨⎧OF =AE ,∠COF =∠A ,OC =AC ,∴△COF ≌△CAE (SAS),∴CF =CE .(7分)(3)解:结论①正确,值为0.(8分)证明如下:如图②,在x 轴负半轴上取点H ,使OH =AE ,连接CH .在△ACE 和△OCH 中,⎩⎨⎧AE =OH ,∠A =∠COH =90°,OC =AC ,∴△ACE ≌△OCH (SAS),∴∠1=∠2,CE =CH ,∴∠ECH =∠2+∠ECO =∠1+∠ECO =90°.又∵∠ECF =45°,∴∠HCF =45°.(10分)在△HCF 和△ECF 中,⎩⎨⎧CH =CE ,∠HCF =∠ECF ,CF =CF ,∴△HCF ≌△ECF (SAS),∴HF =EF ,∴OH +OF =AE +OF =EF ,∴OF +AE -EF =0.(12分)人教版八年级上学期期末考试数学试卷(二) 时间:120分钟 满分:120分一、选择题(共10小题,每小题3分,共30分) 1.若分式x +1x +2的值为0,则x 的值为( ) A .0 B .-1 C .1 D .22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .153.如图是两个全等三角形,则∠1的度数为( ) A .62° B.72° C .76° D.66°第3题图 第5题图 4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+15.如图,D 为BC 上一点,且AB =AC =BD ,则图中∠1与∠2的关系是( ) A .∠1=2∠2 B.∠1+∠2=180°C .∠1+3∠2=180° D.3∠1-∠2=180° 6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32D .647.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-148.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( ) A.12 B.13 C.25 D.37第8题图9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN 绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( ) A.①②④ B.②③④C.①②③ D.①②③④第10题图第11题图二、填空题(共6小题,每小题3分,共18分)11.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=________°.12.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.13.如图,在△ABC中,D为AB上一点,AB=AC,CD=CB.若∠ACD=42°,则∠BAC =________°.第13题图 第16题图 14.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是________.15.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x 千米/时,根据题意,可列方程为______________.16.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是________.三、解答题(共8题,共72分)17.(8分)计算:(1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.18.(8分)分解因式:(1)3mx -6my; (2)4xy 2-4x 2y -y 3.19.(8分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.20.(8分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎫14-1.21.(8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD .(1)求证:△ABC ≌△AED ;(2)当∠B =140°时,求∠BAE 的度数.22.(10分)如图,在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于点G ,DE ⊥DF ,交AB 于点E ,连接EG ,EF .(1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.23.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?24.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C8.B 解析:如图,连接CC ′并延长交A ′B ′于D ,连接CB ′,CA ′.∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A ′C ,BC =B ′C ,∠ACB =∠A ′CB ′,AB 垂直平分CC ′,∴△ABC ≌△A ′B ′C (SAS),∴S △ABC =S △A ′B ′C ,∠A =∠AA ′B ′,AB =A ′B ′,∴AB ∥A ′B ′,∴CD ⊥A ′B ′.根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ′,∴S △A ′B ′C =13S △A ′B ′C ′,∴S △ABC =13S △A ′B ′C ′,∴△ABC 与△A ′B ′C ′的面积之比为13.故选B.9.C 解析:在方程两边同乘x +1,得x -a =a (x +1),整理得(1-a )x =2a .当1-a =0时,即a =1,整式方程无解;当x +1=0,即x =-1时,分式方程无解,把x =-1代入(1-a )x =2a ,得-(1-a )=2a ,解得a =-1.故选C.10.C 解析:∵在Rt△ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,AF +AE >EF ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.11.50 12.(1)a (x -1)2 (2)1x +113.32 14.(-2,-15) 15.1480x=1480x +70+316.4 解析:如图,延长DE 至F ,使EF =BC ,连接AC ,AD ,AF .∵AB =CD =AE =BC +DE =2,∠B =∠AED =90°,∴CD =EF +DE =DF ,∠AEF =90°.在△ABC与△AEF 中, ⎩⎨⎧AB =AE ,∠ABC =∠AEF ,BC =EF ,∴△ABC ≌△AEF (SAS),∴AC =AF .在△ACD 与△AFD 中,⎩⎨⎧AC =AF ,CD =FD ,AD =AD ,∴△ACD ≌△AFD (SSS),∴五边形ABCDE 的面积S =2S △ADF =2×12·DF ·AE =2×12×2×2=4.