woodward TG13 TG17调速器使用手册
调速器中文说明书(触摸屏)
WOIRD格式操作终端说明书(触摸屏)武汉四创自动控制技术有限责任公司目录一、系统概述...........................................................................................2...二、画面简介...........................................................................................2...1.状态指示画面.................................................................................3...2.操作画面..........................................................................................4...3.主菜单画..........................................................................................5...4.密码框..............................................................................................6...5.数值键盘画面.................................................................................7...6.参数设置..........................................................................................8...7.导叶参数设置.................................................................................9...8.浆叶参数设置(*双调机组)......................................................1..19.功率参数设置...............................................................................1..3.10.大网参数、小网参数、空载参数、负载频率参数 (14)11.水头参数设置............................................................................1..512.PID优化参数设置....................................................................1..613.过程监视......................................................................................1..7.14.动态过程记录.............................................................................1..8.15.空载频率扰动.............................................................................1..8.16.空载频率摆动.............................................................................2..0.18.故障查询......................................................................................2..1.19.协联数据(*双调机组)............................................................2..21一、系统概述图示操作终端可对调速器的各种状态进行监视,如开机、停机、并网、调相、机械手动/自动、水头手动/自动、跟踪网频/跟踪频给等。
KB100.SM(第二分册)
KB系列背压式汽轮机安装使用说明书(第二分册)KB100 .SM青岛捷能汽轮机集团股份有限公司2009年7月青岛捷能汽轮机集团股份有限公司中国名牌✧由原青岛汽轮机厂改制而成,2004年国有资本退出,改制为产权多元化的公司。
✧以150MW以下“捷能”牌电站汽轮机和工业拖动汽轮机为主导产品,以单机生产和电站总成套为主营业务。
✧拥有冷凝式、背压式、抽汽式等十大系列400多个品种,年生产能力5000MW/500台,国内中小型汽轮机最大的设计、造供应商。
✧在保持自主研发的基础上,和国内外知名公司和院校保持经常性的技术合作,如日本三菱公司、西安交通大学、哈尔滨工业大学等,在三维扭叶片、机组自动控制技术、空冷机组设计、水泥、钢铁余热机组开发等高新技术研发和应用方面始终保持领先水平。
✧公司近几年先后投入近4亿元,对公司生产布局、硬件设备等进行了改造升级,大大提高了机组质量的稳定性和生产的高效性,使公司机组的质量和产能跃升到了一个新的高度。
✧在行业内率先通过了ISO9001质量体系认证和ISO14001环境体系认证。
✧已生产各类汽轮机4000多台,产品遍布全国并远销东南亚等国家。
✧产品广泛应用于企业自备电站/供热、钢铁余热发电、水泥余热发电、生物质能发电、垃圾发电、燃气-蒸汽联合循环、城市集中供热、工业拖动等行业。
✧组建有专业的配件安装分公司,让客户在设备安装、调试、运行监护、大修、故障处理、人员培训到备品备件供应等方面,享受到长期性的“诚信、快捷、优质”的服务。
✧奉行“和谐、执行、创新、超越”的企业精神,努力为市场提供更加高效、更加安全和稳定的汽轮发电机组。
✧荣誉中国名牌产品省优和部优产品全国用户满意产品省现场管理样板企业全国AAA级信用企业全国名优产品售后服务十佳单位中国汽轮机发展史上唯一一块国家质量奖牌警示△!禁止焊机接地线直接与汽缸连接;焊机接地线应连接在焊接构件上,尽量靠近施焊部位,间距小于400mm;焊机接地线必须采用专用钳固定。
调速器用户手册改
调速器用户手册改第一篇:调速器用户手册改田湾河流域梯级水电站调速器及油压装置用户手册武汉事达电气股份有限公司1、调速系统电气柜设备说明保持在一定的范围内.田湾河的回油箱容积为7.4m.5、油过滤系统在液压系统中,有80%的故障是因系统中油质不干净造成的.为了保证整个调速系统安全,回油箱中设臵了双层滤网,油泵吸油的一侧为净油区,调速器回油的一侧为脏油区.另外在两台螺杆泵的出油口各设臵了一台SGF型双筒过滤器(过滤精度25μm),进一步清除或阻挡由于外界带入、元件工作时磨损,以及介质本身化学作用所产生的杂质.由于喷针控制单元中采用的是比例伺服阀来控制喷针接力器,所以在压力罐的主压力油管出口处我们设臵了HYDAC双筒过滤器度,可进一步防止高精度的控制元件和执行元件由于污染而过早磨损或卡死,减少故障,延长元件使用寿命.两种滤油器都是由两只单筒过滤器组成,能使系统在不停机的状况下更换滤芯,更换滤芯时,只要转动手柄换向,另一个备用过滤器即可工作,这时只需旋开螺塞放完油,再旋下外壳就可更换已堵塞的滤芯.若因故未能及时更换滤芯,压差继续升至旁通阀开启压力0.6MPa时,旁通阀自动开启.以避免由于压力继续上升,滤芯破裂造成再污染.6、回油箱上主要部件:油泵─三螺杆泵是一种转子型容积式泵.