四川省成都市青羊区2016-2017学年八年级下期期末数学试题
【数学】2016年四川省成都市八年级(下)数学期末试卷带答案PDF版
2015-2016学年四川省成都市八年级(下)期末数学试卷一、选择题(本题共16小题,每小题3分,共48分.)1.(3分)若分式的值为0,则x的值为()A.x=0 B.x=1 C.x=﹣2 D.x=﹣12.(3分)将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.3.(3分)某种流感病毒的直径是0.00000008m,这个数据用科学记数法表示为()A.8×10﹣6m B.8×10﹣5m C.8×10﹣8m D.8×10﹣4m4.(3分)函数y=﹣中的自变量x的取值范围是()A.x≥0 B.x<0且x≠1 C.x<0 D.x≥0且x≠15.(3分)一次函数y=﹣2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,AD⊥BC,D是BC的中点,那么下列结论错误的是()A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形7.(3分)若点(﹣3,y1),(﹣2,y2),(﹣1,y3)在反比例函数y=﹣图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y18.(3分)如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.429.(3分)下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等10.(3分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS11.(3分)某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据的众数和中位数分别是()A.93、89 B.93、93 C.85、93 D.89、9312.(3分)将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,这个图形一定是一个(A.三角形B.矩形C.菱形D.正方形13.(3分)等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是()A.75°B.60°C.45°D.30°14.(3分)如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCFB.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点15.(3分)一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A.B.C.D.16.(3分)如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E 和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用H•L证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点二、填空题(每小题4分,32共分)17.(4分)计算:(a﹣3)2(ab2)﹣3=(结果化为只含正整数指数幂的形式)18.(4分)把命题“平行四边形的两组对边分别相等”改写成“如果…,那么…”的形式是.19.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是.20.(4分)到三角形各顶点距离相等的点是三角形的交点.21.(4分)四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)22.(4分)小青在八年级上学期的数学成绩如下表所示.如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是分.23.(4分)如果关于x的方程=无解,则m=.24.(4分)如图,双曲线与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),根据图象,在第一象限内,反比例函数值大于一次函数值时x 的取值范围是.三、解答题(第25题18分,其余每题8分,共50分)25.(18分)(1)计算:(﹣2)3+(﹣)﹣2•(1﹣)0(2)先化简,再求值:÷﹣,其中x=(3)解方程:=+2.26.(8分)2013年4月20,我省雅安市芦山县发生了里氏7.0级强烈地震.为支援灾区,某中学八年级师生发起了自愿捐款活动.已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?27.(8分)已知:如图,在△ABC中,AB=AC,∠B=36°.(1)尺规作图:作AB的垂直平分线交BC于点D,垂足为F,连接AD;(保留作图痕迹,不写作法)(2)求证:△ACD是等腰三角形.28.(8分)如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.29.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A、B两种种植技术进行试验,现从这两种技术种植的西瓜中各随机抽取10颗,记录它们的质量如下(单位:kg):A:5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B:4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成如表:(2)请分别从优质品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好.四、能力展示题(每小题10分,共20分)30.(10分)某超市准备购进A、B两种品牌的饮料共100件,两种饮料每件利润分别是15元和13元.设购进A种饮料x件,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y与x的函数关系式;(2)根据两种饮料历次销量记载:A种饮料至少购进30件,B种饮料购进数量不少于A种饮料件数的2倍.问:A、B两种饮料进货方案有几种?哪一种方案能使超市所获利润最高?最高利润是多少?31.(10分)如图,在△ABC中∠ACB>90°,D是AC的中点,过点A的直线l∥BC,将直线AC绕点D逆时针旋转(旋转角α<∠ACB),分别交直线l于点F与BC的延长线交于点E,连接AE、CF.(1)求证:△CDE≌△ADF;(2)求证:四边形AFCE是平行四边形;(3)当∠B=22.5°,AC=BC时,请探索:是否存在这样的α能使四边形AFCE成为正方形?请说明理由;若能,求出这时的旋转角α的度数和BC与CE的数量关系.2015-2016学年四川省成都市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共16小题,每小题3分,共48分.)1.(3分)若分式的值为0,则x的值为()A.x=0 B.x=1 C.x=﹣2 D.x=﹣1【解答】解:∵x﹣1=0且x+2≠0,∴x=1.故选:B.2.(3分)将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.【解答】解:分式中分子与分母的各项系数都化成整数,正确的是,故选:A.3.(3分)某种流感病毒的直径是0.00000008m,这个数据用科学记数法表示为()A.8×10﹣6m B.8×10﹣5m C.8×10﹣8m D.8×10﹣4m【解答】解:0.000 000 08=8×10﹣8.故选:C.4.(3分)函数y=﹣中的自变量x的取值范围是()A.x≥0 B.x<0且x≠1 C.x<0 D.x≥0且x≠1【解答】解:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x≥0;分母不等于0,可知:x﹣1≠0,即x≠1.所以自变量x的取值范围是x≥0且x≠1.故选:D.5.(3分)一次函数y=﹣2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:对于一次函数y=﹣2x﹣1,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=﹣1<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣2x﹣1的图象不经过第一象限.故选:A.6.(3分)如图,AD⊥BC,D是BC的中点,那么下列结论错误的是()A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵D是BC的中点,∴BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠B=∠C,AB=AC,故A、B、C选项结论都正确,只有AB=BC时,△ABC是等边三角形,故D选项结论错误.故选:D.7.(3分)若点(﹣3,y1),(﹣2,y2),(﹣1,y3)在反比例函数y=﹣图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【解答】解:根据题意得﹣3•y1=﹣1,﹣2•y2=﹣1,﹣1•y3=﹣1,解得y1=,y2=,y3=1,所以y1<y2<y3.故选:D.8.(3分)如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.42【解答】解:根据题意得:300×(1﹣33%﹣26%﹣28%)=39(名).答:选择短跑的学生有39名.故选:C.9.(3分)下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等【解答】解:A、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;B、直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;C、全等三角形的对应边相等的逆命题是对应边相等的三角形全等,是真命题;D、两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;故选:A.10.(3分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS【解答】解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选:D.11.(3分)某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据的众数和中位数分别是()A.93、89 B.93、93 C.85、93 D.89、93【解答】解:∵85,93,62,99,56,93,89中,93出现了2次,出现的次数最多,∴这七个数据的众数是93,把85,93,62,99,56,93,89从小到大排列为:56,62,85,89,93,93,99,最中的数是89,则中位数是89;故选:A.12.(3分)将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,这个图形一定是一个(A.三角形B.矩形C.菱形D.正方形【解答】解:根据折叠方法可知:所得到图形的4条边都是所剪直角三角形的斜边,并且相等,根据四条边相等的四边形是菱形可得这个图形是菱形,故选:C.13.(3分)等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是()A.75°B.60°C.45°D.30°【解答】解:如图所示:梯形ABCD是等腰梯形,且AD∥BC,过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD,AD=EC,∵BE=BC﹣CE=BC﹣AD=AB=CD=4,∴∠B=60°.∴这个等腰梯形的锐角为60°.故选:B.14.(3分)如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCFB.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点【解答】解:如图,∵四边形ABCD是矩形ABCD,∴∠A=∠D=∠DCB=∠ABC=90°.又BE、CF分别平分∠ABC和∠DCB,∴∠ABE=∠DCF=45°,∴∠AEB=∠ABE=45°,∠DFC=∠DCF=45°,∴AB=AE,DF=DC,∴△ABE和△DCF都是等腰直角三角形.故B正确;在△ABE与△DCF中,.则△ABE≌△DCF(AAS),故A正确;∵△ABE≌△DCF,∴BE=CF.又BE与FC不平行,且EF∥BC,EF≠BC,∴四边形BCFE是等腰梯形.故C正确;∵△ABE≌△DCF,∴AE=DF.但是不能确定AE=EF=FD成立.即点E、F不一定是AD的三等分点.故D错误.故选:D.15.(3分)一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A.B.C.D.【解答】解:因为蚊香剩余长度y随所经过时间x的增加而减少,又中间熄灭了2h.故选:C.16.(3分)如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E 和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用H•L证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点【解答】解:∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;可以利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,所以,点P一定是菱形ABCD的两条对角线的交点不一定正确.故选:D.二、填空题(每小题4分,32共分)17.(4分)计算:(a﹣3)2(ab2)﹣3=(结果化为只含正整数指数幂的形式)【解答】解:(a﹣3)2(ab2)﹣3=()2(=•=;故答案为:.18.(4分)把命题“平行四边形的两组对边分别相等”改写成“如果…,那么…”的形式是如果一个四边形是平行四边形,那么它两组对边分别相等.【解答】解:原命题的条件是:四边形是平行四边形,结论是两组对边分别相等;改写成“如果…,那么…”的形式是:如果一个四边形是平行四边形,那么它两组对边分别相等,故答案为:如果一个四边形是平行四边形,那么它两组对边分别相等.19.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5).【解答】解:点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5),故答案为:(﹣4,﹣5).20.(4分)到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点.【解答】解:∵到三角形的一边的两个端点距离相等的点应该在这边的垂直平分线,到三角形的另一边的两个端点距离相等的点应该在这边的垂直平分线,二垂直平分线有一个交点,由等量代换可知到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点.故填空答案:三条边的垂直平分线.21.(4分)四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).22.(4分)小青在八年级上学期的数学成绩如下表所示.如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是84.2分.【解答】解:总评成绩为:86×10%+90×30%+81×60%=84.2(分).故答案为84.2.23.(4分)如果关于x的方程=无解,则m=﹣5.【解答】解:去分母得:x﹣3=m,解得:x=m+3,∵原方程无解,∴最简公分母:x+2=0,解得:x=﹣2,即可得:m=﹣5.故答案为﹣5.24.(4分)如图,双曲线与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),根据图象,在第一象限内,反比例函数值大于一次函数值时x 的取值范围是0<x<1或x>5.【解答】解:从图象可知反比例函数图象在一次函数图象上方时,即反比例函数的值大于一次函数的值,所以x的取值范围是0<x<1或x>5.故答案为:0<x<1或x>5.三、解答题(第25题18分,其余每题8分,共50分)25.(18分)(1)计算:(﹣2)3+(﹣)﹣2•(1﹣)0(2)先化简,再求值:÷﹣,其中x=(3)解方程:=+2.【解答】解:(1)原式=﹣8+9×1=﹣8+9=1;(2)原式=•﹣=﹣=,当x=时,原式==﹣3;(3)去分母得:2x(x+1)=1+2x2﹣2,去括号得:2x2+2x=2x2﹣1,解得:x=﹣,经检验x=﹣是分式方程的解.26.(8分)2013年4月20,我省雅安市芦山县发生了里氏7.0级强烈地震.为支援灾区,某中学八年级师生发起了自愿捐款活动.已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?【解答】解:设第一天捐款的人数为x人,第二天捐款的人数为(x+50)人,由题意得,=,解得:x=200,经检验,x=200是原分式方程的解,且符合题意.则两天共参加的捐款人数为:2×200+50=450(人).答:两天共参加捐款的人数是450人.27.(8分)已知:如图,在△ABC中,AB=AC,∠B=36°.(1)尺规作图:作AB的垂直平分线交BC于点D,垂足为F,连接AD;(保留作图痕迹,不写作法)(2)求证:△ACD是等腰三角形.【解答】解:(1)如图所示:DF是AB的垂直平分线.(2)∵AB=AC,∴∠C=∠B=36°,∴∠BAC=180°﹣∠C﹣∠B=108°,∵DF是AB的垂直平分线,∴AD=BD,∴∠1=∠B=36°,∴∠DAC=∠BAC﹣∠1=108°﹣36°=72°,∴∠ADC=∠B+∠1=36°+36°=72°,∴∠DAC=∠ADC,∴△ACD是等腰三角形.28.(8分)如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.【解答】解:(1)∵点A(﹣2,4)在反比例函数图象上∴4=∴k′=﹣8,(1分)∴反比例函数解析式为y=;(2分)(2)∵B点的横坐标为﹣4,∴y=﹣,∴y=2,∴B(﹣4,2)(3分)∵点A(﹣2,4)、点B(﹣4,2)在直线y=kx+b上∴4=﹣2k+b2=﹣4k+b解得k=1b=6∴直线AB为y=x+6(4分)与x轴的交点坐标C(﹣6,0)∴S△AOC =CO•y A=×6×4=12.(6分)29.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A、B两种种植技术进行试验,现从这两种技术种植的西瓜中各随机抽取10颗,记录它们的质量如下(单位:kg):A:5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B:4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成如表:(2)请分别从优质品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好.【解答】解:(1)∵质量为(5±0.25)kg的为优等品,∴质量为优等品的范围是:4.75~5.25之间,∴种植技术为A的有8颗,种植技术为B的有6颗;种植技术为A的平均数是:(5.5+4.8+5.0+5.2+4.9+5.2+4.5+4.8+5.1+5.0)÷10=5(kg);种植技术为B的方差为:[(4.7﹣4.9)2+(5.0﹣4.9)2+(4.5﹣4.9)2+3(4.9﹣4.9)2+(5.1﹣4.9)2+(5.3﹣4.9)2+(4.6﹣4.9)2+(5.1﹣4.9)2]=0.054;(2)从优等品数量的角度看,因A技术种植的西瓜优等品数量较多,所以A技术较好;从平均数的角度看,因A技术种植的西瓜质量的平均数更接近5kg,所以A技术较好;从方差的角度看,因B技术种植的西瓜质量的方差更小,所以B技术种植的西瓜质量更为稳定;从市场销售角度看,因优等品更畅销,A技术种植的西瓜优等品数量更多,且平均质量更接近5kg,因而更适合推广A种技术.四、能力展示题(每小题10分,共20分)30.(10分)某超市准备购进A、B两种品牌的饮料共100件,两种饮料每件利润分别是15元和13元.设购进A种饮料x件,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y与x的函数关系式;(2)根据两种饮料历次销量记载:A种饮料至少购进30件,B种饮料购进数量不少于A种饮料件数的2倍.问:A、B两种饮料进货方案有几种?哪一种方案能使超市所获利润最高?最高利润是多少?【解答】解:(1)y与x函数关系式是:y=15x+13(100﹣x)=2x+1300,即y=2x+1300.(2)由题意,得,解得30≤x≤33,它的整数解为x=30,31,32,33.∴A、B两种饮料进货方案有4种,∵y随着x的增大而增大,∴当x=33时,y取得最大值y=2×33+1300=1366即分别购进a种饮料33件,B种饮料67件,超市所获利润最高,最高利润是1366元.31.(10分)如图,在△ABC中∠ACB>90°,D是AC的中点,过点A的直线l∥BC,将直线AC绕点D逆时针旋转(旋转角α<∠ACB),分别交直线l于点F与BC的延长线交于点E,连接AE、CF.(1)求证:△CDE≌△ADF;(2)求证:四边形AFCE是平行四边形;(3)当∠B=22.5°,AC=BC时,请探索:是否存在这样的α能使四边形AFCE成为正方形?请说明理由;若能,求出这时的旋转角α的度数和BC与CE的数量关系.【解答】(1)证明:∵AF∥BC,∴∠1=∠2,在△AFD和△CED中,∴△AFD≌CED(AAS);(2)证明:∵△AFD≌CED,∴DE=DF,∵AD=CD,∴四边形AFCE是平行四边形;(3)当旋转角α=90°时,四边形AFCE是正方形,这时BC=CE,理由如下:∵由(2)知,四边形AFCE是平行四边形,∴当α=90°时,平行四边形AFCE是菱形,又∵AC=BC,∴∠BAC=∠B=22.5°,∴∠ACE=∠BAC+∠B=22.5°+22.5°=45°,∴△CED是等腰直角三角形,则CD=ED,∵四边形AFCE是平行四边形,∴AC=2CD,EF=2ED,∴AC=EF,∴菱形AFCE是正方形,∴AE=CE,在Rt△ACE中由勾股定理:AC==,∵AC=BC,∴BC=.。
2017-2018学年成都市青羊区某名校八年级(下)期末数学试卷(含解析)