故答案为4.17.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(4分)(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.(8分)18.解:(1)原式=3m (x -2y ).(4分)(2)原式=-y (-4xy +4x 2+y 2)=-y (y -2x )2.(8分)19.解:如图,作AB 的垂直平分线EF ,(3分)作∠BAC 的平分线AM ,两线交于P ,(6分)则P 为这个中心医院的位置.(8分)20.解:(1)∵a +b =7,ab =10,∴a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(4分)(2)原式=(a -2)(a +2)-5a +2·2(a +2)a -3=(a +3)(a -3)a +2·2(a +2)a -3=2a +6.(6分)∵a =(3-π)0+⎝ ⎛⎭⎪⎫14-1=1+4=5,∴原式=2×5+6=16.(8分) 21.(1)证明:∵AC =AD ,∴∠ACD =∠ADC .又∵∠BCD =∠EDC =90°,∴∠ACB=∠ADE .(2分)在△ABC 和△AED 中, ⎩⎨⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED (SAS).(4分)(2)解:由(1)知△ABC ≌△AED ,∴∠E =∠B =140°.又∵∠BCD =∠EDC =90°,∴五边形ABCDE 中,∠BAE =540°-140°×2-90°×2=80°.(8分)22.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(5分)(2)解:BE +CF >EF .(6分)理由如下:由(1)知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴DE 垂直平分GF ,∴EG =EF .(8分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(10分)23.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5,(3分)解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(5分)(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a 1=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,(8分)解得a ≥8.答:甲工程队至少修路8天.(10分)24.(1)证明:∵∠ACB =∠DCE =α,∴∠ACD =∠BCE .(1分)在△ACD 和△BCE中,⎩⎨⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴BE =AD .(3分)(2)解:由(1)知△ACD ≌△BCE ,∴∠CAD =∠CBE .∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =180°-(180°-α)=α.(6分)(3)解:△CPQ 为等腰直角三角形.(7分)证明如下:由(1)可知BE =AD .∵AD ,BE 的中点分别为点P ,Q ,∴AP =BQ .由(1)知△ACD ≌△BCE ,∴∠CAP =∠CBQ .在△ACP 和△BCQ 中,⎩⎨⎧CA =CB ,∠CAP =∠CBQ ,AP =BQ ,∴△ACP ≌△BCQ (SAS),∴CP =CQ 且∠ACP =∠BCQ .(10分)又∵∠ACP +∠PCB =90°,∴∠BCQ +∠PCB =90°,∴∠PCQ =90°,∴△CPQ 为等腰直角三角形.(12分)人教版八年级上学期期末考试数学试卷(三)时间:120分钟 满分:150分一、选择题(本题共12小题,每小题3分,共36分)1.若分式x +1x +2的值为0,则x 的值为( ) A .0 B .-1C .1D .22.下列图形中,是轴对称图形的是( )3.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -2b )=a 2-2b 2D .5a -2a =34.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .155.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+16.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠A =∠A ′,若证△ABC ≌△A ′B ′C ′还要从下列条件中补选一个,错误的选法是( )A .∠B =∠B ′ B.∠C =∠C ′C .BC =B ′C ′ D.AC =A ′C ′7.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线DE 分别交AB ,BC 于点D ,E ,则∠BAE =( )A .80°B .60°C .50°D .40°8.已知2m +3n =5,则4m ·8n =( )A .16B .25C .32D .649.若a +b =3,ab =-7,则a b +b a的值为( )A .-145B .-25C .-237D .-25710.如图,在△ABC 和△CDE 中,已知AC =CD ,AC ⊥CD ,∠B =∠E =90°,则下列结论不正确的是( )A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠211.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的平分线,则图中的等腰三角形有( )A.5个 B.4个C.3个 D.2个12.如图,在Rt△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确结论是( ) A.①②④ B.②③④C.①②③ D.①②③④二、填空题(本题共6小题,每小题4分,共24分)13.一个n边形的内角和为1800°,则n=________.14.如图,小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为________米.15.若x2+bx+c=(x+5)(x-3),则点P(b,c)关于y轴对称点的坐标是________.16.已知甲、乙两地间的铁路长1480千米,列车提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为________.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为________.18.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF 的最小值是________.