它利用螺杆转动时将液体沿轴向压送而进行动工作.泵出口滤油器—SGF型双筒过滤器,流量为:660L/min,(过滤精25μm).控制系统滤油器—HYDAC双筒过滤器流量为:366L/min,(过滤精25μm).组合阀─液压集成技术将安全阀,电磁卸荷阀,止回阀,集成在一起体积小,结构紧凑.具有流动阻力小,通流能力大,动作速度快,工作可靠等优点.组合阀内安全阀开启压力:6.4 Mpa;低于7.0 MPa全排;高于6.1MPa前全关液位计─用于观察回油箱内的油位.液位开关—带有3个磁记忆开关,用于回油箱油位过低、油位过高报警.油混水信号器—用于监测油中水的含量空气滤清器—过滤空气旁路滤油器—采用进口HYDAC产品.7、压力罐压力罐在调速系统中的作用相当于储能器,将系统的工作压力稳定在一定范围,吸收油泵启动停止时所产生的压力脉动,在系统出现故障、油泵不能启动的情况下保证系统具有足够的工作容量(压力和油量)关闭导叶实现停机,保证机组安全.8、压力罐容积:根据田湾河水电站主机厂提供的机组额定工作压力、喷针和折向器接力器容积、最低操作压力等水轮机技术参数进行容量设计计算,计算结果为2.5 m3 调速系统电气柜起到主控调速器机械液压系统的目的,其作用是控制喷针开度和折向器开启或关闭来达到控制水轮机的转速和功率.同时调速器能够根据用户自己设定的喷针转换方式设定值来实现并网工作后的单喷针、三喷针、四喷针、六喷针工作方式,从而达到提高水轮机的效率的目的.2、油压装臵控制柜油压装臵控制柜的作用在于控制油压装臵的油泵电动机组为压力罐提供油源,使得油压装臵为调速器提供稳定油源.同时可以根据压力罐上安装的压力开关整定值来启动和停止油泵,达到自动控制的目的.其组成部分如下:3、油压装臵工作原理:油压装臵和其用油设备构成了一个封闭的循环油路.电机通过联轴器带动螺杆泵转动,回油箱内的清洁油经过螺杆油泵的吸油管吸入经过组合阀输入压力罐.为了保证油压装臵工作的可靠性装有2台螺杆泵,一台为工作油泵,另一台则为备用油泵,两者应当定期互相切换.在特殊情况下,两台油泵也可同时在短时间内一起工作.压力罐在正常情况下,上部充满了2/3的压缩空气,下部充满了1/3的汽轮机油,压缩空气的补充和泄放是通过压力罐上安装的自动补气装臵来进行.为了反映压力罐中油位的高低,装设了磁翻板液位计,从翻板中可以直接观察到压力罐中的油位高低,又可通过磁翻板液位计上的磁记忆开关(液位开关)设定启动补气,停止补气,以及液位上下限报警.压力油通过压力罐的主出油口截止阀引出,到各用油处,回油则到回油箱的污油区,经过滤油网过滤后进入净油区,再经螺杆泵吸入送往压力罐,如此往复循环.工作泵依据压力罐的油压控制信号运行.油泵输送的压力油先经过滤器,再经组合阀,进入压力罐.4、回油箱内用精密的双层滤网分成两个区,油泵吸油口所在区域为清洁油区,调速器及自动化系统回油口所在的区域为脏油区.为便于油箱检修清洗时能方便地放出箱内的油液,回油箱的底板设计成一定的斜度,并在较低的一侧安装放油阀门,通过该阀门电厂可直接将回油箱的全部油液排回油库.回油箱的容量应能容下回油箱内工作油量、压力罐全部油量和依靠重量从系统中返回回油箱的全部油量之和.回油箱内工作油量能满足系统工作中油泵吸油所需的油量.系统运行时,一方面油泵从回油箱中抽油,另一方面系统又将工作回油排入回油箱,因而回油箱内的工作油量将田湾河流域梯级水电站调速器及油压装置用户手册武汉事达电气股份有限公司9、压力罐主要元件磁翻板式液位计─用于观察压力罐内的油位.液位计上带有4个磁记忆开关,提供报警及控制功能.磁记忆开关:触点容量:5A/AC220V;1A/DC30V.可用于油位过低、油位过高及自动补气控制及备用.压力表─观察压力罐内的压力.压力开关─用于泵的启、停控制;事故低油压及旁通电磁阀的控制.压力变送器输出4~20mA;供电电压为DC15~30V,压力变送器可供PLC进行油泵控制.空气安全阀─压力容器安全附件,安全阀的开启压力设定为7.3 MPa(以实际整定为准).自动补气装臵─集补气、排气、安全保护为一体的装臵.自动补气关闭手动球阀1、2,当自动补气条件满足时,驱动机构得电带动球阀阀芯转动,阀芯转动到位后,使压力腔P与工作腔A接通,压缩空气经内接单向阀流向油压装臵,对油压装臵进行自动补气,此时阀位指向开阀位臵,同时位臵开关输出开阀信号.当要停止补气时,驱动机构得电带动球阀阀芯转动,阀芯转到位后,工作腔A与排气腔O接通,装臵内存气由排气腔排出,此时阀位指向关阀位臵,同时位臵开关输出开阀信号.此外,二位三通电动球阀可在现场手动操作,当系统失电或其他原因需要手动时,可实现手动操作手动补(排)气手动补气手动补气时,打开手动补气阀2即可补气,当油压装臵压力上升到额定值时,关闭手动球阀2即可停止补气;手动排气时,打开手动补气阀1即可排气,当油压装臵压力下降到额定值时,关闭手动球阀1即可停止排气;当油压装臵内压力高于安全阀设定值时,安全阀即自动开启向外排气,直至压力降到设定值为止.自动补气装臵特点1)采用球阀版式结构,能实现零压差工作,气流量大,补气时间短.2)密封性能好、集成化程度高、体积小.3)电动球阀可现场手动操作,并有阀位机械显示和开关量输出.4)有两个手动球阀,可实现手动补气和手动排气.5)排气出口配有消声器、大大降低了排放高压气体时所产生的刺耳噪音.6)装臵中设臵有安全阀,可实现超压状态下的自保护,动作灵敏,当储能器压力超高时,安全阀自动开启,向外排气,并发出声响警示,确保贮能器运行的安全性.7)驱动机构采用进口部件,动作准确、可靠,整套装臵所有零部件均采用不锈材料,耐锈蚀性强,适于在潮湿环境下工作.10、压力罐上压力开关的整定值主泵启动压力:6.0MPa;备泵启动压力:5.8MPa;停泵压力:6.3MPa;低油压报警压力:5.04 MPa;低油压报警及事故停机压力:4.8 MPa; 1.8.10压力罐上液位开关的整定值补气油位:距地面1369mm;正常油位:距地面1319mm;低油位报警:距地面976mm;低油位停机:距地面856mm。
8、调速器运行操作说明
第八章调速器运行操作说明本章介绍调速器电气柜面板指示与操作,及调速器接收远方信号与发出信号的物理意义和一些常规的日常运行规程说明。
8.调速器操作说明 (3)8.1概述 (3)8.2 电柜面板操作及显示部分 (3)8.2.1 电柜面板表计显示部分 (3)8.2.2 电柜面板指示灯显示部分 (3)8.2.3 电柜面板操作部分 (4)8.2.4电柜面板现地/远方操作对调速器接收命令的定义 (5)8.3 来自远方操作的指令定义 (6)8.4 调速系统向远方输出的信号定义 (7)8.5 调速系统日常运行及维护规程 (9)8.5.1 机组大修后的检查 (9)8.5.2 手动开机检查及操作前注意事项 (9)8.5.3 手动开机 (9)8.5.4 手动停机 (9)8.5.4 手动复归急停阀及事故阀的注意事项(重要) (10)8.5.4 自动开机 (10)8.5.5 自动停机 (10)8.5.5 A/B机主备用切换 (10)8.5.6 调速器的手自动切换 (10)8.5.6 调速器手动态与自动态增减负荷 (11)8.5.7 调速器及油压装置的巡检与维护 (11)8.调速器操作说明8.1概述调速器接收监控系统、电柜面板操作和人机界面操作的指令,并对这些指令做出响应。
本章将详细介绍电柜面板操作与监控系统指令,以及调速系统在日常及大修后的检查巡检内容作出一些规定。
8.2 电柜面板操作及显示部分调速器电柜面板操作区域也是实现人机交互的一种方式,通过电柜面板的操作可实现调速器运行状态切换,手动开停机及负荷增减,并可实现手动/自动运行之间无扰切换。
通过面板上指示灯和仪表显示可查看调速系统当前运行状态的各主要数据。
电柜控制面板分为四个部分:(※具体参考随机图纸--电柜面板布置图)◆表计显示部分◆指示灯显示部分◆面板操作部分◆人机界面部分(※具体参考本手册第六章《调速器人机界面》)8.2.1 电柜面板表计显示部分◆导叶开度表:显示当前机组导叶开度。