2017-2018学年成都市青羊区某校八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.不等式>5的解集是()A.x<B.x>C.x<15 D.x>152.下列各式分解因式正确的是()A.ax2﹣a=a(x2﹣1)B.x2+x﹣2=x(x+1)﹣2C.a2b+ab2=ab(a+b)D.x2+1=x(x+)3.若分式的值为零,则x的值为()A.1 B.﹣1 C.1或﹣1 D.04.下列说法正确的是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是正方形C.对角线相等且互相垂直平分的四边形是正方形D.对角线相等的矩形是正方形5.若a<b,则下列不等式中错误的是()A.a+5<b+5 B.﹣4a>﹣4bC.a< b D.a(x2+2)>b(x2+2)6.如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.127.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.98.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°9.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F 为DC的中点,DG⊥AE,垂足为G.若AE=4,则DG的长为()A.B.C.1 D.10.为迎接2014年巴西世界杯开幕,某校举办了以欢乐世界杯为主题趣味颠足球比赛:各班代表队所有成员按指定规则同时颠球,成功颠球300个所用时最短的代表队即获胜.预赛中某班的参赛团队每分钟共颠球X个进入决赛,决赛中该团队每分钟颠球的成功率提高为预赛的1.2倍,结果提前了2分钟完成比赛,根据题意,下面所列方程中,正确的是()A.=2 B.﹣=2C.=D.=二、填空题:(本大题共4个小颗,每小题4分,共16分)11.代数式a2b﹣2ab+b分解因式为.12.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是.13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,现从以下四个式子①AB=BC,②AC=BD,③AC ⊥BD,④∠ABC=90°中,任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.14.如图,矩形纸片ABCD中,AB=3,BC=5,将纸片折叠,使点C落在AD上的点E处,折痕为BF,则FC 的长为.三、解答题(共54分)15.(12分)(1)解不等式组,并求其整数解:(2)先化简,再求值÷(m﹣1+),其中m=.16.(6分)解方程:﹣=1.17.(8分)如图,平面直角坐标系中,△ABC的顶点在方格纸的格点处,每个小正方形的边长为单位1.(1)请作出△ABC向左平移三个单位后得到的图形△A1B1C1;(2)请作出△ABC绕点O顺时针旋转90度后得到的图形△A2B2C2;(3)在坐标轴上找到一点D,使△ABD是以AB为腰的等腰三角形,并写出点D的坐标.18.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.19.(8分)2014年5月28日,成都新二环迎来改造通车一周年的日子.在二环路的绿化工程中,甲、乙两个绿化施队承担了某路段的绿化工程任务,甲队单独做要40天完成,若乙队先做30天后,甲、乙两队合作再做20天恰好完成任务,请问:乙队单独做需要多少天能完成任务?20.(12分)(1)如图1所示,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰Rt△ABD、等腰Rt△ACE,作DF⊥AB于点F,BG⊥AC于点G,M是BC的中点,连接MD和ME.求证:ME=MD;(2)如图2所示,若在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰Rt△ABD、等腰Rt △ACE,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程B卷(50分)一、填空题(本大题共4个小题,每小题4分,共20分)21.若关于x的方程+=1有增根,则m的值是.22.已知方程组的解为非负数,化简=.23.已知x2﹣5x+1=0,则的值是.24.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动秒时,以P、Q、E、F为顶点的四边形是平行四边形.25.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是.二、解答题(共30分)26.(9分)已知:=1﹣;=;=;=﹣;…(1)填空:+++…+=;(2)根据你发现的规律解方程:+++…+=.27.(9分)某养殖基地计划由23人共承包58亩(亩为面积单位)的水面用于养殖甲鱼、大闸蟹、河虾,规定每人只养殖其中的一种,且养殖大闸蟹的人数不少于4人,其余的不少于1人.经预算这些不同的水产品每人可养殖的亩数和预计每亩的产值如下表.若设养殖甲鱼x人、养殖大闸蟹y人、养殖河虾z人品种甲鱼大闸蟹河虾每人可养殖的亩数 2 3 4产值(万元) 1.5 1 0.8(1)请用含x的代数式分别表示y与z;(2)现要求安排所有的人参加养殖,且刚好利用所有的水面,请问该基地共有几种方案可供安排?(3)如何安排才能使总产值最大?最大总产值是多少?28.(12分)已知正方形ABCD,探究以下问题:(1)如图1,点F在BC上,作FE⊥BD于点E,取DF的中点G,连接EG、CG,将△EGC沿直线EC翻折到△EG′C,求证:四边形EGCG′是菱形;(2)如图2,点F是BC外一点,作FE⊥BC于点E,且BE=EF,连接DF,取DF的中点G,将△EGC沿直线EC翻折到△EG′C,作FM⊥CD于点M,请问(1)中的结论”四边形EGCG′是菱形”是否依然成立,并说明理由;(3)在(2)的条件下,若图2中AB=4,设BE长为x,四边形EGCG′的面积为S,请求出S关于x的函数关系式,并说明理由.参考答案与试题解析1.【解答】解:两边都乘以3,得:x>15,故选:D.2.【解答】解:A、原式=a(x+1)(x﹣1),错误;B、原式=(x﹣1)(x+2),错误;C、原式=ab(a+b),正确;D、原式不能分解,错误,故选:C.3.【解答】解:∵的值为0,故x2﹣1=0且x﹣1≠0,解得x=﹣1,故选:B.4.【解答】解:A、有一组邻边相等的平行四边形是菱形,故错误;B、四边相等的矩形形是正方形,故错误;C、对角线相等且互相垂直平分的矩形是正方形,故错误;D、对角线相等的矩形是正方形,正确.故选:D.5.【解答】解:A、∵a<b,∴a+<b+5,故说法正确;B、∵a<b,∴﹣4a>﹣4b,故说法正确;C、∵a<b,∴a<b,故说法正确;D、∵a<b,x2+2>0,∴a(x2+2)<a(x2+2),故说法错误.故选:D.6.【解答】解:∵在△ABC中,AC=8,BC=5,DE是线段AB的垂直平分线,∴AE=BE,∴△BCE的周长=(BE+CE)+BC=AC+BC=8+5=13.故选:C.7.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.8.【解答】解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故选:C.9.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,∵DG⊥AE,∴AG=GF=AF,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,∴AF=AE=2,∴AG=,∴DG===1.故选:C.10.【解答】解:设预赛中某班的参赛团队每分钟共颠球X个进入决赛,可得:,故选:B.11.【解答】解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故答案为:b(a﹣1)2.12.【解答】解:方法一∵把(1,2)代入y=ax﹣1得:2=a﹣1,解得:a=3,∴y=3x﹣1>2,解得:x>1,方法二:根据图象可知:y=ax﹣1>2的x的范围是x>1,即不等式ax﹣1>2的解集是x>1,故答案为:x>1.13.【解答】解:四边形ABCD是平行四边形,(1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等的平行四边形是菱形”的判定定理,故此小题正确;(2)若AC=BD,则此平行四边形是矩形,故此小题错误;(3)若AC⊥BD,符合“对角线互相垂直的平行四边形是菱形”的判定定理,此小题正确;(4)若AB⊥BC,则此平行四边形是矩形,故此小题错误.故正确的有(1)、(3)两个,所以可推出平行四边形ABCD是菱形的概率为:=.故答案为:.14.【解答】解:设CF=x,由折叠的性质可知,BE=BC=5,EF=FC=x,∴AE==4,DF=3﹣x,∴ED=AD﹣AE=1,在Rt△DEF中,EF2=DF2+DE2,即x2=1+(3﹣x)2,解得,x=,故答案为:.15.【解答】解:(1),由①得,x>﹣1,由②得,x≤,故不等式组的解集为:﹣1<x≤,其整数解为:0,1.(2)原式=÷=•=,当m=时,原式=.16.【解答】解:去分母得:x(x﹣2)﹣2=x2﹣4,解得:x=1,经检验x=1是分式方程的解.17.【解答】解:(1)如图1,△A1B1C1为所作;(2)如图1,△A2B2C2为所作;(3)如图2,点D和点D′为所作,点D的坐标为(0,1)或(1,0).18.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.19.【解答】解:设乙工程队单独做要x天才能完成任务,甲的速度为,乙的速度为,由题意得:+20(+)=1,解得:x=100,经检验得x=100是原方程的根.答:乙工程队单独做要100天才能完成任务.20.【解答】(1)证明:∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,∴△DBM≌△ECM(SAS),∴MD=ME;(2)解:MD=ME,理由:取AB、AC的中点F、G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.∵在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME.21.【解答】解:方程两边都乘(x﹣2),得:﹣2+2x+m=x﹣2,∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,把x=2代入﹣2+2x+m=x﹣2得:﹣2+4+m=2﹣2,解得:m=﹣2.故答案为:﹣2.22.【解答】解:解方程组得,,∵方程组的解为非负数,∴,解得m≥,∴原式==2m﹣1.故答案为:2m﹣1.23.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.24.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6﹣t=9﹣2t或6﹣t=2t﹣9,解得:t=3或t=5.故答案为:3或5.25.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.B n的坐标是(2n﹣1,2n﹣1)∴B2014的坐标是(22014﹣1,22013).故答案为:(22014﹣1,22013).26.【解答】解:(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)方程整理得:﹣+﹣+…+﹣=,即=,去分母得:x=2012,经检验x=2012是分式方程的解.故答案为:(1)27.【解答】解:(1)依题意,得:,解得:.(2)∵y≥4,x≥1,z≥1,∴,解得:12≤x≤15,∴共有四种方案可供安排,方案1:安排12人养殖甲鱼,10人养殖大闸蟹,1人养殖河虾;方案2:安排13人养殖甲鱼,8人养殖大闸蟹,2人养殖河虾;方案3:安排14人养殖甲鱼,6人养殖大闸蟹,3人养殖河虾;方案4:安排15人养殖甲鱼,4人养殖大闸蟹,4人养殖河虾.(3)设总产值为w万元,依题意,得:w=1.5×2x+1×3y+0.8×4z=0.2x+66.8,∵0.2>0,∴w的值随x值的增大而增大,∴当x=15时,w取得最大值,最大值为69.8.答:方案4安排15人养殖甲鱼,4人养殖大闸蟹,4人养殖河虾时总产值最大,最大总产值是69.8万元.28.【解答】证明:(1)∵四边形ABCD为正方形,∴∠DCF=90°.∵G为线段DF的中点,∴CG=DF.∵FE⊥BD,∴∠FED=90°,∵G为线段DF的中点,∴EG=DF,∴CG=EG.∵将△EGC沿直线EC翻折到△EG′C,∴CG=CG′,EG=EG′,∴四边形EGCG′四条边相等,∴四边形EGCG′是菱形.(2)(1)中的结论”四边形EGCG′是菱形”依然成立.证明:在图2中,连接BG,GM,如图所示.∵FE⊥BC于点E,且BE=EF,∴△BEF为等腰直角三角形,∴∠EBF=45°.∵四边形ABCD为正方形,∴∠DBE=45°,∴∠DBF=∠DBE+∠EBF=90°.∵G为线段DF的中点,∴BG=DF.∵FM⊥CD于点M,∴∠DMF=90°,∵G为线段DF的中点,∴MG=DF,∴BG=MG.∵FE⊥BC,FM⊥CD,∴四边形EFMC为矩形,∴EF=CM.∴BE=EF=MC.∵BG=GD,MG=GD,∴∠DBG=∠BDG,∠GMD=∠GDM,∵∠DBC=∠CDB=45°,∴∠GBE=∠DBC﹣∠DBG=45°﹣∠BDG,∠GMC=∠GDM=∠CBD﹣∠BDG=45°﹣∠BDG,∴∠GBE=∠GMC.在△GBE和△GMC中,有,∴△GBE≌△GMC(SAS).∴GE=GC.∵将△EGC沿直线EC翻折到△EG′C,∴CG=CG′,EG=EG′,∴四边形EGCG′四条边相等,∴四边形EGCG′是菱形.(3)在图2的基础上过点G′作G′N⊥CE于点N,如图3所示.∵△GBE≌△GMC,∴∠BEG=∠MCG,∵∠BEG=∠EGC+∠ECG,∠MCG=∠MCG+∠ECM,∴∠EGC=∠ECM=90°.∴∠EG′C=90°,△EG′C为等腰直角三角形.∵AB=4,BE=x,∴EC=BC﹣BE=4﹣x,G′N=EC=2﹣.四边形EGCG′的面积S=2×EC•G′N=(4﹣x)(2﹣)=x2﹣4x+8(0<x<4)。
2016-2017学年人教版八年级下册期末数学试卷及答案
2016-2017学年八年级下册期末数学试卷一、选择题:禅城区南庄中学﹒1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.56.如图,直线l1∥l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=()度.A.35 B.55 C.60 D.707.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°8.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b9.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.510.下列多项式中不能用公式分解的是()A.﹣a2﹣b2+2ab B.a2+a+C.﹣a2+25b2D.﹣4﹣b211.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段 C.射线 D.直线12.不等式x≥2的解集在数轴上表示为()A.B.C.D.13.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对14.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC15.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④16.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2 B.a2 C.a2 D.a217.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF18.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确19.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°20.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°二、填空题:21.在等腰△ABC中,两条边长分别为3和4,则等腰△ABC的周长等于;等腰三角形的一个角为100°,则它的底角为.22.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=.23.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).24.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=度.25.若,则=.26.已知=3,则=;分解因式:ab2﹣2ab+a=.27.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是.28.如果x<﹣2,则=;化简•的结果为.29.化简:÷(a﹣b)•=;计算:+﹣=.30.若等腰三角形腰长为4,腰上的高为2,则此等腰三角形的底角为度.三、解答题:(共55分)31.分解因式:(1)(a2+b2)2﹣4a2b2(2)(a﹣)a+1.32.解分式方程:+=1.33.解不等式组:,并指出它的所有整数解.34.先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.2016-2017学年八年级下册期末数学试卷参考答案与试题解析一、选择题:禅城区南庄中学﹒1.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°【考点】平行线的性质.【分析】由AE∥BD,根据两直线平行,同位角相等,即可求得∠CBD的度数,又由对顶角相等,即可得∠CDB的度数,由三角形内角和定理即可求得∠C的度数.【解答】解:∵AE∥BD,∴∠CBD=∠1=120°,∵∠BDC=∠2=40°,∠C+∠CBD+∠CDB=180°,∴∠C=20°.故选B.【点评】此题考查了平行线的性质与三角形内角和定理.注意两直线平行,同位角相等.3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定与性质.【专题】作图题.【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【考点】角平分线的性质;全等三角形的判定与性质.【专题】计算题;压轴题.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF 的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.6.如图,直线l1∥l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=()度.A.35 B.55 C.60 D.70【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠CAB的度数,再由直角三角形的性质求出∠PAB的度数,故可得出结论.【解答】解:∵直线l1∥l2被直线l3所截,∴∠CAB=180°﹣∠1﹣∠2=180°﹣35°﹣35°=110°,∵△ABP中,∠2=35°,∠P=90°,∴∠PAB=90°﹣35°=55°,∴∠3=∠CAB﹣∠PAB=110°﹣55°=55°.故选:B.【点评】本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同旁内角互补.7.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°【考点】平行线的性质.【专题】计算题.【分析】如图,过点D作c∥a.由平行线的性质进行解题.【解答】解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.8.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.9.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.5【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:中的分母含有字母是分式.故选A.【点评】本题主要考查分式的定义,π不是字母,不是分式.10.下列多项式中不能用公式分解的是()A.﹣a2﹣b2+2ab B.a2+a+C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】原式利用完全平方公式及平方差公式判断即可.【解答】解:A、原式=﹣(a﹣b)2,不合题意;B、原式=(a+)2,不合题意;C、原式=(﹣a+5b)(﹣a﹣5b),不合题意;D、原式不能用公式分解,符合题意,故选D【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.11.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段 C.射线 D.直线【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.【解答】解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选B.【点评】本题考查了不等式组的解集及在数轴上表示不等式的解集的知识,属于基础题.12.不等式x≥2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.13.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【考点】全等三角形的判定;矩形的性质.【专题】压轴题.【分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④【考点】作图—基本作图;线段垂直平分线的性质.【专题】几何图形问题.【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.【点评】本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.16.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2 B.a2 C.a2 D.a2【考点】全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;压轴题.【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.17.