三、解答题(本题共9小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)化简或解方程:(1)(a+b)(a-b)+2b2;(2)xx-1+21-x=2.20.(8分)先化简,再从1,2,3中选取一个适当的数代入求值.21.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系并说明理由.22.(10分)如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.23.(10分)把两个含有45°角的直角三角板ACB和DEC如图放置,点A,C,E 在同一直线上,点D在BC上,连接BE,AD,AD的延长线交BE于点F.(1)求证:△ADC≌△BEC;(2)猜想AD与EB是否垂直?并说明理由.24.(10分)如图,在△ABC中,点O是∠ABC,∠ACB平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.25.(12分)某公司向甲、乙两所中学送水,每次送往甲中学7600升,乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.(1)求这两所中学师生人数分别是多少;(2)若送瓶装水,价格为1元/升;若用消防车送饮用水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个,其他费用不计.请问这次乙中学用瓶装水花费少还是饮用消防车送水花费少?26.(12分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.27.(14分)已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x s.(1)如图①,当x为何值时,PQ∥AB?(2)如图②,若PQ⊥AC,求x的值;(3)如图③,当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.期末检测卷1.B 2.C 3.A 4.A 5.C 6.C7.D 8.C 9.C 10.D 11.A12.C 解析:∵在Rt△ABC 中,∠B =45°,AB =AC ,点D 为BC 中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠CAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.13.12 14.100 15.(-2,-15) 16.1480x =1480x +70+3 17.60° 18.10 解析:利用正多边形的性质可得点F 关于AD 的对称点为点B ,连接BE 交AD 于点P ′,连接P ′F ,那么有P ′B =P ′F .P ′E +P ′F =P ′E +P ′B =BE ,故当点P 与点P ′重合时,PE +PF 的值最小,最小值为BE 的长.易知△AP ′B 和△EP ′F 均为等边三角形,所以P ′B =P ′E =5,可得BE =10.所以PE +PF 的最小值为10.19.解:(1)原式=a 2-b 2+2b 2=a 2+b 2.(3分)(2)方程两边乘(x -1),得x -2=2(x -1),解得x =0.检验:当x =0时,x -1≠0.所以,原分式方程的解为x =0.(6分)20.解:⎝ ⎛⎭⎪⎫a 2+4a a -2-42-a ·a -2a 2-4=a 2+4a +4a -2·a -2a 2-4=(a +2)2a -2·a -2(a +2)(a -2)=a +2a -2.(5分)∵a -2≠0,a +2≠0,∴a ≠±2,∴可取a =1.(6分)当a =1时,原式=-3(答案不唯一,也可取a =3代入求值).(8分)21.解:(1)如图所示.(2分)(2)DE ∥AC .(4分)理由如下:∵DE 平分∠BDC ,∴∠BDE =12∠BDC .∵∠ACD =∠A ,∠ACD +∠A =∠BDC ,∴∠A =12∠BDC ,∴∠A =∠BDE ,∴DE ∥AC .(8分) 22.解:选②BC =DE .(3分)证明如下:如图,∵∠1=∠2,∠3=∠4,∴∠E =∠C .(5分)在△ADE 和△ABC 中,⎩⎨⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(10分)23.(1)证明:∵△DCE 和△ABC 都是等腰直角三角形,∴∠ECB =∠DCA =90°,EC =DC ,BC =AC ,(3分)∴△BEC ≌△ADC (SAS).(4分)(2)解:AD ⊥EB .(6分)理由如下:由(1)知△BEC ≌△ADC ,∴∠CAD =∠CBE .∵∠CAD +∠ADC =90°,∠ADC =∠BDF ,(8分)∴∠CBE +∠BDF =90°,(9分)∴∠BFD =90°,∴AD ⊥EB .(10分)24.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO+S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)25.解:(1)设乙中学有师生x 人,则甲中学有师生(2x -20)人,依题意得76002x -20=4000x,解得x =200.(4分)经检验,x =200是原分式方程的解,且符合题意.∴2x -20=380.(6分)答:甲中学有师生380人,乙中学有师生200人.(7分)(2)乙中学饮用瓶装水的费用为4000×1=4000(元),饮用消防车送水的费用为4000÷500×520=4160(元).(11分)∵4000<4160,∴这次乙中学饮用瓶装水花费少.(12分)26.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(6分)(2)解:BE +CF >EF .(8分)理由如下:由(1)可知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴EG =EF .(10分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(12分)27.解:(1)∵∠C =60°,∴当PC =CQ 时,△PQC 为等边三角形,∴∠QPC =60°=∠B ,从而PQ ∥AB .(2分)∵PC =(4-x )cm ,CQ =2x cm ,∴4-x =2x ,解得x =43,∴当x =43时,PQ ∥AB .(4分) (2)∵PQ ⊥AC ,∠C =60°,∴∠QPC =30°,∴CQ =12PC ,即2x =12(4-x ),解得x =45.(8分)(3)OQ 与OP 总是相等.(9分)理由如下:作QH ⊥AD 于H .(10分)∵△ABC 为等边三角形,AD ⊥BC ,∴∠QAH =30°,BD =12BC =2cm ,∴QH =12AQ =12(2x -4)=(x -2)cm.∵DP =BP -BD =(x -2)cm ,∴QH =DP .(12分)在△OQH 和△OPD 中,⎩⎨⎧∠QOH =∠POD ,∠QHO =∠PDO ,QH =PD ,∴△OQH ≌△OPD (AAS),∴OQ =OP .