WOODWARD调速器说明书02036
02036LoadSharingModulePulse Width Modulated Output9907-175Installation, Operation, and Calibration ManualManual 02036!WARNINGRead this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.!CAUTIONDo not attempt to service the unit beyond that described in the operating instructions. All other servicing should be referred to qualified service personnel.!CAUTIONTo prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.!CAUTIONElectronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.•Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).•Avoid all plastic, vinyl, and styrofoam (except antistatic versions) around printed circuit boards.•Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.!CAUTIONTo maintain compliance with CE marking requirements, the European Union Low Voltage Directive requires that the Load Sharing Module (LSM) be mounted in an IP43 enclosure as defined in EN60529. Access to the Load Sharing Module must be restricted to qualified personnel.Woodward Governor Company reserves the right to update any portion of this publication at any time. Information provided by Woodward Governor Company is believed to be correct and reliable. However, no responsibility is assumed by Woodward Governor Company unless otherwise expressly undertaken.© 1999 by Woodward Governor CompanyAll Rights ReservedManual 02036 Load Sharing ModuleContentsCHAPTER 1. GENERAL INFORMATION (1)Introduction (1)Description (1)CHAPTER 2. ELECTROSTATIC DISCHARGE AWARENESS (5)CHAPTER 3. INSTALLATION (7)Introduction (7)Unpacking (7)Location Considerations (7)General Wiring Requirements (8)Power Requirements (8)Shielded Wiring (9)Generator Connections (10)Current Transformers (10)Load Sharing Lines, Droop, and Auxiliary Contacts (10)Output to the Caterpillar Digital Electronic Control (11)Synchronization Connections (11)Speed Trim Potentiometer (11)CHAPTER 4. SETUP AND CALIBRATION (13)Introduction (13)Phasing Check (14)Phase Correction Procedure (15)Load Gain Adjustment (19)Droop Adjustment (20)Setting Droop for an Isolated Load (20)Setting Droop for an Infinite Bus (21)CHAPTER 5. THEORY OF OPERATION (23)Introduction (23)Power Supply (23)Power Sensor (23)Load Comparator Circuit (24)Speed Trim Circuit (24)Isochronous Load Sharing (24)Droop Operation (24)Auxiliary Equipment (25)Pulse Width Modulation (25)CHAPTER 6. TROUBLESHOOTING (27)Woodward iLoad Sharing Module Manual 02036ContentsCHAPTER 7. SERVICE OPTIONS (29)Product Service Options (29)Replacement/Exchange (29)Flat Rate Repair (30)Flat Rate Remanufacture (30)Returning Equipment for Repair (30)Packing a Control (31)Additional Instructions (31)Replacement Parts Information (31)How to Contact Woodward (31)Other Service Facilities (32)Additional Aftermarket Product Support Services (32)System Troubleshooting Guide (33)Technical Assistance (36)APPENDIX. LSM CONTROL SPECIFICATIONS (37)Declaration of Conformity (39)Illustrations and Tables1-1.Typical System Using a Load Sharing Module (1)1-2.Outline Drawing of Load Sharing Module (2)1-3.Plant Wiring Diagram of Load Sharing Module (3)1-4.Block Diagram of Load Sharing Module (4)3-1.Preparation of Shielded Cables (9)4-1.Temporary CT Connections (16)4-2.Droop Adjustment (21)ii WoodwardManual 02036 Load Sharing ModuleChapter 1General InformationIntroductionThe