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF【考点】全等三角形的判定.【专题】推理填空题.【分析】全等三角形的判定方法有:SAS,ASA,AAS,SSS,而SSA,AAA都不能判定两三角形全等,根据以上内容判断即可.【解答】解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故本选项正确;故选D.【点评】本题考查了全等三角形的判定的应用,题目比较好,但是一道比较容易出错的题目,全等三角形的判定方法有:SAS,ASA,AAS,SSS.18.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】线段垂直平分线的性质;圆的认识;作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.19.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°【考点】翻折变换(折叠问题).【分析】根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【解答】解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题:21.在等腰△ABC中,两条边长分别为3和4,则等腰△ABC的周长等于10或11;等腰三角形的一个角为100°,则它的底角为40°,40°.【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.根据等腰三角形两底角相等列式计算即可得解.【解答】解:①3是腰长时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,②3是底边长时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,综上所述,这个等腰三角形的周长是10或11.∵等腰三角形的一个角为100°,∴100°的角是顶角,底角为(180°﹣100°)=40°.故答案为:10或11;40°,40°.【点评】本题考查了等腰三角形的性质,第二问难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.22.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=31°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2=∠EFD.【解答】解:∵AB∥CD,∴∠EFD=∠1=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案为:31°.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.23.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【考点】全等三角形的判定.【专题】开放型.【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.24.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=60度.【考点】线段垂直平分线的性质.【专题】几何图形问题.【分析】根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°﹣∠B﹣∠ACB求出即可.【解答】解:∵DE是线段BC的垂直平分线,∴BE=CE,∴∠B=∠BCE=40°,∵CE平分∠ACB,∴∠ACB=2∠BCE=80°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.【点评】本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.25.若,则=.【考点】比例的性质.【专题】计算题.【分析】根据等比性质设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.【解答】设=m,∴x=3m,y=4m,z=5m,代入原式得:==.故答案为.【点评】本题主要考查了等比性质,比较简单.26.已知=3,则=2;分解因式:ab2﹣2ab+a=a(b﹣1)2.【考点】比例的性质;提公因式法与公式法的综合运用.【分析】把=3化为a=3b,代入所求是式子计算即可;先提公因式,再运用完全平方公式进行分解即可.【解答】解:∵=3,∴a=3b,∴==2,ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2,故答案为:2;a(b﹣1)2.【点评】本题考查的是比例的性质和因式分解的方法,正确运用比例的性质把比例式进行变形和掌握因式分解的方法是解题的关键.27.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是m<2.【考点】解一元一次不等式.【分析】因为系数化为1时不等号改变了方向,所以系数为负数,得到不等式求解.【解答】解:根据题意得m﹣2<0,∴m<2.故答案为m<2.【点评】此题考查不等式的性质3:不等式两边都乘以(或除以)同一个负数时,不等号的方向发生改变.28.如果x<﹣2,则=﹣x﹣2;化简•的结果为..【考点】二次根式的性质与化简;分式的乘除法.【分析】(1)先求得x+2<0,然后利用绝对值进行化简即可;(2)先将分式的分子分母进行分解,然后再约分、计算即可.【解答】解:(1)∵x<﹣2,∴x+2<0.∴=|x+2|=﹣x﹣2;(2)原式==.故答案为:﹣x﹣2;.【点评】本题主要考查的是二次根式的性质和分式的化简,掌握二次根式的性质和分式化简的方法和步骤是解题的关键.29.化简:÷(a﹣b)•=;计算:+﹣=1.【考点】分式的乘除法;分式的加减法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果;原式变形后利用同分母分式的加减法则计算即可得到结果.【解答】解:原式=••=;原式===1,故答案为:;1【点评】此题考查了分式的乘除法,以及分式的加减法,熟练掌握运算法则是解本题的关键.30.若等腰三角形腰长为4,腰上的高为2,则此等腰三角形的底角为15或75度.【考点】含30度角的直角三角形;等腰三角形的性质.【专题】分类讨论.【分析】分该三角形为钝角三角形和锐角三角形两种情况,再结合直角三角形的性质可求得等腰三角形的顶角,再根据等腰三角形的性质可求得底角.【解答】解:若该三角形为钝角三角形,如图1,AB=AC=4,过B作BD⊥AC,交AC的延长线于点D,∵BD=2,AB=4,∴∠BAD=30°,又AB=AC,∴∠ABC=∠C=15°,若该三角形为锐角三角形,如图2,AB=AC,过B作BD⊥AC交AC于点D,∵AB=4,BD=2,∴∠A=30°,又AB=AC,∴∠ABC=∠C==75°,综上可知该三角形的底角为15°或75°,故答案为:15或75.【点评】本题主要考查等有腰三角形、直角三角形的性质,求得顶角的度数是解题的关键.注意分类讨论思想的应用.三、解答题:(共55分)31.分解因式:(1)(a2+b2)2﹣4a2b2(2)(a﹣)a+1.【考点】因式分解-运用公式法.【专题】计算题.【分析】(1)原式利用平方差公式化简,再利用完全平方公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)原式=a2﹣a+1=(a﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.32.解分式方程:+=1.【考点】解分式方程.【专题】计算题.【分析】本题考查解分式方程的能力,因为3﹣x=﹣(x﹣3),所以可得方程最简公分母为(x﹣3),方程两边同乘(x﹣3)将分式方程转化为整式方程求解,要注意检验.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程有常数项的不要漏乘常数项.33.解不等式组:,并指出它的所有整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【解答】解:,解①得:x≥1,解②得:x<4.则不等式组的解集是:1≤x<4.则整数解是:1,2,3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.34.先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.【考点】分式的化简求值.【专题】探究型.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=(﹣)×=×=取a=﹣1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。
四川省2016-2017学年八年级下学期期末测试数学试卷
第 2页 (共8页) 四川省2016-2017学年八年级下学期期末测试数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1x 的取值范围是 ( ) A.x 2> B.x 2≤ C.x 2< D.x 2≥ 考点:二次根式的定义. 分析:)a 0≥的式子叫二次根式.本题中的a 就是x 2-,实数范围内有意义,就是要使x 20-≥,即x 2≥.故选 D. 2、下列各式是最简二次根式的是( )考点:最简二次根式.分析:最简二次根式在二次根式的前提下要注意满足两个条件:①.被开方数不含分母;②.被开方数不含能再开方的因数或因式.满足这两个特征,故选 B. 3、一组数据:,,,,,358235的中位数是( )A.2B.3C.4D.5 考点:中位数. 分析:中位数是指一组数据按大小顺序排列后最中间一个数或中间两个数的平均数.有本题提供的是6个数据,按顺序排列后是,,,,.233558,取中间两个的平均数为=3542+.故选 C.4、下列各图能表示y 是x 的函数的是 ( )考点:函数的定义.分析:函数的定义告诉我们要注意对于自变量的每一个确定的值,函数都有唯一确定....的值与之对应,这个唯一确定....是本题确定答案的关键;由于本题提供的是图象而非式子,所以我们的分析要从图象入手.若从x 轴上的任意一点作y 轴的垂线,也就是x 确定的一个值,看此直线与图象的交点是否是一个,由于A B C 、、三个图象按此方法有两个交点及以上. 故选 D.5、直角三角形的两边长分别为3和5,则另一边长为 ( )C.4考点:勾股地理、分类讨论思想.考点:勾股定理、分类讨论.分析:本题已知直角三角形的两边长要求要求另一边长,主要是利用勾股定理来计算;但由于已知的两边并没有告诉是直角边还是斜边,所以要进行分类讨论.略解:在直角三角形中,斜边是最长的;当5为斜边时,4; 当5=故选 C. 6、若点(),m n 在函数y 2x 1=+的图象上,则2m n -的值是( )A.2B.-2C.-1D.1 考点:函数的图象以及与函数的变量与点的坐标的对应关系.分析:点的的横纵坐标分别对应的是函数数的自变量和函数值,对于本题来说就是当,x m y n ==,代入y 2x 1=+为n 2m 1=+整理为:2m n 1-=-.故选 C.7、甲、乙两艘客轮同时离开港口,航行的速度都是40m/min ,甲客轮15min 到达点A ,乙客轮用20min 到达B 点,若A 、B 两点的直线距离为1000m.甲客轮沿北偏东30°的方向航行,则乙客轮的航行方向可能是 ( ) A.南偏东60° B.南偏西30° C.北偏西30° D.南偏西60° 考点:方向角、勾股定理的逆定理等. 分析:画出示意图.设港口处为点O ,则: ()()OA 4015600m OB 4020800m =⨯==⨯=, ∴2222OA OB 6008001000000+=+= ∵22AB 10001000000==∴222OA OB AB += ∴AOB 90∠=o 本题有两种情况见示意图:在图①易求出OB 在北偏西60°. 在图①易求出OB 在南偏东60°.综合本题提供的选择支,乙客轮的航行方向可能是南偏东60°. 故选 A.8、如图,两直线2y x 3=-+与1y 2x =相交于点A ,下列错误的是)A.x 3<时,12y y 3->B.当12y y >时,x 1>C.1y 0>且2y 0>时,0x 3<<D.x 0<时,1y 0<且2y 3>考点:一次函数图象及其性质,一次函数的图象与方程组以及不等式的关系.分析:本题关键是求出两直线交点的坐标和两直线与坐标轴交点的坐标.然后结合图象和交点坐标进行判别.A D 图 ②图 ①第 4页 (共8页) 略解:解y x 3y 2x =-+⎧⎨=⎩得x 1y 2=⎧⎨=⎩所以两直线的交点A 的坐标为(),12. 直线1y 2x =过坐标原点,即与坐标轴交点的坐标为(),00;直线2y x 3=-+与x 轴交于(),30,与y 轴交于(),03. 综合以上信息,可知选择支B 、C 、D是正确的,A 是错误的. 故选 A.二、填空题(本题有6个小题,每小题3分,共计18分)9、把直线y 2x 1=--沿y 轴向上平移2个单位,所得直线解析式为 . 考点:一次函数的解析式、一次函数图象的平移规律.分析:根据一次函数图象的平移规律可知直线y 2x 1=--沿y 轴向上平移2个单位实际上是本函数的纵坐标都增加2,也就是y 2x 122x 1=--+=-+.故填:y 2x 1=-+. 10、数据201202203,,的方差是 . 考点:方差.分析:根据方差的计算公式,可先计算平均数,再利用方差的计算公式计算.略解:()1x 2012022032023=++=()()()()2222112S 201202202202203202101333⎡⎤=-+-+-=++=⎣⎦故填:23.11. 如图,字母b的取值如图所示,化简:b 2-+= .考点:绝对值、二次根式的性质、数轴与实数的对应关系. 分析:要化简本式,关键是在确定实数的范围的基础上,进一步确定b 2-和b 5-的正负情况. 略解:∵2b 5<<∴,b 20b 50->-<∴原式=b 2b 25b 3-+-+-= 故填:3.12、已知正比例函数()25m y m 1x-=- 的图象在第二、四象限,则m 的值为 .考点:正比例函数的定义、正比例函数图象及其性质、平方根.分析:先根据正比例函数的定义得出m 的所有值,再根据正比例函数图象在第二、四象限的特点使m 10-<时m 的值.略解:根据题意可知2m 105m 1⎧-≠⎪⎨-=⎪⎩ 解得,12m 2m 2==- 因为正比例函数()25m y m 1x -=- 的图象在第二、四象限,所以m 10-<.故填:2-.13、如图,22⨯的方格中,小正方形的边长是1,点A B C 、、都 在格点上,则△ABC 中AB 边上的高长为 .考点:勾股定理、等腰三角形的性质、三角形的面积等.分析:先根据勾股定理分别求出AB BC AC 、、,易知 ABC V 是等腰三角形,根据勾股定理求出BC 边上的高,再求出ABC V 的面积,则△ABC 中AB 边上的高长就容易求出了. 略解:作 ,AD BC CE AB ⊥⊥,垂足分别为D E 、;根据方格特点,利用勾股定理可求:AB AC BC == ∵AB AC =,AD BC ⊥∴11BD BC 22==在Rt ABDV根据勾股定理可求出:AD =∴113ABC BC AD 224S =⋅=V 又1ABC AB CE 2S =⋅V∴13CE 24=解得CE =故填:5.14、如图,将两张长为6cm,宽为3cm 的矩形纸条交叉,使重叠部分是一个菱 形,那么菱形周长的最大值是 .考点:矩形的性质、菱形的性质、勾股定理等.分析:当两张矩形纸条交叉叠放使其对角线“换位”重合时(见示意图),因为此时重叠部分菱形的对角线最长,其重合部分的边长也就最长,当然此时的重叠部分周长有最大值.. 略解:如示意图重叠部分EBFD 是菱形,所以EB BF FD DE === ∴DF CF BF CF BC 6+=+==若设DF x =,则CF 6x =- ∵四边形ABCD 是矩形 ∴C 90∠=o根据勾股定理可知:222CF CD DF += ∵DC 3= ∴()2226x 3x -+= 解得:15x 4=即15DF 4= ∴菱形周长的最大值是154154⨯=.故填:15.0b 5(C ')B (三、解答题(本题有5个小题,每小题5分,共计25分)15考点:二次根式的化简、二次根式的混合运算.分析:后面的利用二次根式乘除法进行运算,再化简,再进行二次根式的加减运算.=……………………3分=4……………………5分16、如图,BD是菱形ABCD的对角线,点E F、分别在边CD DA、上,且CE AF=.求证:BE BF=考点:菱形的性质、三角形全等的判定、全等三角形的性质.分析:把CE AF、化归在BCEV和ABFV,利用菱形的性质得出的结论和已知条件证明BCEV≌ABFV.略证:∵四边形ABCD是菱形∴,A C AB CB∠=∠=………………2分∵CE AF=∴BCEV≌ABFV(SAS ) ……………………4分∴BE BF=……………………5分说明:本题证法不止一种,的其它证法也相应给分.17、如图,在Rt△ABC中,BAC90AD BC∠=⊥,于点D,AB8AC6==,.求AD的长.考点:勾股定理、三角形的面积公式.分析:在Rt△ABC利用利用勾股定理求出斜边BC后,本题主要是抓只抓住直角三角形的面积可以通过两直角边乘积的一半,也可以是斜边与斜边上高乘积的一半来获得解决.略解:在Rt△ABC中由勾股定理有BC10=………2分∴11ABC AB AC BC AD22S=⋅=⋅V∴8610AD=⨯⨯∴.AD48=………4分答:AD的长为4.8. ………………………5分18、已知:如图,点E F、分别是□ABCD中AB DC、边上的点,且AE CF=,连接DE BF、.求证:四边形DEBF是平行四边形.考点:平行四边形的性质、平行四边形的判定.分析:利用□ABCD中得出结论为证明四边形DEBF是平行四边形提供条件.略证:∵四边形ABCD是平行四边形∴AB CD,AB CD=P………………………………2分∵,AE CF=∴,AB AE CD CF-=-即EB DF=∴∥…………………………………………4分∴DEBF是平行四边形………………………5分说明:本题证法不止一种,的其它证法也相应给分.19、如图所示,有一条宽度相等的小路穿过矩形草地ABCD,若,AB60m=,AE100m=,则这条小路的面积是多少?考点:矩形的性质、勾股定理、平行四边形的判定、平行四边形的面积.分析:本题关键抓住小路四边形AECF是平行四边形,若把EC作为底边,其高就是矩形ABCD的宽AB的长度.而EC BC BE=- , BC81m= ,BE可以放在Rt△ABE中由勾股定理求出.略解:在Rt△ABE中由勾股定理可求:BE80=……2分∴EC BC BE81801=-=-=由题意可知AECF是平行四边形………………3分∴()2AECFS16060m=⨯=答:这条小路的面积为260m………………………5分说明:本题解法不止一种,的其它证法也相应给分.四、解答题(本题有3道小题,每小题6分,共计18分)20、正方形ABCD中,点M是边DC上的任意一点,BE AM⊥于点E,DF AM⊥于点F,若,BE7DF4==,求EF的长.考点:正方形的性质、等式的性质、三角形全等的判定、全等三角形的性质.分析:在八年级的数学中,求某线段的长在直角三角形的前提下,我们容易想到勾股定理,但本题不具有这方面特点;要求的EF的长可以看作是EF AF AE=-,而AF AE、是ADFV和第 6页(共8页)第 8页 (共8页)BAE V 的边,这和已知条件的,BE 7DF 4==中的BE DF 、是对应的,所以本题应从ADF V ≌BAE V 破题;本题中的已知和正方形的性质为这两个三角形全等提供了这方面的条件.略解:∵四边形ABCD 是正方形 ∴,AB AD BAD 90=∠=o ∵BE AM ⊥,DF AM ⊥ ∴BEA AFD 90∠=∠=o∵BAE DAF BAE ABE 90∠+∠=∠+∠=o ∴DAF ABE ∠=∠ ……… 2分 又∵AB AD = ∴ADF V ≌BAE V (AAS ) ……………………………4分 ∴AF BE 7AE DF 4====、 ∴EF AF AE 743=-=-= 答:EF 的长为3.21、某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.⑴.将图形补充完整;⑵.每人所创年利润的平均数是 .⑶.若每人创造利润10万元及以上为优秀员工,在公司1200名员工中估计有多少可以评为优秀员工?考点:统计图、百分比例、平均数、样本估计总体.分析:⑴.根据扇形图和条形图对应的已知数据可以求出样本容量,在此基础上可将图形补充完整;⑵.用平均数计算公式计算;⑶.先计算出样本中的评优比例,再以此来估计总体. 略解:⑴.如图所示,写出3万元员工数占8%; …………………………… 1分 画出5万元和8万元的员工人数条形图各1分.…………………… 3分⑵.8.12万元. ………………………………………………………………………… 4分⑶.抽取的员工总数为:%=102050÷(人), +=106120038450⨯(人).答:在公司1200名员工中估计有384人可以评为优秀员工. ……………………… 6分22、点(),P x y 在直线x y 8+=上,且,x 0y 0>>,点A 的坐标为(),A 60 , 设△OPA 的面积为S .⑴.求S 与x 的函数关系式,并直接写出x 的取值范围; ⑵.当S 9=时,求点P 的坐标.考点:函数关系式、三角形的面积公式、点的坐标的意义等. 分析:⑴.若把△OPA 的底边为OA ,其高为P 的纵坐标的绝对值,而题中告诉了(),P x y 在直线x y 8+=上,则,y 8x =-所以S 与x 的函数关系式能求出;根据动点P 的,x 0y 0>>可知P 在直线与两坐标轴交点间的线段移动(不包括交点)所以取值范围根据两点的坐标可以确定.⑵.根据⑴问的解析式可以求出x 的值,再代入x y 8+=可以求出y 的值,点P 的坐标可以得出.略解:⑴.∵点(),P x y 在直线x y 8+=上 ∴y 8x =- ………………………………… 1分∵(),A 60 ∴()1S 68x 243x 2=⨯⨯-=-,即()S 243x 0x 8=-<< ………… 4分 ⑵.当当S 9=时,243x 9-= 解得:x 5= ∴y 853=-= ∴(),P 53……… 6分五、解答下列各题(第23题7分,第24题8分,共计15分)23、阅读下列材料,然后回答问题:一样的式子,其实我们还可以将其进一步化简:==(Ⅰ);(Ⅱ))22212111⨯⨯=- . (Ⅲ)以上这种化简的步骤叫分母有理化.还可以用以下方法化简:图102468101214163581015每年所创利润/万元图 2图 102468101214163581015每年所创利润/万元图 2221111-====.(Ⅳ)⑴.请用不同方法化简①.参照(Ⅲ)式得= ;②.参照(Ⅳ)式得= .⑵.化简:++考点:分母有理化、二次根式的性质、因式分解、代数式的变换等.分析:⑴. 参照(Ⅲ)式,当分母是“二项根式”时,可以找出的积构成平方差的有理化因式,以达到把分母中的根号化去. 