(14分)人教版八年级上学期期末考试数学试卷(四)时间:120分钟 满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若分式x -3x +4有意义,则x 的取值应满足( ) A .x ≠3 B.x ≠4 C.x ≠-4 D .x ≠-32.涞水的文化底蕴深厚,涞水人民的生活健康向上.下面的四幅简笔画是从涞水的文化活动中抽象出来的,其中是轴对称图形的是( )3.下列二次三项式是完全平方式的是( )A .x 2-8x -16B .x 2+8x +16C .x 2-4x -16D .x 2+4x +164.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125° B.120° C.140° D.130°5.若等腰三角形的两边长分别为4和8,则它的周长为( )A .12B .16C .20D .16或206.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组7.化简x -y x +y ÷(y -x )·1x -y的结果是( ) A.1x 2-y 2 B.y -x x +y C.1y 2-x 2 D.x -y x +y8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .60° B.72° C.90° D.108°9.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,直线m 为∠ABC 的平分线,l 与m 相交于P 点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为( )A .24° B.30° C.32° D.36°10.若a -b =12,且a 2-b 2=14,则a +b 的值为( ) A .-12 B.12C .1D .2 11.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC .若∠ABC =67°,则∠1=( )A .23° B.46° C.67° D.78°12.如图,在等腰△ABC 中,∠BAC =120°,DE 是AC 的垂直平分线,线段DE =1cm ,则BD 的长为( )A .6cmB .8cmC .3cmD .4cm13.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰直角三角形,则点C 的个数是( )A .2B .4C .6D .814.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )15.已知A ,C 两地相距40千米,B ,C 两地相距50千米,甲、乙两车分别从A ,B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/时,依题意列方程正确的是( )A.40x =50x -12B.40x -12=50xC.40x =50x +12D.40x +12=50x16.当x 分别取-2017、-2016、-2015、…、-2、-1、0、1、12、13、…、12015、12016、12017时,计算分式x 2-1x 2+1的值,再将所得结果相加,其和等于( ) A .-1 B .1 C .0 D .2016二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.若点A (m +2,3)与点B (-4,n +5)关于y 轴对称,则m n = .18.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DE =2cm ,AB =4cm ,S △ABC =7cm 2,则AC 的长为 .19.如图,已知长方形OABC中,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),则第二次碰到长方形的边上一点P2的坐标为.当点P第2018次碰到长方形的边时,点P2018的坐标是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)计算:(1)a·a5-(2a3)2+(-2a2)3;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2.21.(9分)因式分解:(1)2x3-4x2+2x;(2)(m-n)(3m+n)2+(m+3n)2(n-m).22.(9分)(1)解分式方程:x x +1=2x3x +3+1;(2)先化简⎝ ⎛⎭⎪⎫a -2ab -b 2a ·a 2+ab a 2-b 2,再求值,其中a =3,b =1.23.(9分)如图,在平面直角坐标系中有一个△ABC ,顶点A (-1,3),B (2,0),C (-3,-1).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1(不写画法),并写出点A 1,B 1,C 1的坐标;(2)求△ABC 的面积.24.(10分)如图,已知∠AOB ,以O 为圆心,以任意长为半径作弧,分别交OA ,OB 于F ,E 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线OP ,过点F 作FD ∥OB 交OP 于点D . (1)若∠OFD =116°,求∠DOB 的度数;(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.25.(11分)元旦晚会上,王老师要为她的学生及班级的六位老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5∶4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱.(1)贺年卡的零售价是多少?(2)班里有多少学生?26.(12分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请写出你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,并证明.参考答案与解析1.C 2.C 3.B 4.D 5.C 6.C 7.C 8.B 9.C 10.B 11.B 12.D 13.C 14.D 15.B16.A 解析:设a 为负整数.∵当x =a 时,分式的值为a 2-1a 2+1,当x =-1a 时,分式的值为⎝ ⎛⎭⎪⎫-1a 2-1⎝ ⎛⎭⎪⎫-1a 2+1=1-a 2a 2+1,∴当x =a 时与当x =-1a 时两分式的和为a 2-1a 2+1+1-a 2a 2+1=0.∴当x 的两个取值互为负倒数时,两分式的和为0.∴所得结果的和为02-102+1=-1.故选A. 17.1418.3cm 19.(7,4) (7,4) 解析:按照光线反射规律,画出图形,如图:P (0,3),P 1(3,0),P 2(7,4),P 3(8,3),P 4(5,0),P 5(1,4),P 6(0,3),通过以上变化规律,可以发现每六次反射一个循环.∵2018÷6=336……2,∴P 2018与P 2的坐标相同,∴点P 2018的坐标是(7,4).20.解:(1)原式=a 6-4a 6-8a 6=-11a 6.