Woodward Load Sharing Module is made for use with Caterpillar enginesequipped with a Caterpillar digital speed control with a pulse width modulated(PWM) input. The Load Sharing Module allows use of Woodward powergeneration accessories and allows load sharing between the Caterpillar digitalspeed control equipped engines and engines controlled with Woodward electroniccontrols.DescriptionThe Load Sharing Module provides isochronous and droop load-sharing capability for engines equipped with Caterpillar digital controls in generator set applications.Additional equipment in the control system can include the Woodward SPM-ASynchronizer, Paralleling Phase Switch, Import/Export Control, PrecisionFrequency Control, Automatic Generator Loading Control, and Automatic PowerTransfer and Loading Control.Figure 1-1 shows a typical system using a Load Sharing Module.Figure 1-1. Typical System Using a Load Sharing Module Woodward1Load Sharing Module Manual 02036Figure 1-2. Outline Drawing of Load Sharing Module2WoodwardManual 02036 Load Sharing ModuleFigure 1-3. Plant Wiring Diagram of Load Sharing Module Woodward3Load Sharing Module Manual 02036Figure 1-4. Block Diagram of Load Sharing Module4WoodwardManual 02036 Load Sharing ModuleWoodward 5Chapter 2Electrostatic Discharge AwarenessAll electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.!CAUTIONTo prevent possible serious damage to the Load Sharing Module, do not attempt to service the unit beyond that described in the operating instructions. All other servicing should be referred to qualifiedservice personnel.Follow these precautions when working with or near the Load Sharing Module.1.Before doing maintenance on the Load Sharing Module, discharge the staticelectricity on your body to ground by touching and holding a grounded metalobject (pipes, cabinets, equipment, etc.).2.Avoid the build-up of static electricity on your body by not wearing clothingmade of synthetic materials. Wear cotton or cotton-blend materials as muchas possible because these do not store static electric charges as much assynthetics.3.Keep plastic, vinyl, and styrofoam materials (such as plastic or styrofoamcups, cup holders, cigarette packages, cellophane wrappers, vinyl books orfolders, plastic bottles, and plastic ash trays) away from the Load SharingModule, the modules, and the work area as much as possible.4.Do not remove the printed circuit board (PCB) from the electronic cabinetunless absolutely necessary, and then only after all input power has beenremoved from the unit. If you must remove the PCB from the electroniccabinet, follow these precautions:•Do not touch any part of the PCB except the edges.•Do not touch the electrical conductors, the connectors, or thecomponents with conductive devices or with your hands.•When replacing a PCB, keep the new PCB in the plastic antistaticprotective bag it comes in until you are ready to install it. Immediatelyafter removing the old PCB from the electronic cabinet, place it in theantistatic protective bag.Load Sharing Module Manual 02036 6WoodwardChapter 3InstallationIntroductionThis section contains general installation instructions for the Load Sharing Module. Environmental precautions and location considerations are included to determine the best location for the Load Sharing Module. Additional information includes unpacking