参照(Ⅳ)式,将=22253=-=-L以达到分母有理化的作用.⑵.本题可以参照(Ⅲ)式进行,也可以参照(Ⅳ)式进行代数式的变换.比如:221111222-====L .以此类推!略解:⑴.①.2222==- (2)分②.22-==4分⑵. 若参照(Ⅲ)式计算:原式=.++L…………………………………5分=+++=L……………7分24、如图1,在平面直角坐标系xoy中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(),22⑴.求直线OA的解析式;⑵.如图2,如果点P是x轴正半轴上的一动点,过点P作PC∥y轴,叫直线OA于点C,设点P的坐标为(),m0,以A C P B、、、为顶点的四边形面积为S,求S与m之间的函数关系式;⑶.如图3,如果(),D1a在直线AB上.过点O D、作直线OD,交直线PC于点E,在CE的右侧作矩形CGFE,其中3CG2=,请你直接写出矩形CGFE与△AOB重叠部分为轴对称图形时m的取值范围.考点:待定系数法求函数解析式、三角形面积公式、点的坐标意义、轴对称图形、分类讨论的思想等.分析:⑴.用待定系数法可求出直线OA的解析式;⑵.由于P点是x轴正半轴上的一动点,在不同的位置以A C P B、、、为顶点的四边形的情况不一样,所以要进行分类讨论.⑶.由于△AOB等腰直角三角形,等腰直角三角形是轴对称图形,对称轴是OB边上的中垂线,所以矩形矩形CGFE的C G、分别同时落在△AOB两腰AO AB、所在的直线上时,此时矩形CGFE与△AOB重叠部分为轴对称图形,利用轴对称的性质可以求出P的坐标为(),m0中的m的值;当点C与A重合时矩形CGFE与△AOB无重叠部分,此时直线PC恰好是等腰直角△AOB的对称轴,此时P是底边OB的中点,1OP OB2=,根据⑵问m的值可以求出,综合上述两种情况可以写出m的取值范围.略解:⑴.设直线OA的解析式为y kx=∵直线OA经过点()A22,∴22k=解得:k1=∴直线OA的解析式为:y x=……………2分⑵.过A作AM x⊥轴于点M∴()()()(),,,,M20B40P m0C m m、、、有下面三种情况(图中阴影部分代表的是四边形ACPB):①.当0m2<<时,如图①.2AOB OCP111S S S42m m4m222=-=⨯⨯-⋅=-V V.图 1图 2图 3第 10页(共8页)第 12页 (共8页) 即21S 4m 2=- ……………………………… 4分②.当2m 4≤≤ 时 ,如图②.COB AOP 1111S S S OB PC OP PC AM 4m 2m m 2222=-=⋅-⋅⋅=⨯⋅-⨯⋅=V V即S m = …………………………………… 5分③.当m 4> 时 ,如图③.2COP AOB 11111S S S OPPC OB AM m m 42m 422222=-=⋅-⋅=⨯⋅-⨯⨯=-V V 即-21S m 42= ……………………………… 6分⑶.如图甲所示,由于△AOB 等腰直角三角形,等腰直角三角形是轴对称图形,对称轴是OB 边上的中垂线,所以矩形矩形CGFE 的C G 、分别同时落在△AOB 两腰AO AB 、所在的直线上时,此时矩形CGFE 与△AOB 重叠部分(见图中阴影部分)为轴对称图形,利用轴对称的性质可知:()()1113155OP OB PN OB CG 42222224⎛⎫=-=-=-=⨯= ⎪⎝⎭;即5m 4=.当点C 与A 重合或C 在直线OA 上但在点A 右侧时,矩形CGFE 与△AOB 无重叠部分(如图乙),此时直线PC 恰好是等腰直角△AOB 的对称轴,此时P 是底边OB 的中点,可以求出:11OP OB 4222==⨯=,根据⑵问可知m 2=. 综合上述两种情况可以写出m 的取值范围为:5m 24≤< ………… 8分 (直接写出m 的正确的取值范围可给分)图 ②乙甲。
2016-2017学年最新人教版八年级下期数学期末测试卷含答案(二)
2021-2021学年第二学期最新人教版八年级期末质量检测数学试题〔二〕〔总分100分 考试时间90分钟〕 姓名:一、选择题,每题3分,共36分1.式子在实数范围内有意义,那么x 的取值范围是〔 〕A .x ≥﹣2B .x ≥2C .x ≤﹣2D .x ≤22.以下二次根式中,是最简二次根式的是〔 〕A .B .C .D .3.以下各式计算正确的选项是〔 〕A .+=B .4﹣3=1C .÷=3D .2×3=64.假设直角三角形的一条直角边和斜边的长分别为3和5,那么这个直角三角形的面积为〔 〕A .4B .6C .8D .12|m |A .±1B .﹣1C .1D .26.直线的解析式为y=﹣3x ﹣2,那么该直线的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限A .y=﹣3x +2B .y=﹣3x ﹣2C .y=﹣3〔x +2〕D .y=﹣3〔x ﹣2〕8.一组数据2,3,4,x ,1,4,3有唯一的众数4,那么这组数据的平均数、中位数分别是〔 〕A .4,4B .3,4C .4,3D .3,39.如图,四边形ABCD 的对角线交于点O ,以下哪组条件不能判断四边形ABCD 是平行四边形〔 〕A .OA=OC ,OB=ODB .∠BAD=∠BCD ,AB ∥CDC .AD ∥BC ,AD=BC D .AB=CD ,AO=CO第9题 第10题 第11题DCAH GF E10.如图,菱形的两条对角线分别为6cm和8cm,那么这个菱形的高DE为〔〕A.2.4cm B.4.8cm C.5cm D.9.6cm11.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是〔〕.〔A〕一组对边平行而另一组对边不平行〔B〕对角线相等〔C〕对角线互相垂直〔D〕对角线互相平分12.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路线为x,以点A、P、D为顶点的三角形的面积是y.那么以下图象能大致反映y与x二、填空题〔共6小题,每题3分,总分值18分〕13.直线y=2x++b≥0的解集为.14.2021年8月22日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运发动在为该运动会积极准备.在某天“110米跨栏〞训练中,每人各跑5次,据统计,他们的平均成绩都是13.6秒,甲、乙、丙、丁的成绩的方差分别是0.07,0.03,0.05,0.02.那么当天这四位运发动中“110米跨栏〞的训练成绩最稳定运发动的是.15.如图,平行四边形ABCD的对角线相交于点O,BC=7,BD=10,AC=6,那么△AOD的周长是.16.如图,把一张矩形的纸沿对角线BD折叠,假设AD=8,CE=3,那么DE=.17.如下图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,假设AB=5,BC=8,那么EF的长为..三、解答题〔共6小题,总分值46分〕19.〔10分〕计算:(1)〔﹣2〕2﹣6〔﹣〕〔+〕﹣5÷×(2)3212226825x xx x x x +--20.〔8分〕某校在一次播送操比赛中,初二〔1〕班、初二〔2〕班、初二〔3〕班的各项得分如下:服装统一 动作整齐 动作准确初二〔1〕班80 84 87 初二〔2〕班97 78 80 初二〔3〕班90 78 85 〔1〕填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是 ;在动作整齐方面三个班得分的众数是 ;在动作准确方面最有优势的是 班.〔2〕如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?〔3〕在〔2〕的条件下,你对三个班级中排名最靠后的班级有何建议?21〔6分〕如图,在△ABC 中,AB=10,AD 平分∠BAC 交BC 于点D ,假设AD=8,BD=6,求ABC S .22.〔6分〕:如图,四边形ABCD 是平行四边形,AE ∥CF ,且分别交对角线BD 于点E ,F .〔1〕求证:△AEB ≌△CFD ;〔2〕连接AF,CE,假设∠AFE=∠CFE,求证:四边形AFCE是菱形.23.〔8分〕直线y=kx+b经过点A〔5,0〕,B〔1,4〕.〔1〕求直线AB的解析式;〔2〕假设直线y=2x﹣4与直线AB相交于点C,求点C的坐标;>kx+b的解集.24.〔8〔1〕请求出两种口味的粽子每盒的价格;〔2〕设买大枣粽子x盒,买水果共用了w元.①②求出购置两种粽子的可能方案,并说明哪一种方案使购置水果的钱数最多.最新人教版2021-2021学年八年级数学下学期期末考试卷(二)参考答案一、选择题:本大题共12小题,每题3分,共36分.1 2 3 4 5 6 7 8 9 10 11 12 答案 D C C B B A A D D B C B二、填空题:本大题共6小题,每题3分,共18分.13.x ≥; 14.丁; 15.15;16.5; 17.1.5; 18. 59.三、解答题:本大题共6小题,共46分.解答要写出必要的文字说明、证明过程或演算步骤. 19.〔1〕原式=()515152364343⨯⨯--⨯-+-=164343--+-=﹣4.〔2〕原式=x x x x 2222325+--=x 220. 解:〔1〕服装统一方面的平均分为:=89分;动作整齐方面的众数为78分;动作准确方面最有优势的是初二〔1〕班;〔2〕∵初二〔1〕班的平均分为:=84.7分;初二〔2〕班的平均分为:=82.8分;初二〔3〕班的平均分为:=83.9;∴排名最好的是初二一班,最差的是初二〔2〕班;〔3〕加强动作整齐方面的训练,才是提高成绩的根底.21.解:在△ABD 中,∵AD 2+BD 2=82+62=100,AB 2=102=100,∴AD 2+BD 2=AB 2,∴∠ADB=90°,∴∠ADB=∠CAD ,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,在△ADB和△ADC中,,∴△ADB≌△ADC〔ASA〕,∴AC=AB=10.22.证明:〔1〕如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD〔AAS〕;〔2〕∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.23.解:〔1〕∵直线y=kx+b经过点A〔5,0〕,B〔1,4〕,∴,解得,∴直线AB的解析式为:y=﹣x+5;〔2〕∵假设直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C〔3,2〕;〔3〕根据图象可得x>3.24.解:〔1〕设买大枣粽子x元/盒,普通粽子y元/盒,根据题意得,,解得,答:大枣粽子60元/盒,普通粽子45元/盒;〔2〕①设买大枣粽子x盒,那么购置普通粽子〔20﹣x〕盒,买水果共用了w元,根据题意得,w=1240﹣60x﹣45〔20﹣x〕,=1240﹣60x﹣900+45x,=﹣15x+340,+340;②∵要求购置水果的钱数不少于180元但不超过240元,∴,解不等式①得,x≤10,解不等式②得,x≥6,所以,不等式组的解集是6≤x≤10,∵x是正整数,∴x=7、8、9、10,可能方案有:方案一:购置大枣粽子7盒,普通粽子13盒,方案二:购置大枣粽子8盒,普通粽子12盒,方案三:购置大枣粽子9盒,普通粽子11盒,方案四:购置大枣粽子10盒,普通粽子10盒;∵﹣15<0,∴w随x的增大而减小,∴方案一可使购置水果的钱数最多,最多为﹣15×7+340=235元.。
2016至2017学年度八年级数学下学期期末测试卷
2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。
2016-2017学年八年级下期末数学试题含答案
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
2016-2017学年四川省成都市武侯区八年级(下)期末数学试卷(解析版)
一、填空题(每小题 4 分,共 20 分) 21. (4 分)已知 x= +5,则代数式(x﹣2) ﹣6(x﹣2)+9 的值是 有增根,则 m= .
2
.
22. (4 分)已知关于 x 的分式方程 23. (4 分)已知关于 x 的不等式组 是 .
有且只有两个整数解,则实数 a 的取值范围
24. (4 分)如图,在矩形 ABCD 中,AD=2AB,E 是边 AD 上一点,DE= AD,连接 BE, 作 BE 的垂直平分线分别交 AD、 BC 于点 F、 G, FG 与 BE 的交点为 O, 连接 BF 和 EG( .1) 若 AB=6,则 BF 的长为 含 k 的代数式表示) . ; (2)若 AB=k,则四边形 BGEF 的面积为 (用
C.x>﹣1
D.x<﹣1
二、填空愿(本大题共 4 个小题,每小题 4 分,共 16 分,答案写在答题卡上) 11. (4 分)正六边形的一个内角是 12. (4 分)当 x= 时,分式 . 的值为 0. ,AD=4,将▱ ABCD 沿 AE 翻折后,点 B 恰好 .
13. (4 分)如图,在▱ ABCD 中,AB= 与点 C 重合,则折痕 AE 的长为
19. (10 分)如图,已知△ABC 的三个顶点的坐标分别为 A(﹣2,3) ,B(﹣6,0) ,C(﹣ 1,0) . (1)画出△ABC 关于原点中心对称的△A′B′C′,其中 A,B,C 的对应点分别为 A′, B′,C′; (2) 在 (1) 的基础上, 将△A′B′C′向上平移 4 个单位长度, 画出平移后的△A″B″C″, 并写出 C′的对应点 C″的坐标; (3)请直接写出:以 A,B.C 为顶点的平行四边形 ABCD 的第四个顶点 D 的坐标.
成都市某区县2016-2017学年度下期八年级期末试题
2016—2017学年度下期期末学业质量监测八年级数学试题注意事项:1、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2、考生必须在答题卷上作答,答在试卷上、草稿纸上无效。
3、试卷中横线上及方框内注有“▲”的地方,是需要考生在答题卷上作答的内容或问题。
请按照题号在答题卷上各题目对应的答题区域内作答,超出答题区域书写的答案无效。
A 卷(100分)一、选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内。
1.下列图形既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .2.下列各式中从左到右的变形属于分解因式的是( ▲ )A .()a ab a b a a -+=-+21B .()2122--=--a a a a C .()()b a b a b a 323294-22++-=+ D .⎪⎭⎫ ⎝⎛+=+x x x 1212 3.要使分式733-x x 有意义,则x 的取值范围是( ▲ ) A .37=x B .37>x C .37<x D .37≠x 4.如图,在Rt △ABC 中,∠C=90°,AB=8,∠A=30°,则BC=( ▲ )A .8B .6C .4D .25.用配方法解方程x 2﹣2x ﹣1=0时,原方程应变形为( ▲ )A .(x+1)2=2B .(x+2)2=5C .(x ﹣1)2=2D .(x ﹣2)2=56中,E 、F 分别在BC 、AD 上,若想要使四边形AFCE 为平行四边形,需添加一个条件,这个条件不可以是(▲)A .AF=CEB .AE=CFC .∠BAE=∠FCD D .∠BEA=∠FCE 7.下列说法正确的是( ▲ )A .对角线互相垂直的四边形是菱形B .矩形的对角线互相垂直4题图 6题图C .四边相等的四边形是菱形D .一组对边平行的四边形是平行四边形8.已知实数x 、y 满足084=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是( ▲ ) A. 20或16 B. 20 C. 16 D. 129.和三角形三个顶点的距离相等的点是( ▲ )A .三边的垂直平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三条角平分线的交点10. 已知3=x 是分式方程2121=---xk x kx 的解,那么实数k 的值为( ▲ ) A. -1 B. 0 C. 1 D. 2二、填空题(每小题4分,共16分)11.在平面直角坐标系内,把点A (-2,3)向右平移3个单位后,得到的对应点A ′的坐标为 ▲ .12. 如图,点D ,E 分别为△ABC 的边AB 、BC 的中点,若DE=3cm ,则AC= ▲cm12题图 14题图13.已知x+y=10,xy=16,则x 2y+xy 2的值为 ▲ .14.如图在等腰Rt △ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,若AB=10,则△BDE 的周长等于 ▲ .三、解答题(15题(1)小题8分,(2)小题6分,16题6分,共20分)15.解方程: (1)1311+=--x x x(2)0482=-+x x16. 先化简,再求值:⎪⎭⎫ ⎝⎛+-÷++-1211212x x x x ,其中1-3=x .四、解答题(17题6分,18题8分,共14分)17. 如图,由小正方形组成的网格中,点O 、M 和四边形ABCD 的顶点都在格点上.(1)平移四边形ABCD ,使其顶点B 与点M重合,画出平移后的图形;(2)把四边形ABCD 绕点O 逆时针旋转180°,画出旋转后的图形.18.列分式方程解应用题:甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,从而甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?五、解答题(19题10分,20题10分,共20分)19.已知关于x 的方程()01222=-++-m x m x(1)试说明:无论x 取何值,方程总有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的等腰三角形面积.20.已知:如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB=4,AD=8,求菱形BMDN 的面积.B 卷(50分)一、填空题(每小题4分,共20分)21. 已知一元二次方程0432=-+x x 的两根为21,x x ,则222121x x x x ++= ▲22.若关于x 的方程1422=---x m x x 的解为正数,则m 的取值范围是 ▲ 23.如图,在□ABCD 中,按以下步骤作图:① 以A 为圆心,任意长为半径作弧,分别交AB 、AD 于点E 、F ;②分别以E 、F 为圆心,以大于EF 21的长为半径作弧,两弧相交于点G ;③作射线AG ,交边DC 于点H .若DH=2HC ,BC= 4,则□ABCD 的周长是 ▲23题图 24题图24. 如图,△ABC 和△ADE 都是等腰三角形,∠BAC=∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD 。
四川省2016-2017学年八年级下期末模拟数学试题
四川省2016-2017八年级下数学期末模拟试题(二)A 卷(满分100分)一、选择题:(每小题3分,共30分)1. 当2x =时,下列各式的值为0的是( )A .2232x x x --+ B .12x - C .249x x -- D .21x x +- 2. 下列计算正确的是( )A .32b b b x x x += B .0a a a b b a -=-- C .2222bc a a b c ab = D .22()1a a a a a -÷=- 3. 方程2212332x x x-=---的解是( )A . 1.5x =B .4x =C .0x =D .无解4. 关于x 的不等式21x a -≤-的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-5. 如图,若AB CD ∥,60C ∠=,则A E ∠+∠=( )A .20B .30C .40D .606. 下列多项式中,能用完全平方公式分解因式的是( )A .21x x ++B .2212xy x y -+C .212a a -+D .222a b ab -- 7. 如图,把Rt ABC △依次绕顶点沿水平线翻折两次,若90C ∠=,AC =BC =1,那么AC 边从开始到结束所扫过的 图形的面积为( )。
A .54B .74C .54πD .74π 8. 如图,将ADE △绕正方形ABCD 的顶点A 顺时针旋转90,得ABF △,连接EF 交AB 于H ,则下列结论错误的是( )A .AE AF ⊥ B.:EF AF = C .2AF FH FE = D .::FB FC HB EC = 9. 如图,矩形ABCD 的对角线AC 、相交于点O ,如果ABC △的周长比AOB △的周长长10cm ,则矩形的边BC 的长是( ) A .5cm B .10cm C .7.5cm D .不能确定10.如图,在ABC △中,90C ∠=,AD 平分BAC ∠,DE AB ⊥于E ,有下列结论:①CD ED =;②AC BE AB +=;③BDE BAC ∠=∠;④AD 平分CDE ∠;⑤,其中正确的是( )个 A .1 B .2 C .3 D .4请将选择题的答案天如下表:(第4题图) A BCDE (第5题图)A BC (第7题图)A B C D EH (第8题图) A B CD O (第9题图) A BC DE (第10题图)二、填空题:(每小题4分,共20分)11.多项式344x x -分解因式的结果是 。
四川省2016-2017学年八年级下学期期末考试数学试卷1
四川省2014-2015学年八年级下学期期末考试数学试卷(时间 : 90 分钟。
满分100分)题号 一 二 三 总分 总分人 得分一. 选择题(共10小题,每小题3分,满分30分.)以下每小题给出的A 、B 、C 、D 四个选项,其中只有一个选项是正确的,请把正确答案的番号填写到下面的表中。
题号 1 2 3 4 5 6 7 8 9 10 答案1.如图1,在△错误!未找到引用源。
中,错误!未找到引用源。
,点错误!未找到引用源。
是斜边错误!未找到引用源。
的中点,错误!未找到引用源。
,且错误!未找到引用源。
,则∠BAC 等于A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
2,如图2,平行四边形ABCD 中,CE 垂直于AB ,∠D =o53, 则∠BCE 的大小是A 、o53 B 、o43 C 、o47 D 、o37 图2 3.下列各式分解因式正确的是A.)34(391222xy xyz y x xyz -=-B.)1(333322+-=+-a a y y ay y aC.)(2z y x x xz xy x -+-=-+-D.)5(522a a b b ab b a +=-+4,如图4, ABC ∆中,AD 是BAC ∠的平分线,且CD AC AB +=。