(4分) (2)原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5.(8分) 21.解:(1)原式=2x (x 2-2x +1)=2x (x -1)2.(4分)(2)原式=(m -n )[(3m +n )2-(m +3n )2]=(m -n )(2m -2n )(4m +4n )=8(m -n )2(m +n ).(9分) 22.解:(1)方程x x +1=2x3x +3+1两边同乘3(x +1),得3x =2x +3x +3.解得x=-32.(3分)检验:当x =-32时,3(x +1)≠0,所以x =-32是原分式方程的解.(4分) (2)原式=(a -b )2a·a (a +b )(a +b )(a -b )=a -b .(7分)当a =3,b =1时,原式=3-1=2.(9分)23.解:(1)如图所示,△A 1B 1C 1即为所求.(3分)点A 1的坐标为(1,3),点B 1的坐标为(-2,0),点C 1的坐标为(3,-1).(6分)(2)△ABC 的面积为4×5-12×3×3-12×2×4-12×1×5=9.(9分)24.(1)解:∵OB ∥FD ,∴∠OFD +∠AOB =180°.又∵∠OFD =116°,∴∠AOB =180°-∠OFD =180°-116°=64°.(2分)由作法知,OP 是∠AOB 的平分线,∴∠DOB =12∠AOB =32°.(4分)(2)证明:∵OP 平分∠AOB ,∴∠AOD =∠DOB .∵OB ∥FD ,∴∠DOB =∠ODF ,∴∠AOD =∠ODF .又∵FM ⊥OD ,∴∠OMF =∠DMF .(7分)在△MFO 和△MFD 中,⎩⎨⎧∠OMF =∠DMF ,∠FOM =∠FDM ,FM =FM ,∴△MFO ≌△MFD (AAS).(10分) 25.解:(1)设零售价为5x 元,则团购价为4x 元.则100+105x +6=1004x ,(2分)解得x =12,经检验,x =12是原分式方程的解,(5分)5x =2.5.(6分)答:零售价为2.5元.(7分)(2)学生数为1102.5-6=38(人).(10分) 答:王老师的班级里有38名学生.(11分)26.(1)证明:∵AC =BC ,∴∠ABC =∠CAB .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD =45°,∴∠A=∠BCD .在△BCG 和△CAE 中,⎩⎨⎧∠BCG =∠A ,BC =CA ,∠CBG =∠ACE ,∴△BCG ≌△CAE (ASA),∴AE =CG .(4分)(2)解:不变,AE =CG .理由如下:∵AC =BC ,∴∠ABC =∠A .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD=45°,∴∠A =∠BCD .在△BCG 和△CAE 中,⎩⎨⎧∠BCG =∠A ,BC =CA ,∠CBG =∠ACE ,∴△BCG ≌△CAE (ASA),∴AE =CG .(8分)(3)解:BE =CM .证明如下:∵∠ACB =90°,∴∠ACE +∠BCE =90°.∵AH ⊥CE ,∴∠AHC =90°,∴∠HAC +∠ACE =90°,∴∠BCE =∠HAC .∵∠ACB =90°,CD ⊥AB ,AC =BC ,∴∠BCD =∠ACD =45°,∴∠ACD =∠ABC .在△BCE 和△CAM中,⎩⎨⎧∠BCE =∠CAM ,BC =CA ,∠CBE =∠ACM ,∴△BCE ≌△CAM (ASA),∴BE =CM .(12分)人教版八年级上学期期末考试数学试卷(五) 时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.若分式x +1x +2的值为0,则x 的值为( )A .0B .-1C .1D .22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .153.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( ) A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+15.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线分别交AB 、BC 于点D 、E ,则∠BAE 的大小为( ) A .80° B .60° C.50° D.40°6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32 D .647.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-148.如图,在△ABC 中,∠C =40°,将△ABC 沿着直线l 折叠,点C 落在点D 的位置,则∠1-∠2的度数是( ) A .40° B.80° C.90° D.140°9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN 绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( ) A.①②④ B.②③④C.①②③ D.①②③④二、填空题(每小题3分,共24分)11.如图,∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=________°.12.计算:(-8)2018×0.1252017=________.13.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3的度数为________.15.如图,在△ABC 中,D 为AB 上一点,AB =AC ,CD =CB .若∠ACD =42°,则∠BAC =________°.16.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是________.17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x 千米/时,根据题意,可列方程为______________.18.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是________.三、解答题(共66分) 19.(8分)计算: (1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.20.(6分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.21.(10分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎫14-1.22.(10分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD . (1)求证:△ABC ≌△AED ;(2)当∠B =140°时,求∠BAE 的度数.23.(10分)如图,在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于点G ,DE ⊥DF ,交AB 于点E ,连接EG ,EF . (1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.24.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C 8.B。