instructions, electrical connections, and an installation check-out procedure.UnpackingBefore handling the Load Sharing Module, read Chapter 2, Electrostatic Discharge Awareness. Be careful when unpacking the Load Sharing Module. Check the unit for signs of damage such as bent or dented panels, scratches, and loose or broken parts. Notify the shipper of any damage.Location ConsiderationsConsider these requirements when selecting the mounting location:• Adequate ventilation for cooling• Space for servicing and repair• Protection from direct exposure to water or to a condensation-prone environment• Protection from high-voltage or high-current devices, or devices which produce electromagnetic interference• Protection from excessive vibration• An ambient operating temperature range of –40 to +70 °C (–40 to +158 °F) Do not mount the Load Sharing Module on the engine.Figure 1-2 is an outline drawing of the Load Sharing Module. Install the unit near the electronic engine control. It may be installed in any position.To maintain compliance with CE marking requirements, the European Union Low Voltage Directive requires that the Load Sharing Module (LSM) be mounted in an IP43 enclosure as defined in EN60529. Access to the Load Sharing Module must be restricted to qualified personnel.General Wiring RequirementsThe circled ground symbol identifies the Protective Earth Terminal.This terminal must be connected directly to protective earth using agrounding conductor at least as large as those used on terminals 1through 9. The insulation of the grounding conductor must be of greenand yellow color.This symbol identifies functional or EMC earth. This terminal is to beused for cable shield connections only. It is not to be used as aprotective earth terminal.External wiring connections and shielding requirements for a typical installation are shown in the plant wiring diagram, Figure 1-3. These wiring connections and shielding requirements are explained in more detail in this chapter.To maintain compliance with CE marking requirements, the Low Voltage Directive requires that the Load Sharing Module must only be connected to Class III equipment.Wiring for the Load Sharing Module must be suitable for at least 90 °C (194 °F) and also be suitable for the maximum installed operating temperature.The Load Sharing Module must be permanently connected and employ fuses or circuit breakers in each of the PT lines to limit current to the LSM PT inputs to no more than 5 A. In addition, a 2 A fast-acting fuse or circuit breaker must be provided in the 24 Vdc power supply line.All terminal block screws must be tightened to 0.56 to 0.79 N·m (5.0 to 7.0 lb-in). To maintain compliance with CE marking requirements, the EMC Directive requires that all shields be connected to the terminals provided per the plant wiring diagram, Figure 1-3.Power RequirementsThe Load Sharing Module is powered from a 24 Vdc source. The 24 Vdc source must be a minimum of 18 Vdc and a maximum of 32 Vdc continuous. If a battery is used for operating power, an alternator or other battery charging device is necessary to maintain a stable supply voltage.!CAUTIONTo prevent possible serious damage to the Load Sharing Module, make sure the alternator or other battery charging device is turned off or disconnected before disconnecting the battery from the