若60=∠BAC ,则ABC∠的大小为(A )40 (B )60 (C )80 (D )455,如图(5),△ABC ≌△AEF ,AB 和AE ,AC 和AF 是对应边,那么∠EAF 等于A .∠ACBB .∠BAC析C .∠F D .∠CAF得分 评卷人 E DCBA E A CDB 图 16.如图(6),△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E且AB =6 cm ,则△DEB 的周长为 A .4cm B .8 cmC .6 cmD.5 cm图(5) 图(6)7,不等式260x ->的解集在数轴上表示正确的是8.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系 中的图象如图所示,关于x 的不等式21k x k x b >+的解集为 A .x >-1 B .x <-1 C .x <-2 D .无法确定 .9,下列图形中,不能由图形M 经过一次平移或旋转得到的是10,若分式4242--xx 的值为零,则x 等于A 、2 B 、0 C 、2± D 、-2二、填空题(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).得分 评卷人3-0 3A . 3-0 3 B . 3-0 3 C . 3-0 3D. O xy l 1l 2-13(第12题图)ABCDM第4题C'DABC11.如图,要从电线杆离地面的C 处向地面A 处拉一条长10m 的电缆,测得∠CAB=60°,则电线杆的高度BC 是 _______ 12分解因式24x y y -=_______13、当511=-y x ,则=---+yxy x yxy x 2252 (11题图 ) 14,若五边形的五个内角度数之比为2:5:5:7:8,则此五边形的最小内角度数为____15,如图,□ ABCD 的对角线相交与O ,且AD ≠CD ,过点O 作OM ⊥AC 交AD 于点M ,如果△CDM 的周长为a, 那么□ ABCD 的周长是 _______MOCBDA(15题图 )三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共55分)16,(5分)化简求值:(44422+--a a a-21-a )÷a a 1+,其中a=-217、(5分)解方程:)1(718++=+x x x x得分 评卷人CB AA C B18.(6分)解不等式组:⎪⎩⎪⎨⎧-<-+≤-453143)3(265x x x x ,画数轴,并将不等式组的解集在数轴上表示出来。
2017-2018学年成都市青羊区八年级(下)期末数学试卷(含解析)
2017-2018学年成都市青羊区八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各式从左到右的变形中,是因式分解的是()A.(2﹣x)(﹣2﹣x)=x2﹣4B.x2﹣1+y2=(x+1)(x﹣1)+y2C.x2﹣x﹣2=(x﹣2)(x+1)D.x2﹣2x﹣3=x(x﹣2﹣)4.如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是()A.x>﹣1 B.x>2 C.x≥2 D.﹣1<x≤25.若正n边形的每个内角都是120°,则n的值是()A.3 B.4 C.6 D.86.下列各式中,正确的是()A.=B.=C.=﹣D.=7.如图,在Rt△ABC中,∠B=90°,D、E、F分别是边BC、CA、AB的中点,AB=6,BC=8,则四边形AEDF 的周长是()A.18 B.16 C.14 D.128.如图所示,在▱ABCD中,对角线AC,BD相交于点O,下列条件能判定▱ABCD为菱形的是()A.∠ABC=90°B.AC=BDC.AC⊥BD D.OA=OC,OB=OD9.如图,△ABC中,∠C=63°,将△ABC绕点A顺时针旋转后,得到△AB'C',且C'在边BC上,则∠B'C'B 的度数为()A.45°B.54°C.87°D.70°10.在一块矩形地上被踩出两条宽1m(过A,B间任意一点作AD的平行线,被每条小路截得的线段的长度是1m)的小路,如图,小路①的面积记作S1,小路②的面积记作S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.无法确定二、填空题:(本大题共4个小题,每小题4分,共16分)11.若x2+4x+m=(x﹣2)(x+6),则m=.12.如图,函数y=kx和y=﹣x+3的图象相交于点A(1,2),则不等式kx<﹣x+3的解集是.13.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若,则点D到AB的距离是.14.如图,将等腰直角△ABC沿BC方向平移得到△A'B'C',若BC=4,S△PB'C=4.5,则BB'=.三、解答题(共54分)15.(12分)(1)分解因式:(2a﹣3)2﹣4 (2)解不等式组16.(6分)解分式方程:﹣=1.17.(8分)先化简,再求值:÷(﹣a),其中a=.18.(8分)正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC绕点A逆时针旋转90°得到的△AB1C1,点B1的坐标为;(2)平移△ABC,使B点对应点B2的坐标是(1,2),画出平移后对应的△A2B2C2,点C2的坐标为;(3)求△ABC绕点A逆时针旋转90°后,线段AB扫过的图形面积.19.(8分)某校计划购买一批花卉装饰校园.已知一株海棠比一株牵牛花多1.2元,若用60元购买海棠,用27元购买牵牛花,则购买的牵牛花的株数是海棠的.求购买一株海棠,一株牵牛花各需要多少元?20.(12分)如图,在Rt△ABC中,∠ACB=90°,AE平分∠CAB交CB于点E,CD⊥AB于点D,交AE于点G.过点G作GF∥BC交AB于F,连结EF.(1)求证:CG=CE;(2)判断四边形CGFE的形状,并证明;(3)若BF=2AF,AC=3cm,求线段DG的长度.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.若实数m、n满足2m﹣3=n,则代数式4m2﹣4mn+n2的值是.22.若关于x的方程=3的解是非负数,则b的取值范围是.23.已知直线y=2x﹣k+4与直线y=3x+k相交于点P,若点P在第一象限内,且k为正整数,则点P坐标是.24.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x 轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2018的纵坐标为.25.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是二、解答题(共30分)26.(8分)李阿姨开了一家服装店,计划购入甲、乙两种服装共60件,其进价和售价如表:甲乙进价(元/件)150 300售价(元/件)200 360(1)设甲种服装购进x件,李阿姨获得的总利润为y元,求y与x之间的函数关系式;(2)若李阿姨计划投入资金不多于15000元,怎么进货,才能使获得利润最大,并求出利润的最大值;(3)实际进货时,生产厂家对甲种服装出厂价下调a元(7≤a≤9)出售,且限定最多购入甲种服装40件,若李阿姨保持同种服装售价不变,请根据以上信息及(2)中条件,设计出使李阿姨获得最大利润的进货方案.27.(10分)如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.点C坐标是(0,1),连结AC,过点C作CE⊥AB于点E.(1)求CE的长度.(2)如图2,点D为线段EA上一动点(不与E、A重合),连结CD并延长至点F,使DC=DF,作点F关于AB的对称点G,连结DG,CG,FG,线段FG交AB于点H,AC交DG于点M.①求证:;②当∠CAB=2∠F时,求线段AD的长度.28.(12分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连结DF,G为DF 的中点,连结EG、CG.(1)如图1,若点E在CB边的延长线上时,延长线段EG,CD相交于点M,求证:GE=GM,CE=CM.(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置时,延长EG到M,使GE=GM,连结MD,MC.①求证:∠EBC=∠MDC;②判断EG与CG的关系并证明.参考答案与试题解析1.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选:C.2.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:B.3.【解答】解:A、(2﹣x)(﹣2﹣x)=x2﹣4,是整式乘法,故此选项不合题意;B、x2﹣1+y2=(x+1)(x﹣1)+y2,不符合因式分解的定义,故此选项不合题意;C、x2﹣x﹣2=(x﹣2)(x+1)是分解因式,符合题意;D、x2﹣2x﹣3=x(x﹣2﹣),不符合因式分解的定义,故此选项不合题意;故选:C.4.【解答】解:根据数轴得:不等式组的解集为x≥2,故选:C.5.【解答】解:∵正n边形的每个内角都是120°,∴每一个外角都是180°﹣120°=60°,∵多边形外角和为360°,∴多边形的边数为360÷60=6,故选:C.6.【解答】解:,故选项A不合题意;,故选项B不合题意;,故选项C不合题意;,故选项D符合题意.故选:D.7.【解答】解:∵∠B=90°,AB=6,BC=8,∴AC===10,∵D、E、F分别是边BC、CA、AB的中点,∴DE=AF=AB=3,DF=AE=AC=5,∴四边形AEDF的周长=5+3+5+3=16.故选:B.8.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:C.9.【解答】解:∵将△ABC绕点A顺时针旋转后,得到△AB′C′,∴AC′=AC,∠C=∠AC'B'=63°∴∠C=∠AC′C=63°,∴∠AC′B=180°﹣63°=117°,∵∠AC′C=∠AC′B′=63°,∴∠B′C′B=∠AC′B﹣∠AC′B′=117°﹣63°=54°.故选:B.10.【解答】解:∵过A,B间任意一点作AD的平行线,被每条小路截得的线段长都是1米,∴S1=1×AB;S2=1×AB,∴S1=S2.故选:A.11.【解答】解:∵x2+4x+m可分解为(x﹣2)(x+6),∴(x﹣2)(x+6)=x2+4x﹣12,则m=﹣12.故答案为:﹣12.12.【解答】解:由图象可得:不等式kx<﹣x+3的解集是x<1,故答案为:x<113.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=180°﹣30°﹣90°=60°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=30°,∴BC=AB=2,∴CD=BC•tan30°=2×=2,∵BD是∠ABC的平分线,又∵角平线上点到角两边距离相等,∴点D到AB的距离=CD=2,故答案为:2.14.【解答】解:∵△ABC是等腰直角三角形,∴平移后∠PB'C=∠CBA=45°,∴△PB'C是等腰直角三角形,∴S△PB'C=B'C•(B'C)=4.5,解得:B'C=3,∴BB'=BC﹣B'C=4﹣3=.故答案为:.15.【解答】解:(1)原式=(2a﹣3+2)(2a﹣3﹣2)=(2a﹣1)(2a﹣5);(2)解2(x+3)≥3﹣x得:x≥﹣1;解≤﹣1得:x≥,得不等式组解集为:x≥.16.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.17.【解答】解:原式=÷=,当a=﹣3时,原式==.18.【解答】解:(1)如图△AB1C1即为所求,点B1(﹣2,﹣3).(2)如图△A2B2C2,为所求作的三角形,点C2(3,3).(3)S==π.故答案为(﹣2,﹣3),(3,3).19.【解答】解:设购买一株牵牛花需要x元,则购买一株海棠花需要(x+1.2)元,依题意,得:×=,解得:x=1.8,经检验,x=1.8是原分式方程的解,且符合题意,∴x+1.2=3.答:购买一株海棠需3元,一株牵牛花需1.8元.20.【解答】证明:(1)∵AE平分∠CAB∴∠CAE=∠BAE∵∠ACB=90°,CD⊥AB∴∠CAE+∠CEA=∠BAE+∠AGD=90°∴∠CEG=∠AGD=∠CGE∴CG=CE(2)四边形CGFE是菱形理由如下:∵GF∥BC∴∠AEC=∠EGF=∠CGE∴∠AGC=∠AGF又∵∠CAE=∠BAE,AG=AG∴△AGC≌△AGF(ASA)∴CG=FG∴CE∥FG且CE=FG∴四边形CEFG是平行四边形又∵CG=CE,∴四边形CEFG是菱形.(3)∵△AGC≌△AGF∴AC=AF=3cm,∴BF=2AF=6cm,AB=9cm,∴BC==6cm∵四边形CGFE是菱形∴EF∥CG,且CD⊥AB∴EF⊥AB,设CE=EF=x,在Rt△EFB中,EF2+BF2=BE2,∴x2+36=(6﹣x)2,解得x=∴CE=CG=cm又∵∠ACB=90°,且CD⊥AB,∵S△ABC=×AC×BC=AB×CD∴CD==2cm∴DG=CD﹣CG=2﹣=cm21.【解答】解:∵实数m、n满足2m﹣3=n,∴2m﹣n=3,∴4m2﹣4mn+n2=(2m﹣n)2=32=9,故答案为:9.22.【解答】解:去分母得,2x﹣b=3x﹣3∴x=3﹣b ∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.23.【解答】解:联立两直线表达式成方程组:,解得:,∴点P的坐标为(4﹣2k,12﹣5k).∵点P在第一象限,∴,解得:k<2.∵k是正整数,∴点P的坐标为(2,7).故答案为:(2,7).24.【解答】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0,).∵A2A3⊥A1A2,∴点A3的坐标为(﹣3,0).同理可得:A4(0,﹣3),A5(9,0),A6(0,9),…,即A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4整除的话在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,∵2018÷4=504…2,∴A2018在y轴的正半轴上,纵坐标为()2017.故答案为()2017.25.【解答】解:根据如图坐标系:由题意:A(0,6),B(8,0),∴直线AB的解析式为y=﹣x+6,∵CD平分∠ACB,∴直线CD的解析式为y=x,由,解得,∴D(,),∴E(,),作点E关于BC的对称点E′(,﹣),连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长,∵DE′=,∴PD+PE的最小值为,故答案为.26.【解答】解:(1)由题意可得,y=(200﹣150)x+(360﹣300)(60﹣x)=﹣10x+3600,即y与x之间的函数关系式为y=﹣10x+3600(0≤x≤60);(2)由题意可得,150x+200(60﹣x)≤15000,解得x≥20,∵一次函数y=﹣10x+3600中,y随x的增大而减小,∴当x=20时,最大利润为:﹣10×20+3600=3400元;(3)依题意y=(200﹣150+a)x+(360﹣300)(60﹣x)=(a﹣10)x+3600,由(150﹣a)x+300(60﹣x)≤15000得,所以,∵7≤a≤9时,a﹣10<0,y随x的增大而减小.可知当时,,此时x=20时,即购入甲种服装20件,乙种服装40件时利润最大,而当时,,此时x=19时,即购入甲种服装19件,乙种服装41件时利润最大.27.【解答】解:(1)∵直线交x轴于点A,交y轴于点B∴A(﹣3,0),B(0,4)∴OA=3,OB=4,AB=5∵C(0,1)∴BC=3∵S△ABC==∴CE==(2)①∵F点与G点关于直线AB成轴对称∴直线AB是线段FG的垂直平分线,HF=HG∴DF=DG又∵DF=DC∴DF=DG=DC∴∠FGC=90°又∵∠HEC=∠EHG=∠HGC=90°∴四边形ECGH是矩形.∴EH=CG又∵DF=DC,HF=HG据中位线定理得DH=CG=HG=DE即DE=CG(也可以证△FDH≌△CDE得DH=DE)②∵直线AB是线段FG的垂直平分线,DF=DG∴∠FDH=∠GDH=∠EDC,且∠CDG=∠F+∠FGD=2∠F 又∵∠CAB=2∠F∴∠CAB=∠CDG∴180°﹣∠ADG﹣∠CAB=180°﹣∠ADG﹣∠CDG∴∠AMD=∠BDC=∠ADG∴AD=AM∵矩形ECGH中CG∥AB易得∠CGM=∠ADM=∠AMD=∠CMG∴CM=CG设AD=AM=a,则CM=CG=﹣a∴DE=CG=∴AE=AD+DE=a+=∵Rt△AEC中,∠AEC=90°,∴AE2+CE2=AC2即()2+()2=()2解得:AD=a=.28.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∵∠CEF=90°,∴∠CEF+∠ECM=180°,∴EF∥CD,∴∠FEG=∠M,又∵G为DF中点,∴DG=FG∵∠FGE=∠DGM,∴△FGE≌△DGM(AAS),∴EG=GM,EF=DM,∵EF=BE,∴EF=DM=BE,∵CB=CD,∴BE+BC=CD+DM,∴CE=CM.(2)延长MD,BE交于点N,连结EC,①∵EG=MG,DG=FG,∠EGF=∠MGD,∴△EFG≌△MDG(SAS),∴∠EFG=∠MDG,∴EF∥DM,∴∠END=∠BEF=90°=∠BCD,∴∠CBN+∠NDC=∠CDM+∠NDC=180°,∴∠CBE=∠CDM.②结论:CG=EG,CG⊥EG.理由:∵△EFG≌△MDG,∴EF=DM=EB,又∵BC=DC,∠CBE=∠CDM,∴△CBE≌△CDM(SAS),∴EC=MC,且∠BCE=∠DCM,∴∠ECM=∠BCD=90°,∵G为EM中点,∴CG=EG,CG⊥EG。
2016-2017八年级下数学试题及答案
八年级数学试题 第 1 页 (共 8 页)2016-2017学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.下列二次根式中,是最简二次根式的是( ) A .15B .9C .8D .51 2.某校初三已经进行了五次月考测试,若想了解某学生的数学成绩是否稳定,老师需要知道 他5次数学成绩的( ) A.平均数B .方差C .中位数D .众数3.若一个三角形的三边长分别为x ,8,6,则使此三角形是直角三角形的x 的值是( ) A. 8B. 10C.72D.7210或4.下列判断正确的是( )A.对角线互相垂直且相等的四边形是正方形 B .对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D .对角线相等的四边形是矩形 5.下列运算正确的是( ) A.363332=⋅B.332255=-C.532=+D.3)3(2=-6.若一次函数1)2(-+=x k y 中y 随x 的增大而减小,则k 的取值范围是( ) A . 2->kB . 2-≤kC. 2-<kD. 2-≥k7.潼南区在一次空气污染指数抽查中,收集到10天的数据如下:60,80,69,55,80,85, 80, 90,76,69.该组数据的中位数和众数分别是( )A.76和80B.80和80C.78和80D.78和69 8.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E , ο90=∠CBD ,4=BC ,3==ED BE ,10=AC ,则四边形 ABCD 的面积为( ) A .24B .20C .12D .69.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2米,当他把绳子的下端拉题图)(8八年级数学试题 第 2 页 (共 8 页)开6米后,发现下端刚好接触地面,则旗杆的高度是( ) A.6米B .8米C .10米D .12米10.如图,在菱形ABCD 中,ο70=∠BCD ,BC 的垂直平分线交对角线 AC 于点F ,垂足为E ,连接DF ,则ADF ∠的大小为( )A .ο75B .ο70C .ο65D .ο6011.如图:下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积 为1的正方形有2个,第(2)个图形中面积为1的正方形有4个,第(3)个图形中面积为1 的正方形有7个,Λ,按此规律,则第(10)个图形中面积为1的正方形的个数为( ) A.54 B .55C .56D .57 ……12.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达 乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行 驶的时间为)(h t ,两车之间的距离为)(km s ,图中的折线表示s 与t 之间的函数关系.根据图 象提供的信息下列说法错误的是( )A. 甲、乙两地之间的距离为km 900B. 行驶h 4两车相遇C.快车共行驶了h 6D.行驶h 8两车相距km 560二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.若代数式x 27-有意义,则x 的取值范围是 .14.若直线a x y +-=和直线b x y +=的交点坐标为(m ,7),则a b += .15.某单位欲招聘职工一名,对A 、B 两名候选人进行了面试和笔试两项素质测试.其中A 的面试成绩为90,笔试成绩为85;B 的面试成绩为95,笔试成绩为78.根据实际需要,该单位将面试、笔试测试的得分按23:的比例计算两人的总成绩,则______将被录用(填“A ”或“B ”).16.木工师傅做了一张桌面,要求为长方形,现量得桌面的长为60cm ,宽为32cm ,对角线为 68cm ,这个桌面 (填“合格”或“不合格”). 17.如图,P 是矩形ABCD 的对角线AC 的中点,E 是AD 的中点.题图)(170 )(h t 412900)(km s ABCD题图)(12(2)(1)(3)ABEDF)题图10(八年级数学试题 第 3 页 (共 8 页)若9=AB ,12=AD ,则四边形ABPE 的周长为 .18.已知整数a ,使得关于x 的分式方程xxx ax -=+--3333有整数解,且关于x 的一次函数 10)1(-+-=a x a y 的图象不经过第二象限,则满足条件的整数a 的值有 ________个.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:213721122+÷--)(20.如图,四边形ABCD 是平行四边形,对角线BD AC ,相交 于点O ,且21∠=∠.求证:四边形ABCD 是矩形.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再计算:,244412222+-÷++--+-a a a a a a a a )(其中13-=a .22.如图,直线:l 221+=x y 与y 轴交于点A ,与x 轴于点B .