人教版八年级上册数学期末考试卷及答案【完整】
人教版八年级上册数学期末考试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10 B.12 C.16 D.187.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.若关于x、y的二元一次方程3x﹣ay=1有一个解是32xy=⎧⎨=⎩,则a=_____.3.4的平方根是.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________ 5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图△ABC中,分别延长边AB、BC、CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图1,在菱形ABCD 中,AC =2,BD =3AC ,BD 相交于点O .(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、A6、C7、B8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、43、±2.4、135°5、26、18三、解答题(本大题共6小题,共72分)1、x=32.3、(1)-3x+2<-3y+2,理由见解析;(2)a<34、略.5、(1)2;(2)60 ;(3)见详解6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷 第 1 页 共 4 页图4NMDCBA 图2ED F D 图3A CFEB图1NP OMA CB 2011-2012学年第一学期期末试卷科目: 数学 年级: 八年级 时间: 100分钟一.填空题(本题共10题,每小题3分,共30分)1.△ABC ≌△DEF ,且△ABC 的周长为18,若AB=5,AC=6,则EF= .2、若2164b m ++是完全平方式,m = . . 。
3.如图1,PM=PN ,∠BOC=30°,则∠AOB= .4.如图2,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中 点,则图中共有全等三角形 对.5. 已知△ABC ≌△DEF, 且∠A=30°, ∠E=75°, 则∠F= .6.如图3,在△ABC 和△FED , AD=FC ,AB=FE ,当添加条件 时, 就可得到△ABC ≌△FED.(只需填写一个你认为正确的条件)7.如图4, 已知AB=AC, ∠A=40°, AB 的垂直平分线MN 交AC 于点D,则∠DBC= 度.8.等腰三角形中有一个角等于500,则另外两个角的度数为 .9、已知115a b -=,则2322a ab ba ab b +---的值是10.若()2190m n -+-=,将22mx ny -因式分解得 。
二.选择题(本题共10题,每小题2分,共20分)1、在式子:23123510,,,,,94678xy a b c x y x a x yπ+++中,分式的个数是【 】 A 、2 B 、3 C 、4 D 、52.下列各式是因式分解,并且正确的是【 】A .()()22a b a b a b +-=-B .123111a a a +=+++ C .()()232111a a a a a --+=-+ D .()()2222a ab b a b a b +-=-+ 3.下列图形是轴对称图形的有【 】八年级数学试卷 第 2 页 共 4 页A.2个B.3个C.4个D.5个4、如果把分式10xx y +中的X 、Y 都扩大10倍,则分式的值是()A 、扩大100倍B 、扩大10倍C 、不变D 、缩小到原来的1105.已知:在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32,且BD :DC=9:7,则点D 到AB 边的距离为【 】A.18B.16C.14D.12 6.化简()2003200455-+所得的值为【 】A .5-B .0C .20025D . 200345⨯ 7、下列等式成立的是( )A 、2(3)9--=-B 、21(3)9--= C 、12224()a a = D 、-70.0000000618=6.1810⨯8、将11n n x x +--因式分解,结果正确的是 ( )A .()1n x x x --B .()11n x x --C . ()121n x x --D .()()111n x x x -+- 9.下列各组图形中,是全等形的是【 】A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 10、某厂去年产值是m 万元,今年产值是n 万元(m <n ),则今年的产值比去年的产值增加的百分比是( )A 、100%m n n -⨯B 、 100%n m m -⨯C 、(1)100%n m +⨯D 、100%10n mm -⨯ 三.解答题(共50分)1.计算:(每小题4分,共16分)(1、2因式分解,3、4解方程)(1)2225204x xy y ++ (2)2710y y -+解方程: 3、 313221x x+=-- 4、11222x x x-=---八年级数学试卷 第 3 页 共 4 页图6D CBA122.(本题5分) 如图5,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1). (1)在图中作出ABC △关于y 轴对称的111A B C △. (2)写出点111A B C ,,的坐标(直接写答案).A 1 ______________B 1 ______________C 1 ______________3. (本题5分) 试说明代数式()()()233263516y y y y y ++-+++的值与y 的值无关。