unit.Shielded WiringAll shielded cable must be twisted conductors with either a foil or braided shield. Do not attempt to tin (put solder on) the braided shield. All signal lines should be shielded to prevent picking up stray signals from adjacent equipment. Connect the shields to the terminals indicated in the plant wiring diagram. Wire exposed beyond the shield must be as short as possible.The other end of the shields must be left open and insulated from any other conductor. Do not run shielded signal wires with other wires carrying large currents. See Application Note 50532, EMI Control for Electronic Governing Systems, for more information.Where shielded cable is required, cut the cable to the desired length and prepare the cable as instructed below and shown in Figure 3-1.Figure 3-1. Preparation of Shielded Cables1. Strip outer insulation from both ends, exposing the braided or spiral wrappedshield. Do not cut the shield on the end nearest to the Load Sharing Module.Cut off the shield on the end away from the unit.2. Use a sharp, pointed tool to carefully spread the strands of the shield.3. Pull the inner conductors out of the shield. Twist braided shields to preventfraying.4. Connect lugs to the shield and to the control wires. Number 6 slotted or roundcrimp-on terminals are used for most installations. Connect the wires to the appropriate terminals on the module.Installations with severe electromagnetic interference (EMI) may require shielded wire run in conduit, double shielded wire, or other precautions.Generator ConnectionsNOTE Use 1 mm² (18 AWG) or larger wire for all PT and CT connections.The spacing between the lugs on terminals 3 and 4 must be 6.5 mm(0.256 inch) or greater to comply with the European Union LowVoltage Directive (see Figure 1-3). The lugs must have insulatedsleeves.IMPORTANTConnections from the potential transformers and currenttransformers must be made correctly in regard to the three phasesfor the Load Sharing Module to operate correctly. Sorting out thethree phases at the module is tedious and requires numerousgenerator starts and stops. If at all possible, make sure that the wiringis correctly done at the time of installation and the phases correctlyand permanently identified at the generator and at the module.Connect the PT output from the A leg to terminal 1. Connect the PT output fromthe B leg to terminal 2. Connect the PT output from the C leg to terminal 3. Sizethe potential transformers to produce 100–240 Vac.Current TransformersPower source current transformers should be sized to produce 5 A secondarycurrent with maximum generator current (3–7 A secondary current at full load isacceptable). CT burden is 0.1 VA. To prevent lethal high voltage from developingon leads to the terminals, the Load Sharing Module contains internal burden whichmust be connected across the power source current transformers whenever the unitis running. Ammeters may be installed on the leads from the current transformers.Connect phase “A” CT to terminals 4 and 5. Connect phase “B” CT to terminals 6and 7. Connect Phase “C” CT to terminals 8 and 9. Observe correct phasing asshown in the plant wiring diagram, Figure 1-3.Load Sharing Lines, Droop, and Auxiliary ContactsThe droop contact for selecting droop or isochronous operation is wired in serieswith the circuit breaker auxiliary