(1)求AOB ∆的面积;(2)若直线1l 经过点A ,且与x 轴相交于点C ,并将ABO ∆ 的面积分成相等的两部分,求直线1l 的解析式.23.某中学开展“唱红歌”比赛活动,八年级(1)班、(2)班根据初赛成绩,各选出5名 选手参加决赛,两个班各选出的5名选手的决赛成绩如图所示.(1)根据统计图中信息完成表格;(2)结合两班决赛成绩的平均数和中位数,分析哪个班级的决赛成绩较好; (3)计算两个班决赛成绩的方差并判断哪一个班选手成绩较为稳定.班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 八(2) 85 100A OBxyl题图)(220708090100分数选手编号)八(1)八(212345题图)(20八年级数学试题 第 4 页 (共 8 页)(参考资料:()[]222212)()(1x x x x x x ns n -++-+-=Λ) 24.为绿化校园,某学校计划购进A 、B 两种树苗,若购买A 树苗10棵,B 树苗20棵,需要 2300元,若购买A 树苗20棵,B 树苗10棵,需要2500元, (1)求A 、B 两种树苗单价各是多少?(2)学校计划购买A 、B 两种树苗共21棵,且购买B 种树苗的数量不超过A 种树苗的一半, 设购买B 种树苗x 棵,购买两种树苗所需费用为y 元,请给出一种费用最省的方案,并求出该方案所需费用.25.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整 数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才 能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到 了周长为24的“整数三角形”. 丙同学受到甲、乙两同学的启发找到了两个不同的等腰 “整数三角形”.请完成:(1)以点A 为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每 边周边标注其边长;(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长; (3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26.如图,在菱形ABCD 中,AC AB =,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且AE CF =,连接EF BE ,.(1)如图1,当点E 是线段AC 的中点,且4=AB 时,求BE 的长; (2)如图2,当点E 不是线段AC 的中点时,求证:EF BE =; (3)如图3,当点E 是线段AC 延长线上的任意一点时,(2)中的结论是否成立?若成立, 请给予证明;若不成立,请说明理由.图1图2 图3八年级数学试题 第 5 页 (共 8 页)2016-2017学年度第二学期期末测试八年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.27≤x 14. 42-=x y 15. B 16 . 合格 17. 27 18. 6 三、解答题:(本大题共2个小题,每小题7分,共14分)19.解:2262262+--=原式……………………………6分 22-=………………………8分 20.证明:在▱ABCD 中,AO=CO ,BO=DO , …………………………2分∵∠1=∠2,∴BO=CO ,…………………………4分 ∴AO=BO=CO=DO , ∴AC=BD ,………………6分∴▱ABCD 为矩形 (对角线相等的平行四边形是矩形) …………8分四、解答题:(本大题共4个小题,每小题10分,共40分) 21.解:原式=24)2(1)2(22+-÷⎥⎦⎤⎢⎣⎡+--+-a a a a a a a =42)2()1()2()2)(2(22-+⨯⎥⎦⎤⎢⎣⎡+--++-a a a a a a a a a a 42)2(4222-+⨯++--=a a a a a a a八年级数学试题 第 6 页 (共 8 页))2(1+=a a …………………………………7分13-=a Θ,原式=21)213)(13(1=+-- …………………………………10分 22.解:(1)两点与坐标轴交于直线B A l ,Θ)0,4(),2,0(-∴B A …………………………………2分 44221=⨯⨯=∴∆AOB S …………………………………4分 (2)分,的面积分成相等的两部并将经过点ABO A l ∆,1Θ )的中点(经过0,21-∴BO l ………………………6分 设直线b kx y l +=:1,…………………………………7分 将)(0,2-与点A 代入直线方程,得 ∴⎩⎨⎧==+-202b b k 解得⎩⎨⎧==21b k …………………………………9分∴直线1l 的解析式为2+=x y …………………………………10分23.(1) ………………3分(2)八(1)班成绩好些.因为八(1)班的中位数高,所以八(1)班成绩好些.(回答合理即可给分 ………………6分(3)八(1)班成绩的方差八(2)班成绩的方差2221s s <Θ,所以八年级(1)班的成绩更稳定.………………10分24.解:(1)设A,B 两种树苗的单价分别为元元b a ,,由题意得:⎩⎨⎧=+=+2500102023002010b a b a ………………2分班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 85 85 八(2)8580100八年级数学试题 第 7 页 (共 8 页)解得⎩⎨⎧==7090b a ………………4分∴A,B 的单价分别为90元,70元.(2)18902070)21(90+-=+-=x x x y ………………6分由题意221xx -≤,70≤<∴x ………………8分 020<-Θ∴.的增大而减小随x y有最小值时,当y x 7=∴,1750=最小y 元,所以当购买A 种14棵,B 种7棵时,费用最少,为1750元.………………10分25.解:(1)如下图所示:……………2分 (2)如下图所示:…………………6分(3)不能.设一个等边三角形的边长为a ,则该三角形高为3a ,则其面积为23a ,若a 为整数,则23a 一定不为整数,所以不能.…………10分 26.解:(1)∵四边形ABCD 是菱形,AC AB =,∴△ABC 是等边三角形,∴4=AC ,又E 是线段AC 的中点,221,==⊥∴AC AE AC BE3222=-=∴AE AB BE ……………………………4分 (2)作EG ∥BC 交AB 于G , ∵△ABC 是等边三角形,∴△AGE 是等边三角形, ∴BG CE =,∵EG ∥BC ,ABC 60BGE 120∠=︒∴∠=︒,,图3图2八年级数学试题 第 8 页 (共 8 页)∵ACB 60ECF 120BGE ECF ∠=︒∴∠=︒∴∠=∠,,, ∴△BGE ≌△ECF EB EF ∴=,;………………………………8分 (3)成立.作EH ∥BC 交AB 的延长线于H ,∵△ABC 是等边三角形, ∴△AHE 是等边三角形, ∴BH CE =,HE AE = 又∵CF AE =, ∴CF HE = 在△BHE 和△ECF 中,CF HE ECF BHC CE BH ==∠=∠=,60,ο,∴△BHE ≌△ECF ,∴EB EF =.………………………………………………12分。
2016-2017学年八年级数学下册期末综合练习(二)及答案
2016-2017学年八年级数学下册期末综合练习(二)姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A.a+a=2a B.a6÷a3=a2C.+=D.(a﹣b)2=a2﹣b2 2.下列四组数据中,不能作为直角三角形的三边长是()A.3,4,5 B.3,5,7 C.5,12,13 D.6,8,103.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A.B.C.D.4.在九龙坡区中学生初中组篮球比赛中,我校篮球队取得了全区第一名的好成绩,为了参加此次比赛,校篮球队准备购买10双运动鞋,各种尺码的统计如表所示,则这10双运动鞋尺码的众数和中位数分别为()尺码/厘米25 25.5 26 26.5 27购买量/双 2 4 2 1 1 A.25.5 26 B.26 25.5 C.26 26 D.25.5 25.55.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直6.与不是同类二次根式的是()A.B.C.D.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=288.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.(第8题) (第9题) (第13题)9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<310.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2 D.2+2二、填空题(本大题共8小题,每小题3分,共24分)11.若多边形的每一个内角均为135°,则这个多边形的边数为.12.两组数据:3,a ,2b , 5与a ,6 ,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________________________.13.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=.14.如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.(第14题) (第15题) (第18题)15.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是.16.设a,b是方程x2+x﹣9=0的两个实数根,则a2+2a+b的值为.17.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.18.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为个.三、解答题(本大题共8小题,共66分)19.解方程:(x﹣1)2﹣2(x﹣1)=0.20.计算:+4×+(﹣1).21.已知a=8,求2a2•﹣﹣的值.22.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分 数 段 频数 频率 60≤x <70 9 a 70≤x <80 36 0.4 80≤x <90 27 b 90≤x ≤100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a = ,b = ,c = ; (2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?23.如图,□ABCD 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.AD BCFE O24.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?25.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=C D.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)26.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.答案解析一、选择题1.分析:根据合并同类项、同底数幂的除法、二次根式的化简、完全平方公式解答.解:A.a+a=(1+1)a=2a,故本选项正确;B、a6÷a3=a6﹣3≠a2,故本选项错误;C、+=2+=3≠,故本选项错误;D、(a﹣b)2=a2+2ab+b2≠a2﹣b2,故本选项错误.故选A.2.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A.∵32+42=52,∴此三角形为直角三角形,故选项错误;B、∵32+52≠72,∴此三角形不是直角三角形,故选项正确;C、∵52+122=132,∴此三角形为直角三角形,故选项错误;D、∵62+82=102,∴此三角形为直角三角形,故选项错误.故选B.3.分析:由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.4.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中尺码为25.5的最多,有4双,故众数是25.5;排序后处于中间位置的那个数是25.5,25.5,那么由中位数的定义可知,这组数据的中位数是25.5;故选:D.5.分析:由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.6.分析:根据同类二次根式的意义,将题中的根式化简,找到被开方数相同者即可.解:=A.=与被开方数不同,不是同类二次根式;B、=与被开方数相同,是同类二次根式;C、=与被开方数相同,是同类二次根式;D、=与被开方数相同,是同类二次根式.故选:A.7.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.8.分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.9.分析:先求出方程的解,再求出的范围,最后即可得出答案.解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.10.分析:要求△BDE周长的最小值,就要求DE+BE的最小值.根据勾股定理即可得.解:过点B作BO⊥AC于O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小.连接CB′,易证CB′⊥BC,根据勾股定理可得DB′==2,则△BDE周长的最小值为2+2.故选C.二、填空题11.分析:先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.12.分析:由题意得,解得,∴这组新数据是3,4,5,6,8,8,8,其中位数是6.解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.13.分析:根据三角形的中位线定理得到DE=BC,即可得到答案.解:∵D、E分别是边AB、AC的中点,BC=8,∴DE=BC=4.故答案为:4.14.分析:由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去).故答案为:.15.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故答案为:.16.分析:由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.解答:解:∵a是方程x2+x﹣9=0的根,∴a2+a=9;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=9+(﹣1)=8.故答案为:8.17.分析:利用二次方根式的被开方数是非负数求得a=2;然后将a=2代入已知等式中求得b=﹣1;最后利用新定义运算法则知2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1.解:∵,∴a=2,∴由,得2b=,解得,b=﹣1,∵X*Y=aX+bY,∴2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1;故答案是1.18.分析:连接BG,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBG=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余交相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.解:连接BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴EH=AB,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1+∠EBH=90°,∠EBH+∠4=90°,∴∠1=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.则与∠BEG相等的角有3个.故答案为:3.三、解答题19.分析:本题可以运用因式分解法解方程.因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.解答:解:(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.20.分析:原式第一项利用二次根式性质化简,第二项利用立方根定义化简,最后一项利用单项式乘以多项式法则计算,即可得到结果.解:原式=10+4×(﹣)+2﹣=10﹣2+2﹣=10﹣.21.分析:由a=8>0,首先把原式子通过开方运算、分母有理化进行化简,合并同类二次根式,然后把a的值代入求值即可.解:∵a=8>0,∴原式=2a2•﹣a﹣=2a﹣a﹣===16.22.分析:(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400, 即“优秀”等次的学生约有400人.23.分析:(1)先证出OE =OF ,再由SAS 即可证明△BOE ≌△DOF ;(2)由对角线互相平分证出四边形EBFD 是平行四边形,再由对角线相等,即可得出四边形EBFD 是矩形.解答:(1)证明:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC∵AE =CF∴AO -AE =OC -CF即:OE =OF在△BOE 和△DOF 中,OB OD BOE DOFOE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS );(2)矩形.理由:∵△BOE ≌△DOF ,∴BE =DF ,∠BEO =∠DFO ,∴BE ∥DF ,∴四边形EBFD 为平行四边形.∵BD =EF ,∴平行四边形EBFD 为矩形.24.分析: (1)等量关系为:2013年教育经费的投入×(1+增长率)2=2015年教育经费的投入,把相关数值代入求解即可;(2)2016年该区教育经费=2015年教育经费的投入×(1+增长率).解:(1)2013年教育经费:40000×15%=6000(万元)设每年平均增长的百分率为x,根据题意得:6000(1+x)2=7260,(1+x)2=1.21,∵1+x>0,∴1+x=1.1,x=10%.答:该县这两年教育经费平均增长率为10%;(2)2016年该县教育经费为:7260×(1+10%)=7986(万元),∵7986>8000,∴2016年教育经费不会达到8000万元.25.分析:(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=C D.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′26.分析:(1)可把正方形分割为四个全等的正方形,作出这些正方形的对角线,把装置放在交点处,交点到其余各个小正方形顶点的距离相等通过计算看是否适合;(2)由(1)得到启示,把正方形分割为三个长方形,左边的一个矩形的对角线能辐射的最大直径为31,看能否把三个装置放在三个长方形的对角线的交点处.解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求;(2)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=O C.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.。
四川省2016-2017学年八年级下学期期末测试数学试卷1
A四川省2016-2017学年八年级下学期期末测试数学试卷A 卷(100分)友情提示:请将解答写在答题卷上!亲爱的同学们,时间飞逝,我们又迎来了半期考试。
你想检测一下自己在这段时间的学习收获吗?来吧,请你认真细致、沉着冷静地答题。
祝你成功! 一、选择题(每小题3分,共30分,每小题都只有一个正确选项)1、观察下面图案,在A ,B ,C ,D 四幅图案中,能通过图案(1)平移得到的是( )2、等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A 17B 22C 13D 17或22 3、下列图案是几种小汽车的标志,其中是轴对称图形,但不是中心对称图形的图案的是( )A. B. C. D. 4.已知a b >,则下列不等式中正确的是( )A .33a b ->-B .33a b->- C .33a b ->- D .33a b ->-5、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C. △ABC 三条高所在直线的交点D. △ABC 三条角平分线的交点6.如图,△ABC 中,AB =AC ,∠A =30º,DE 垂直平分AC , 则∠BCD 的度数为( )A 、80ºB 、75ºC 、65ºD 、45º7. 不等式260x ->的解集在数轴上表示正确的是( )8、如图,用不等式表示数轴上所示的解集,正确的是( )A 、x <-1 或x ≥3B 、x ≤-1或x >3C 、-1≤x <3D 、-1<x ≤39、不等式-3x +6>0的正整数解有( ) A 、1个 B 、2个 C 、3个 D 、无数多个10.某次“迎奥运”知识竞赛中共有20道题,对于每一道题,答对了10分,答错了或不答扣5分,至少要答对( )道题,其得分才会不少于95分?A .14B .13C .12D .11一、填空题(每小题4分,共20分)1012ABCD(1)411、x 的2倍与12的差大于6,用不等式表示为 。
2016-2017学年四川省成都市金牛区八年级(下)期末数学试卷(解析版)