4.(本题7分)如图6,∠1=∠2,∠ C=∠D ,求证:AC=AD.八年级数学试卷 第 4 页 共 4 页图7F ED CA图8ABCDE5.(本题8分) 如图7,已知在ABC △中,AB AC =,D 为BC 边的中点, 过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,. (1)求证:DE=DF(2)若60A ∠=°,BE=1,求ABC △的周长.6. (本题8分) 如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D, ,5cm AD =cm DE 3=,你知道BE 的长吗?初二上学期数学期末试题及答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.16的算术平方根是A .4B .±4C .2D .±2 2.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧-==21y x C .⎩⎨⎧==12y x D .⎩⎨⎧-==1y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .61(第15题图)八年级数学试卷 第 5 页 共O x y O x y O x y O x y ..O O O Ox /时y /件..y /件x /时x /时y /件y /件x /时4.下列函数中,y 是x 的一次函数的是 ① y =x -6 ② y =x 2 ③ y =8x④ y =7-x A .① ② ③ B .① ③ ④ C . ① ② ③ ④ D .② ③ ④5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上某点A 的坐标为(5,-6 ),那么图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 )6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1 2)--,,“馬”位于点(2 2)-,,则“兵”位于点( ) A .(1 1)-, B .(2 1)--, C .(1 2)-,D .(3 1)-,7.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图像大致是8.某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为( )9.已知代数式15x a -1y 3与-5x b y a +b 是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧-=-=12b aC .⎩⎨⎧==12b aD .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有A .1 个B .2 个(第6题图)8八年级数学试卷 第 6 页 共 4 页C .3 个D . 4个二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.已知方程3x +2y =6,用含x 的代数式表示y ,则y = . 12. 若点P (a +3, a -1)在x 轴上,则点P 的坐标为 .13.请写出一个同时具备:①y 随x 的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21x +3向下平移5个单位长度,得到新的直线的解析式是 . 15.如图l 1的解析式为y =k 1x +b 1 , l 2的解析式为y =k 2x +b 2则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分,每小题2分)计算:(1).4+3125-.(2).21.1+64.0. 17.(本题满分4分)解方程组:⎩⎨⎧=+=+.134,1632y x y x② ①(第15题图)l18.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(4-,5),(1-,3).⑴请在如图所示的网格平面内画出平面直角坐标系;⑵请作出△ABC关于y轴对称的△A′B′C′;⑶写出点B′的坐标.19.(本题满分5分)木工师傅做一个人字形屋梁,如图所示,上弦AB=AC=5m,跨度BC为6m,现有一根木料打算做中柱AD(AD是△ABC的中线),请你通过计算说明中柱AD的长度.(只考虑长度、不计损耗)20.(本题满分5分)(第19题)ABD八年级数学试卷第7 页共 4 页八年级数学试卷第列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇. 甲、乙两人每小时各走多少千米?21.(本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一张入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九张卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们背面朝上洗匀后,任意抽出一张,若抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据说明你的观点.22错误!未找到引用源。
(本题满分5分)一次函数y=-2x+4的图像如图,图像与x轴交于点A,与y轴交于点B.(1)求A、B两点坐标.(2)求图像与坐标轴所围成的三角形的面积是多少.23.(本题满分6分)列方程组解应用题:某城市规定:出租车起步价允许行驶的最远路程为3 千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少?超过3千米后,每千米的车费是多少?24.(本题满分7分)为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次第一档第二档第三档第四档高度凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8八年级数学试卷第9 页共 4 页(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值范围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.25.(本题满分8分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s 与时间t之间的图象.请回答下列问题:(1)直接写出在去植树地点的途中,师生的速度是多少千米/时?(2)求师生何时回到学校?(3)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时离学校的路程.)(第25题图)八年级数学试卷第10 页共 4 页八年级数学试卷 第 11 页 共 4 页评分标准与参考答案一、选择题1.C 2.A 3.B 4.B 5.D 6.D 7.A 8.B 9.C 10.C二、填空题11.3-x 2312.(4,0) 13.y =-x -5(答案不唯一)14.y =-21x -2 15.⎩⎨⎧==22y x 三、解答题16.解:(1).解:原式=2+(-5)=-3 ………………… 2分(2).解:原式=1.1+0.8=1.9 ………………… 4分17.解:②×2得:2x +8y =26. ③ ……………………………… 1分 ③-①得:5y =10.y =2.……………………………… 2分将y =2代入②,得 x =5.………………………………………… 3分所以原方程组的解是 ⎩⎨⎧==.2,5y x ……………………………………… 4分18.⑴ ⑵如图,⑶B ′(2,1)每小题2分.19.解:∵AB =AC =5 ,AD 是△ABC 的中线 ,BC =6,∴AD ⊥BC ,BD =21BC =3.………………………………2分 由勾股定理,得AD =22BD AB -=2235-=4.………………………4分∴这根中柱AD 的长度是4m .………………………5分20.