2016-2017学年四川省成都市金牛区八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列式子是分式的个数是()(1)(2)(3)(4)A.4B.3C.2D.12.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4=(x+2)23.(3分)如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x=3D.x≠35.(3分)一个多边形的内角和是540°,那么这个多边形的边数为()A.4B.5C.6D.76.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组7.(3分)如图,一次函数y=kx+b(k≠0)的图象经过A、B两点,则不等式kx+b>0的解集是()A.x<0B.0<x<1C.x>1D.x<18.(3分)菱形ABCD的边长为4,有一个内角为60°,则较长的对角线的长为()A.4B.4C.2D.29.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于()A.2B.6C.7D.1010.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.10二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)若分式的值为0,则x的值为.12.(4分)代数式x2+(m﹣1)xy+y2为完全平方式,则m=.13.(4分)如图,平行四边形ABCD中,对角线AC与BD相交于点O.且AC⊥AB,垂足为点A.若AB=12,AC=10,则BD的长为.14.(4分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E,∠A=30°,则∠DCB的度数为.三、解答题(本大属共6个小题,共54分)15.(6分)计算:(1)因式分解:ma3+12ma2+36ma(2)解不等式组,并把它的解集在数轴上表示出来.16.(8分)先化简,再求值:÷(﹣1),其中x=.17.(10分)已知:如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,∠DBC=∠BCE.求证:四边形OBEC是矩形.18.(10分)如图,△ABC的顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移4个单位,再向上平移5个单位后得到的△A1B1C1,并写出A1坐标.(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并写出A2坐标.19.(10分)某车间接到C919大飞机的其中200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的4倍,整个加工过程共用了16天完成,求原来每天加工零件的数量.20.(10分)如图,分别以Rt△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD 和等边△ACE,F为AB边的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.(1)求证:EF=AB;(2)求证:四边形ADFE是平行四边形;(3)若AB=2,求△AEG的周长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知﹣=1,则.22.(4分)已知关于x的不等式组只有两个整数解,则实数a的取值范围是.23.(4分)若关于x的方程=+1无解,则a的值是.24.(4分)如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则点E运动过程中,DF的最小值是.25.(4分)如图,在正方形ABCD中,AB=6,E为CD上一动点,AE交BD于F,过F 作FH⊥AE交BC于点H,过H作HG⊥BD于G,连结AH.在以下四个结论中:①AF =HE;②∠HAE=45°;③FC=2;④△CEH的周长为12.其中正确的结论有.二、解答题(共30分)26.(8分)某工厂从外地购得A种原料16吨,B种原料13吨,现计划租用甲,乙两货车共6辆将购得的原料一次性运回工厂.已知一辆甲种货车可装2吨A种原料和3吨B原料;一辆乙种货车可装3吨A种原料和2吨B种原料.设安排甲种货车x辆.(1)如何安排甲,乙两种货车?写出所有可行方案.(2)若甲种货车的运费是每辆500元,乙种货车的运费是每辆350元.设总运费为W元,W(元)与x(辆)之间的函数关系式;(3)在(2)的前提下,当x为何值时,总运费最少,此时总运费是多少元?27.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E 运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.28.(12分)将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=9,OC =15.(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落至AB边上的D点,求直线EC的解析式;(2)如图2,在OA、OC边上选取适当的点M、F,将△MOF沿MF折叠,使O点落在AB边上的D′点,过D′作′DG⊥CO于点G点,交MF于T点.①求证:TG=AM;②设T(x,y),探求y与x满足的等量关系式,并将y用含x的代数式表示(指出变量x的取值范围);(3)在(2)的条件下,当x=6时,点P在直线MF上,问坐标轴上是否存在点Q,使以M、D′、Q、P为顶点的四边形是平行四边形,若存在,请直接写出Q点坐标;若不存在,请说明理由.2016-2017学年四川省成都市金牛区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:(1)(2)(3)是分式,故选:B.2.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积,故B正确;C、没把一个多项式转化成几个整式积,故C错误;D、分解错误,故D错误;故选:B.3.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;B、是中心对称图形,不是轴对称图形,故本选项不符合题意;C、既是中心对称图形又是轴对称图形,故本选项符合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选:C.4.【解答】解:由题意,得x﹣3≠0,解得x≠3,故选:D.5.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.6.【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C.7.【解答】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:B(1,0),根据图象当x<1时,y>0,即:不等式kx+b>0的解集是x<1.故选:D.8.【解答】解:在菱形ABCD中,∠BAO=∠BAD=×120°=60°,又在△ABC中,AB=BC,∴∠BCA=∠BAC=60°,∠ABC=180°﹣∠BCA﹣∠BAC=60°,∴△ABC为等边三角形,∴AC=AB=4,∴AO=2,∴BO=,∴BD=2BO=4,故选:A.9.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×3=6.故选:B.10.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分)11.【解答】解:由题意,得x2﹣4=0且x﹣2≠0,解得x=﹣2,故答案为:﹣2.12.【解答】解:∵x2+(m﹣1)xy+y2,∴(m﹣1)xy=±2•x•y,则m﹣1=±2,解得:m=﹣1或3.故答案为:﹣1或3.13.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO=AC=5,∵AB⊥AC,AB=12,∴BO==13,∴BD=2BO=26,故答案为:2614.【解答】解:∵AB=AC,∠A=30°,∴∠ACB=∠B=75°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=30°,∴∠DCB=45°.故答案为:45°三、解答题(本大属共6个小题,共54分)15.【解答】解:(1)ma3+12ma2+36ma,=ma(a2+12a+36),=ma(a+6)2;(2),解不等式①得,x>﹣2,解不等式②得,x≤1,在数轴上表示如下:,所以,不等式组的解集是﹣2<x≤1.16.【解答】解:原式=÷=•=﹣,当x=时,原式=﹣=﹣1+.17.【解答】证明:∵∠DBC=∠BCE,∴CE∥DB,∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形18.【解答】解:如图所示:(1)点A1的坐标为(2,1);(2)点A2的坐标为(﹣4,2).19.【解答】解:设原来每天加工零件x个,则改进了技术后每天加工零件4x个,根据题意得:+=16,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:原来每天加工零件5个.20.【解答】(1)证明:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠F AE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴BF=AF,AB=2AF,∴BC=AF,在△EF A和△ABC中,,∴△EF A≌△ABC(SAS),∴EF=AB;(2)证明:∵△ABD是等边三角形,∴AD=BD,∵BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠F AE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EF A(AAS),∴AE=DF,∵EF=AB=AD,∴四边形ADFE为平行四边形;(3)解:∵F为AB边的中点,∴AF=AB=,∵四边形ADFE是平行四边形;∴AG=FG=AF=,∵∠ACB=90°,∠BAC=30°,∴BC=AB=,∴AE=AC=BC=3,∵∠F AE=90°,∴EG===,∴△AEG的周长=AE+EG+AG=3++.一、填空题(本大题共5个小题,每小题4分,共20分)21.【解答】解:当﹣=1时,∴y﹣x=xy原式===﹣4故答案为:﹣422.【解答】解:解不等式2x+1<5,得:x<2,∵不等式组只有两个整数解,∴﹣1<a≤0,故答案为:﹣1<a≤0.23.【解答】解:去分母,得:ax=3+x﹣1,整理,得:(a﹣1)x=2,当x=1时,分式方程无解,则a﹣1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.24.【解答】解:取线段AC的中点G,连接EG,如图所示.∵AC=BC=8,∠BCA=60°,∴△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=2.故答案为:2.25.【解答】解:①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③∵F是动点,CF的长度不是定值,本选项错误;④延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②④结论都正确.故答案为①②④.二、解答题(共30分)26.【解答】解:(1)由题意可得,,解得,1≤x≤2,∴有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;(2)由题意可得,W=500x+350(6﹣x)=150x+2100,即W(元)与x(辆)之间的函数关系式是W=150x+2100;(3)由(2)知,W=150x+2100,∵1≤x≤2,∴当x=1时,W取得最小值,此时W=2250,答:x为1时,总运费最少,此时总运费是2250元.27.【解答】(1)证明:∵Rt△ABC中,∠C=30°.∵CD=2t,AE=t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即30﹣2t=t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=2t,∴DF=t=AE,∴AD=2t,∴2t+2t=30,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=90°﹣30°=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=30﹣2t,AE=DF=CD=t,∴30﹣2t=t,解得t=12.当∠DFE=90°时,点E和点F都和点B重合,不能构成三角形,所以,此种情况不存在;综上所述,当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).28.【解答】解:(1)如图1中,∵OA=9,OC=15,∵△DEC是由△OEC翻折得到,∴CD=OC=15,在Rt△DBC中,DB==12,∴AD=3,设OE=ED=x,在Rt△ADE中,x2=(9﹣x)2+32,解得x=5,∴E(0,5),设直线EC的解析式为y=kx+5,把(15,0)代入得到k=﹣,∴直线EC的解析式为y=﹣x+5.(2)①如图2中,∵MD′=MO,∠D′MN=∠OMN,∵OM∥ET,∴∠OMT=∠D′TM,∴∠D′MT=∠D′TM,∴D′M=D′T,∴OM=DT,∵OA=FG,∴AM=TG.②如图3中,连接OT,由(2)可得OT=D′T,由勾股定理可得x2+y2=(9﹣y)2,得y=﹣x2+.结合(1)可得AD′=OG=3时,x最小,从而x≥3,当MN恰好平分∠OAB时,AD′最大即x最大,此时G点与N点重合,四边形AOND′为正方形,故x最大为9.从而x≤9,∴3≤x≤9.(3)如图4中,x=6时,y=,即点T坐标(6,).∴OM=D′T=9﹣=,①当MD′为对角线时,点P与T重合,QM=D′T=,∴OQ=13,∴此时点Q坐标(0,13).②D′M为边时,∵四边形MD′QP是平行四边形,又∵四边形D′MOT是平行四边形,∴点P与T重合,点Q与点O重合,∴点Q坐标(0,0),③当点P″在第四象限点时,四边形MD′Q″P″是平行四边形时,∵直线NM的解析式为y=﹣x+,∵D′Q″∥MN,∴直线D′Q″的解析式为y=﹣x+13,当y=0时,x=,Q″(,0)综上所述,以M、F、Q、P为顶点的四边形是平行四边形时,点Q坐标(0,0)或(0,13)或(,0).。
2016-2017学年度第二学期期末质量检测八年级数学试卷(含答案)
2016——2017学年度第二学期八年数学试题答案一、选择题:(每题2分,共16分)1、D2、B3、A4、D5、C6、B7、C8、A9、C 10、D 二、填空题:(每题2分,共16分) 11、3 12、4 13、96 14、2.3 15、y =-2x-2 16、 17、25 18、①②④ 三、解答题:(本题50分) 19、 原式= (6分)20、解:(1)∵四边形ABCD 是矩形,∴∠ABC=90°又∠ACB=30°, ∴AC=2AB ,设AB=x ,则在Rt △ABC 中, 有 ,解得,∴AB=,AC= (4分)(2)四边形BOCE 是菱形,理由是:∵BE ∥AC ,CE ∥BD ,∴四边形BOCE 是平行四边形, 又∵四边形ABCD 是矩形,AO=CO ,BO=DO ,AC=BD , ∴BO=CO ,∴平行四边形BOCE 是菱形 (8分) 21、解:(1)过点P 作PA ⊥x 轴于点A ,在Rt △PAM 中,PA=12,AM=14-9=5,则PM= (4分)(2)作图正确 (6分) 点N 坐标(23,12) (8分) 22、(1)a=5;m=6;p=8;q=7.5 (每个2分,共8分)(2)答案不唯一,正确即可;例如,八年级平均分高;中位数高; 方差小,成绩比较稳定等等 (10分)23、(1) (2分) (4分) (2)当时,有解得 (6分)当时,有 (8分)∵x 为正整数,∴当贡献奖奖状的个数小于等于25个时,选B 公司比较合算;当贡献奖奖状的个数多于25个时,选A 公司比较合算 (10分)四、解答题:(本题18分)24、解:(1) (1分)(2)①填表正确, (3分) 图像正确 (5分)② (1,2);1;2;减小;增大 (8分)(错一空扣一分)③ 设长方形的长为x ,周长为y ,由长方形面积为1,则它的宽为, 根据题意,,由②得,当x=1时,周长最小,最小值为4, ∴长方形的长和宽都为1时,周长为最小 (10分)3323210-222)2(3x x =+3=x 3321351222=+986.13504)102(8.41+=+++=x x x y 543.155.4)102(4.52+=++=x x x y 21y y >543.15986.13+>+x x 171525<x 21y y <171525>x 0≠x x 1)1(2xx y +=25、解:(1)证出 (3分) ∴∠EAF=45° (4分)(2)写出结论 (5分) 证出 (7分) (9分)(3)画出图形 (10分) 直接代入(2)式求值:MN=9 (12分)ADF AGF AGE ABE ∆≅∆∆≅∆,AHN AMN ∆≡∆222MN BM DN =+。
2016-2017学年四川省成都市青羊区八年级(下)期末数学试卷(解析版)
2016-2017学年四川省成都市青羊区八年级(下)期末数学试卷一、选择题(本大题10个小题,每小题3分,共30分)1.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣4 3.(3分)如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3 4.(3分)若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.125.(3分)若分式的值为0,则x的取值是()A.x=1B.x=﹣1C.x=±1D.x=06.(3分)下列多项式中不能用公式法分解因式的是()A.﹣x2﹣y2+2xy B.C.D.﹣a2﹣b2 7.(3分)如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③8.(3分)下列运算正确的是()A.=﹣B.=C.=x﹣y D.=9.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.310.(3分)2016特步欢乐跑•中国(重庆站)10公里锦标赛于5月8日上午在重庆巴南区巴滨路圆满举行,若专业队员甲的速度是业余队员乙的速度的2.5倍,比赛开始后甲先出发5分钟,到达终点50分钟后乙才到.若设乙的速度为x千米/小时,则根据题意列得方程为()A.﹣50=﹣5B.+=﹣C.+=+D.﹣=﹣二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)x2﹣10x+21可以分解为(x+n)(x﹣7),则n=.12.(4分)已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是.13.(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC =8,则EF的长为.14.(4分)在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为.三、计算下列各题(第15题每小题12分,第16题5分,共17分)15.(12分)(1)解不等式组,并写出它的所有非负整数解.(2)分解因式:(9x2+y2)2﹣36x2y216.(5分)解分式方程:﹣1=.四、解答题(每小题8分,共16分17.(8分)先化简,再求代数式的值:,其中a满足方程a2+4a+1=018.(8分)如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.五、解答题(第19题9分,第20题11分,共20分)19.(9分)松雷中学图书馆近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.(1)求甲、乙两种图书每本的进价分别是多少元?(2)松雷中学计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?20.(12分)如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知(a2+b2+2)(a2+b2﹣2)=5,那么a2+b2=.22.(4分)如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.23.(4分)从﹣3,﹣2,﹣1,0,1,2,3这7个数中任意选一个数作为m的值,则使关于x的分式方程:的解是负数,且关于x的一次函数y=(m﹣3)x﹣4的图象不经过第一象限的概率为.24.(4分)如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF,若∠A=70°,则∠DGF的度数为.25.(4分)已知正方形ABCD中,AC、BD交于点O,=,连AE,将△ADE沿AD 翻折,得△ADE′,点F是AE的中点,连CF、DF、E′F.若DE=2,则四边形CDE′F的面积是.二、解答题.26.(8分)入夏以来,由于持续暴雨,某市遭受严重水涝灾害,群众失去家园.市民政局为解决灾民群众困难,紧急组织了一批救灾帐篷和食品准备送往灾区.已知这批物质中,帐篷和食品共680件,且帐篷比食品多200件.(1)帐篷和食品各有多少件?(2)现计划租用A、B两种货车共16辆,一次性将这批物质送到群众手中,已知A种货车可装帐篷40件和食品10件,B种货车可装帐篷20件和食品20件,试通过计算帮助市民政局设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费800元,B种货车每辆需付运费720元,市民政局应该选择哪种方案,才能使运费最少?最少运费是多少?27.(10分)如图1,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,AC、BC的长分别是一元二次方程x2﹣14x+48=0两个根(AC<BC),动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)直接写出点C的坐标,C;当t=秒时,动点M、N相遇;(2)若点E在坐标轴上,平面内是否存在点F,使以点B、C、E、F为顶点的四边形是矩形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)连接CM、CN,当S△CMN=时,求t的值.28.(12分)已知:四边形ABCD为正方形,△AMN是等腰Rt△,∠AMN=90°.(1)如图1,当Rt△AMN绕点A旋转时,若边AM、AN分别与BC、CD相交于点E、F,连接EF,试证明EF=DF+BE;(2)如图2,当Rt△AMN绕点A旋转时,若边AM、AN分别与BC、CD的延长线相交于点E、F,连接EF.①试写出此时三条线段EF、DF、BE的数量关系并加以证明;②若CE=6,DF=2,求:正方形ABCD的边长以及△AEF中AE边上的高.2016-2017学年四川省成都市青羊区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分)1.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.2.【解答】解:A、∵a>b,∴﹣4a<﹣4b,故本选项错误;B、∵a>b,∴a b,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴4﹣a<4﹣b,故本选项错误;D、∵a>b,∴a﹣4>b﹣4,故本选项正确;故选:D.3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.4.【解答】解:由题意得,(n﹣2)×180°=1260°,解得,n=9,故选:A.5.【解答】解:由分式的值为零的条件得:|x|﹣1=0,x﹣1≠0,解得:x=﹣1,故选:B.6.【解答】解:A、﹣x2﹣y2+2xy=﹣(x2+y2﹣2xy)=﹣(x﹣y)2,故此选项错误;B、a2+a+=(a+)2,故此选项错误;C、﹣m+m2+=(m﹣)2,故此选项错误;D、﹣a2﹣b2,无法分解因式,故此选项正确.故选:D.7.【解答】解:①▱ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD是菱形;故①正确;②▱ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故②错误;③▱ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD是菱形;故③正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故④错误.故选:A.8.【解答】解:A、,分母的所有项都变号,故A错误;B、分子分母都乘以或除以同一个不为0的数分式的值不变,故B错误;C、分子分母都除以(x﹣y),故C错误;D、分子分母都除以(x﹣1),故D正确.故选:D.9.【解答】解:根据图象可知:①当x<3时,一次函数y1=kx+b的图象在x轴上方,故y1>0;②当x<3时,一次函数y2=x+a的图象一部分在x轴上方,一部分在x轴下方,故y2>0或y2=0或y2<0;③当x>3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的下方,故y1<y2,所以正确的有①和③.故选:C.10.【解答】解:设乙的速度为x千米/小时,则甲的速度是2.5x千米/时,由题意得﹣=﹣,故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.【解答】解:x2﹣10x+21=(x﹣3)(x﹣7),∵x2﹣10x+21可以分解为(x+n)(x﹣7),∴n=﹣3,故答案为:﹣3.12.【解答】解:∵点P(2﹣a,﹣3a)在第四象限,∴,由①得a<2,由②得a>0,∴a的取值范围是0<a<2,故答案为0<a<2.13.【解答】解:∵D为AB中点,∠AFB=90°,AB=5,∴DF=AB=2.5,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故答案为:1.514.【解答】解:∵平行四边形ABCD的周长为40,∴BC+CD=20,设BC为x,∵S平行四边形ABCD=BC•AE=CD•AF,∴4x=(20﹣x)×6,解得x=12,∴平行四边形ABCD的面积为12×4=48.故答案为48.三、计算下列各题(第15题每小题12分,第16题5分,共17分)15.【解答】解:(1)∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,∴不等式组的非负整数解为0,1,2,3;(2)原式=(9x2+y2﹣6xy)(9x2+y2+6xy)=(3x﹣y)2(3x+y)2.16.【解答】解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.四、解答题(每小题8分,共16分17.【解答】解:=•==,由a满足方程a2+4a+1=0,得到a2=﹣4a﹣1,a=﹣2,∴原式=====,当a=﹣2+时,原式====,当a=﹣2﹣时,原式====.18.【解答】解:(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(﹣2,1);故答案为:(﹣2,1);(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(﹣5,0);故答案为:(﹣5,0);(3)点C、C2关于某点中心对称,对称中心的坐标是:(﹣3,﹣1).故答案为:(﹣3,﹣1).五、解答题(第19题9分,第20题11分,共20分)19.【解答】解:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,由题意得,=,解得:x=45,经检验,x=45是原分式方程的解,且符合题意,则x+20=65.答:甲种图书每本的进价为65元,乙种图书每本的进价是45元;(2)设购进甲种图书m本,则购进乙种图书为(70﹣m)本,由题意得,65m+45(70﹣m)≤4000,解得:m≤42.5,∵m为整数,且取最大值,∴m=42.答:最多购进甲种图书42本.20.【解答】解:(1)猜想:四边形CGFH是菱形.理由:如图1中,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AEC+∠ECD=180°,∵∠FEC=∠AEC,∠FCE=∠DCE,∴∠FEC+∠FCE=90°,∴∠EFC=90°,∵GH∥EF,∴∠GOC=∠EFC=90°,∵CG=EG,GO∥EF,∴OF=OC,在Rt△EFC中,∵EG=GC,∴FG=GC,∴∠GCF=∠GFC=∠FCD,∵∠FOG=∠COH,∴△FOG≌△COH,∴OG=OH,∵OF=OC,∴四边形FGCH是平行四边形,∵GF=GC,∴四边形CGFH是菱形.(2)如图2中,延长EF交CD的延长线于M.∵EF=CF,∠EFC=90°,EG=CG,∴FG⊥EC,∴∠FGC=90°,∴四边形CGFH是正方形,∴∠FCG=∠FCH=45°,∴EF=FM,∵∠AFE=∠MFD,∠AEF=∠M,∴△AFE≌△DFM,∴AE=DM=2,AF=DF,∴CM=CD+DM=6,∵FH⊥CM,CF=FM,∴CH=HM=FH=3,在Rt△DFH中,DF===,∴AD=2DF=2.一、填空题(本大题共5个小题,每小题4分,共20分)21.【解答】解:设a2+b2=x,则原方程化为:(x+2)(x﹣2)=5,x2=9,∵a2+b2>0,∴a2+b2=3,故答案为:3.22.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA 上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,故答案为:.23.【解答】解:解分式方程得:x=﹣m﹣3,∵方程的解为负数,∴﹣m﹣3<0且﹣m﹣3≠﹣1,解得:m>﹣3且m≠﹣2,又∵一次函数y=(m﹣3)x﹣4的图象不经过第一象限,∴m﹣3<0,∴m<3,则﹣3<m<3且m≠﹣2,在﹣3,﹣2,﹣1,0,1,2,3这7个数中符合﹣3<m<3且m≠﹣2的有﹣1,0,1,2这∴使分式方程的解为负数且一次函数图象不过第一象限的概率为,故答案为:.24.【解答】解:如图,延长AD、EF相交于点H,∵F是CD的中点,∴CF=DF,∵菱形对边AD∥BC,∴∠H=∠CEF,在△CEF和△DHF中,,∴△CEF≌△DHF(AAS),∴EF=FH,∵EG⊥AD,∴GF=FH,∴∠DGF=∠H,∵四边形ABCD是菱形,∴∠C=∠A=70°,∵菱形ABCD中,E、F分别是BC、CD的中点,∴CE=CF,在△CEF中,∠CEF=(180°﹣70°)=55°,∴∠DGF=∠H=∠CEF=55°.故答案为:55°.25.【解答】解:连接EE′,交AD于N,连接CE,在正方形ABCD中,∠EDN=45°,由折叠得,AD垂直平分EE′,且∠EDN=∠E′DN=45°,DE=DE′,∴△DEE′、△DEN、△DE′N均为等腰直角三角形,∵DE=2,=,∴OE=,DN=EN=E′N=2,DO=3,DE′=2,∴AC=6,AD=6,∵EO⊥AC,∴S△ACE=×6×=6,又∵点F是AE的中点,∴S△ACF=×S△ACE=3,∵AN⊥EE′,AN=AD﹣DN=6﹣2=4,∴S△AE′E=×4×4=8,又∵点F是AE的中点,∴S△AE′F=×S△AE′E=4,∵∠E′DO=∠AOD=90°,∴DE′∥AC,∴S梯形ACDE′===24,∴四边形CDE′F的面积=S梯形ACDE′﹣S△ACF﹣S△AE′F=24﹣3﹣4=17.故答案为:17二、解答题.26.【解答】解:(1)设帐篷有x件,食品有y件.则,解得,;答:帐篷有440件,食品有240件(2)设租用A种货车a辆,则租用B种货车(16﹣a)辆,则,解得6≤a≤8,故有3种方案:A种车分别为6,7,8辆,B种车对应为10,9,8辆(3)设总费用为W元,则W=800a+720(16﹣a)=80a+11520,k=80>0,W随a的增大而减少,所以当a=6时费用最少,为12000元.27.【解答】解:(1)如图1,x2﹣14x+48=0,(x﹣6)(x﹣8)=0,x=6或8,∵AC<BC,∴AC=6,BC=8,∵∠ACB=90°,∴AB=10,∵OC⊥AB,∴S△ABC==,∴6×8=10OC,∴OC=4.8,∴C(0,4.8),由题意得:AM=t,BN=3t,当动点M、N相遇时,即M与N重合,AM+BN=AB=10,t+3t=10,t=;故答案为:(0,4.8),;(2)存在,①当BC为对角线时,如图2,E与O重合,Rt△OCB中,OC=,BC=8,∴OB==,∴F(,);②以BC为边时,如图3,此时E与A重合,根据C到A的平移规律,可得B到F的平移规律,∵A(﹣,0),C(0,),B(,0),∴F(6.4﹣3.6,0﹣4.8),即F(2.8,﹣4.8);③以BC为边时,如图4,∵∠COB=∠BOE=90°,∠OBC=∠BEO,∴△COB∽△BOE,∴,∴,∴OE=,同理根据平移规律可得:F(﹣,﹣),即F(﹣,﹣);综上所述,点F的坐标为(,)或即F(2.8,﹣4.8)或F(﹣,﹣);(3)当0≤t≤时,如图5,∴MN=10﹣4t,当S△CMN=时,MN•OC=,(10﹣4t)=×6×8,t=;当<t≤时,如图6,∵AN=10﹣3t,∴MN=AM﹣AN=t﹣(10﹣3t)=4t﹣10,当S△CMN=时,MN•OC=,(4t﹣10)=×6×8,t=;综上所述,t的值为秒或秒.28.【解答】(1)证明:①如图1,延长CB到G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴∠D=∠ABC=∠DAB=∠ABG=90°,AD=AB,在△ADF和△ABG中,,∴△ADF≌△ABG(SAS),∴AG=AF,∠DAF=∠BAG,∵∠EAF=45°,∴∠EAG=∠EAB+∠BAG=∠EAB+∠DAF=45°,∴∠EAF=∠EAG,∵AE=AE,∴△EAF≌△EAG,∴EF=EG=EB+BG=EB+DF.(2)①三线段EF、DF、BE的数量关系是EF=BE﹣DF,证明:如图2,在BC上取BG=DF,连接AG.在△ABG和△ADF中,∴△ABG≌△ADF(SAS),∴AF=AG,∠DAF=∠BAG,∵△AMN是等腰直角三角形,∴∠NAM=∠N=45°,∴∠F AD+∠DAC=45°,∴∠DAC+∠BAG=45°,∵∠DAB=90°,∴∠GAE=90°﹣45°=45°=∠F AE,在△F AE和△GAE中∴△F AE≌△GAE(SAS),∴EF=EG=BE﹣BG,∵BG=DF,∴EF=BE﹣DF.②解:设正方形ABCD的边长是x,则BC=CD=x,∵CE=6,DF=BG=2,∴EF=GE=CG+CE=BC﹣BG+CE=x﹣2+6=x+4,在Rt△FCE中,由勾股定理得:EF2=FC2+CE2,第21页(共22页)∴(x+4)2=(x+2)2+62,解得:x=6,∴AG=AF ==2,∵∠F AM=45°,如图3,过F作FH⊥AE于H,∴FH =AF,=×2=2,即△AEF中AE边上的高为2.第22页(共22页)。
成都市青羊区名校2016-2017学年八年级下数学期末真卷精编
成都市青羊区名校2016-2017学年八年级下数学期末真卷精编(考试时间:120分 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、在58,n π3,3y x +,x 2,2+a a中,分式的个数是( )A. 2B. 3C. 4D. 52、下列图形中,是中心对称图形的是( )A. B. C. D.3、若b a >,则下列不等式成立的是( )A. 55-<-b aB. b a 22-<-C. 2323+<+b a D. 22b a >4、把a a 43-因式分解正确的是( )A. ()42-a aB. ()22-a aC. ()()22+-a a aD. ()()44-+a a a5、如果方程8778=----x kx x 有增根,那么k 的值为( )A. 1B. -1C.±1D. 76、如图,在△ABC, AB=AC, ∠A=40°, AB 的垂直平分线DE 交AC 于点E,垂足为D,则∠EBC 的度数是() A. 30° B. 40° C. 70° D. 80°7、如图,在正方形ABCD 的外侧,以AD 为边作等边△ADE,连接BE,则∠AEB 的度数为( )A. 15°B. 20°C. 25°D. 30°8、下列说法中正确的是( )A.四边相等的四边形是正方形B.一组对边相等且另一组对边平行的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线相等的平行四边形是矩形9、某市政工程队准备修建一条长1200米的污水处理管道,在修建完400米后,为了能赶在汛期完成,形用新技术,工作效率比原来提升了25%,结果比原计划提前4天完成任务.设原计划每天修建管道x 米,依题意列方程得( ) A. ()4%25112001200=+-x x B. ()4%25140012004001200=+---x xC.()4%25140012001200=+--x x D. ()44001200%2514001200=--+-x x 10、如图,在矩形ABCD 中,AB=8, AD=6,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形A'BC'D'.若边A'B 交线段CD 于点H,且BD 平分∠ABHH,则DH 的长是( )A. 47B. 328-C. 425 D. 26 二、填空题(每小题4分,共16分)11、若代数式53-x 有意义,则x 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青羊区2016-2017学年度下期初2018届期末测试
八年级数学
A 卷(共100分)
第Ⅰ卷(选择题,共30分)
一、选择题(本大题10个小题,每小题3分,共30分)
1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
2.若a >b,则下列式子正确的是( )
A.-4a >-4b
B.b 2
1a 21< C.4-a >4-b D.a-4>b-4
3.如图,用不等式表示数轴上所示的解集,正确的是( )
A.x <1或x≥3
B.x≤-1或x >3
C.-1≤x <3
D.-1<x≤3
4.若凸n 边形的内角和为1260°,则n 的值是( )
A.9
B.10
C.11
D.12
5.若分式1x 1
x --的值为0,则( )
A.x=±1
B.x=-1
C.x=1
D.x=0
6.下列多项式中不能用公式法分解因式的是( )
A.xy 2y -x -22+
B.41a a 2++
C.4
1m m -2++ D.22b a -- 7.下列条件之一使平行四边形ABCD 变为菱形的是( )
①AC ⊥BD ;②∠BAD=90°;③AB=BC ;③AC=BD.
A.②③
B.①②
C.③④
D.①②③
8.下列运算正确的是( ) A.y -x y -y -x -y = B.32y 3x y 2x =++ C.y -x y -x y -x 2
2= D.1
-x 1x 1x 2-x 1-x 22+=+ 9.一次函数b kx y 1+=与a x y 2+=的图象如图,则下列结论:①当x <3时,y 1>0;②当x <3时,y 2>0;③当x >3时,y 1<y 2中,正确的个数是( )
A.0
B.1
C.2
D.3
10.2017年铁人三项世界杯赛于5月6日一7日在金堂县官仓镇铁人三项赛场圆满举行,在 长跑10公里越野比赛中,若专业队员甲的速度是业余队员乙速度的2.5倍,比赛开始后甲先出发5分钟,到达终点50分钟后乙才到,若设乙的速度为x 千米/小时,则根据题意列得方程为
( )
A. 5-x 5.21050-x 10=
B.60
5-x 5.2106050x 10=+ C.605x 5.2106050x 10+=+ D.60
5-x 5.2106050-x 10= 第Ⅱ卷(非选择题,共70分)
二、填空题(本大题共4个小题,每小题4分,共16分)
11.21x 10-x 2+可以分解为()()7x n x -+,则n=_________.
12.已知点P(2-a,-3a)在第四象限,那么a 的取值范围是_________.
13.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AEB=90°,若AB=5,BC=3,则EF 的长为__.
第13题 第14题
14.如图,在平行四边形ABCD 中,AE ⊥BC 于点E,AF ⊥CD 于点F,若AE=4,AF=6,且平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积为________.
三、计算下列各题(第15题每小题6分,第16题5分,共17分)
15.(1)解不等式组()⎪⎩
⎪⎨⎧--+≤+38510714x x x x <,并写出它的所有非负整数解。
(2)分解因式:()2222369y x y x -+
16.解分式方程:
4
161222-=-+-x x x
四、解答题(每小题8分,共16分
17.先化简,再求代数式的值:
a a a a 441a 2-a 2222-÷⎪⎭
⎫ ⎝⎛-++,其中a 满足方程0142=++a a
18.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1)。
(1)先将△ABC 沿y 轴正方向上平移3个单位长度,再沿x 轴负方向向左平移1个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,点C 1坐标是________.
(2)将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 2B 1C 2,画出△A 2B 1C 2,并求出点C 2的坐标是_________.
(3)我们发现点C 、C 2关于某点中心对称,对称中心的坐标是_______.
五、解答题(第19题9分,第20题11分,共20分)
19.青羊区图书馆为迎接4月23日全民读书节,实施“十百千万”阅读推广工程,购进了甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进了甲图书的数量与花540元购进乙图书的数量相同。
(1)求甲、乙两种图书每本的进价分别是多少元?
(2)青羊区图书馆计划购进甲、乙两种图书共70本,总购书费不超过4000元,则最多购进甲种图书多少本?
20.如图,在平行四边形ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE 中
点,过G作GH∥EF交CF于点O,交CD于点H.
(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;
(2)当AB=4,且FE=FC时,求AD的长。
B 卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
21.已知()()5222222=-+++b a b a ,那么=+22b a ______.
22.如图,OA ⊥OB,等腰Rt △CDE 的腰CD 在OB 上,∠ECD=45°,将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则CD
OC 的值为______.
第22题 第24题 第25题
23.从-3,-2,-1,0,1,2,3这7个数中任意选一个数作为m 的值,则使关于x 的分式方程: 31
2=+-x m x 的解是负数,且关于x 的一次函数y=(m-3)x-4的图象不经过第一象限的概率为_. 24.如图,菱形ABCD 中,E 、F 分别是BC,CD 的中点,过点E 作EG ⊥AD 于G,连接GF,若∠A=70°,则∠DGF 的度数为______.
25.已知正方形ABCD 中,AC 、BD 交于点O,2
1=DE OE ,连接AE,将△ADE 沿AD 翻折,得'ADE △,点F 是AE 的中点,连CF 、DF 、F E ',若DE=22,则四边形F CDE '的面积为______.
二、解答题。
26.(8分)入夏以来,某市遭受严重水涝灾害,市民政局为解决灾民困难,紧急组织了一批救灾帐篷和食品准备送往灾区,这批物质中,帐篷和食品共680件,且帐篷比食品多200件。
(1)帐篷和食品各有多少件?
(2)先计划租用A 、B 两种货车共16辆,一次性将这批物质送到群众手中,已知A 中货车可装帐篷40件和食品10件,B 中货车可装帐篷20件和食品20件,试通过计算帮助市民政局设计几种运输方案.
(3)在(2)条件下,A 中货车每辆需付运费800元,B 种货车每辆需付运费720元,市民政局应该选择哪种方案,才能使运费最少?最少运费是多少?
27.(10分)如图1,在平面直角坐标系中,Rt △ABC 的斜边AB 在x 轴上,点C 在y 轴上,∠ACB=90°,AC 、BC 的长分别是一元二次方程048142=+-x x 两个根(AC <BC),动点M 从点A 出发,以每秒1个单位长度的速度沿AB 向点B 匀速运动;同时,动点N 从点B 匀速运动。
当点N 运动动点A 时,M 、N 两点同时停止运动,设运动时间为t 秒.
(1)直接写出点C 的坐标,C=________;当t=_____秒时,动点M 、N 相遇;
(2)若点E 在坐标轴上,平面内是否存在点F,使以点B 、C 、E 、F 为顶点的四边形是矩形?若存在,请求出点F 的坐标;若不存在,请说明理由。
(3)连接CM 、CN ,当ABC CMN S S △△4
1=时,求t 的值.
图1 备用图
28.(12分)已知:四边形ABCD为正方形,△AMN是等腰Rt△,∠AMN=90°.
(1)如图1,当Rt△AMN绕点A旋转时,若边AM、AN分别与BC、CD相交于点E、F,连接EF,试证明EF=DF+BE;
(2)如图2,当Rt△AMN绕点A旋转时,若边AM、AN分别与BC、CD的延长线相交于点E、F,连接EF.
①试写出此时三条线段EF、DF、BE的数量关系并加以证明;
②若CE=6,DF=2,求:正方形ABCD的边长以及△AEF中AE边上的高。
图1 图2。