解:设甲每小时走x 千米,乙每小时走y 千米,由题意得:⎩⎨⎧=++=++36)23(3365.25.22y x y x )( …………………… 2分 解得:⎩⎨⎧==6.36y x …………………… 4分答:甲每小时走6千米,乙小时走3.6千米 . …………………… 5分21.答:不公平.……………………………………………… 1分八年级数学试卷 第 12 页 共 4 页理由:P (抽到奇数)=95 ,P (抽到偶数)=94……………………………………… 3分 ∵95>94,∴小明去的机会大.……………………………………………… 4分 对小亮来说不公平.……………………………………………… 5分 22.解:(1)对于y =-2x +4, 令y =0,得-2x +4, ∴ x =2.………………………………………………… 1分 ∴ 一次函数y =-2x +4的图象与x 轴的交点A 的坐标为(2,0).………… 2分 令x =0, 得 y =4.∴ 一次函数y =-2x +4的图象与y 轴的交点B 的坐标为(0,4).………… 3分 (2) S △AOB =21·OA ·OB =21×2×4=4. ∴图像与坐标轴所围成的三角形的面积是4.………………………………………… 5分23.解:设起步价是x 元,超过3千米后每千米收费y 元,由题意得:⎩⎨⎧=-+=-+35)323(17)311(y x y x ,…………………………………… 3分解得:⎩⎨⎧==5.15y x ……………………………………5分答:这种出租车的起步价是5元,超过3千米后,每千米的车费是1.5元.…… 6分 24.解:(1)设一次函数的解析式为:y =kx +b . …………………………… 1分将x =37,y =70;x =42,y =78代入y =kx +b ,得⎩⎨⎧=+=+.7842,7037b k b k ………………………………………… 3分 解得 ⎩⎨⎧==.8.10,6.1b k ………………………………………………… 4分∴ y =1.6x +10.8. ………………………………………… 5分(2)当x =41时,y =1. 6×41+10.8=76.4. …………………………………………6分 ∴家里的写字台和凳子不配套. ………………………………………… 7分 25.解:(1)在去植树地点的途中,师生的速度是4千米/时.………………… 2分(2)设师生返校时的函数解析式为b kt s +=, 把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k八年级数学试卷 第 13 页 共 4 页∴685+-=t s , ………………………………… 4分 当0=s 时,t =13.6 ,∴师生在13.6时回到学校; ………………………………… 6分 (3)图象正确1分.由图象得,当三轮车追上师生时,离学校4km ; ………………………………… 8分======*以上是由明师教育编辑整理======八年级(上)数学期末综合测试(1)一、相信你一定能选对!(每小题3分,共36分) 1.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2.直线y=kx+2过点(-1,0),则k 的值是( )A .2B .-2C .-1D .1 3.和三角形三个顶点的距离相等的点是( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点4.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形最准确的判断是( ) A .等腰三角形 B .直角三角形 C .正三角形D .等腰直角三角形8.5 9.5Ot (时)s (千米)4 8 3 6 2810 911 12 13 14 (第25题解答图)5.下图所示的扇形图是对某班学生知道父母生日情况的调查,A•表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道.•若该班有40名学生,则知道母亲生日的人数有()A.25% B.10 C.22 D.126.下列式子一定成立的是()=-a5 A.x2+x3=x5; B.(-a)2·(-a3)C.a0=1 D.(-m3)2=m57.黄瑶拿一张正方形的纸按右图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()8.已知x2+kxy+64y2是一个完全式,则k的值是()A.8 B.±8 C.16 D.±169.下面是一组按规律排列的数:1,2,4,8,16,……,则第2005个数是()A.22005B.22004C.22006D.2200310.已知(x+a)(x+b)=x2-13x+36,则a+b的值分别是()A.13 B.-13 C.36 D.-3611.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交EF于F,若BF=AC,则∠ABC 等于()A.45°B.48°C.50°D.60°12.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的八年级数学试卷第14 页共 4 页周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、你能填得又对又快吗?(每小题3分,共24分)13.计算:1232-124×122=_________.在实数范围内分解因式:3a3-4ab2=__________.15.已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=________.16.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是_______.17.已知a2+b2=13,ab=6,则a+b的值是________.18.直线y=ax+2和直线y=bx-3交于x轴同一点,则a与b的比值是________.19.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b420.如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b 的比是3:2,装饰布由一个半圆和两个四分之一圆组成,圆的直径都是0.5b,那么当b=4时,•这个窗户未被遮挡的部分的面积是__________.三、认真解答,一定要细心哟!(共60分)21.(5分)先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.22.(7分)求证:等腰三角形两腰上的高的交点到底边两端的距离相等.23.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE于点F,DF 的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.八年级数学试卷第15 页共 4 页24.(12分)如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?八年级数学试卷第16 页共 4 页。