contact between terminals 13 and 14. When boththe droop contact and circuit breaker auxiliary contact are closed, the LoadSharing Module is in the isochronous load sharing mode. In this mode the internalload-sharing-line relay is energized, the droop signal is disabled, and the loadmatching circuit is connected to the load-sharing lines, permitting isochronous loadsharing.The Load Sharing Module is in the droop mode when EITHER the droop contactor the circuit breaker auxiliary contact is open. If the droop contact is open, theLoad Sharing Module remains in the droop mode even when the circuit breakerauxiliary contact is closed. If droop is not desired when the auxiliary contact is open, turn the droop potentiometer fully counterclockwise.Use a single pole, single-throw switch with a 0.1 A minimum rating for the “open for droop” switch.Output to the Caterpillar Digital Electronic Control Use twisted 0.5 mm² (20 AWG) or larger shielded wire to connect the pulse-width modulated output signal from terminals 19(+) and 20(–) to the Caterpillar control. Connect the shield to terminal 21 only. Do not connect the shield at the Caterpillar control end of the wiring.Synchronization ConnectionsIf an SPM-A synchronizer is used, connect twisted-pair 0.5 mm² (20 AWG) or larger shielded wire from the synchronizer to terminals 24(+) and 25(–). Tie the shield to terminal 21. Do not connect the shield at the synchronizer end of the wiring.Speed Trim PotentiometerIf a speed-trim potentiometer is used, connect a 10 k 10-turn potentiometer to terminals 26 (CW), 27 (wiper), and 28 (CCW). Use 0.5 mm² (20 AWG) or larger shielded wire, and connect the shield to terminal 21. Do not connect the potentiometer end of the shield. The potentiometer is used to move the speed setting when manually synchronizing the generator or to change load demand in droop mode.Chapter 4Setup and CalibrationIntroductionUse this calibration procedure after a Load Sharing Module is installed on a generator set, to obtain the needed operating characteristics during load sharing.1.Check that the proper voltage is connected to terminals 15(+) and 16(–).Proper polarity must be maintained. See the plant wiring diagram, Figure 1-3.2.Remove wires from load sharing line terminals 10 and 11, and from theSPM-A Synchronizer (if used) at terminals 24 and 25.3.Select isochronous operation by shorting terminals 13 and 14.4.If a speed setting potentiometer is used, set it to mid position (50%).!WARNINGTO PROTECT AGAINST POSSIBLE PERSONAL INJURY, LOSS OF LIFE, and/or PROPERTY DAMAGE EACH TIME you START the engine, turbine, or other type of prime mover, BE PREPARED TO MAKE AN EMERGENCY SHUTDOWN to protect against runaway or overspeed should the mechanical-hydraulic governor(s), or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), thelinkage(s), or the control devices fail.5.Start the engine according to the engine manufacturer’s instructions. Adjustthe engine for rated speed. Apply full load to the generator set.NOTE The most accurate calibration is made at full load. However, if it is notpossible to run the generator set at full load, run it at less than fullload, and reduce the voltage readings given in this calibrationprocedure proportionally. For example: run a 200 kW generator set at100 kW and divide all voltages given in this calibration procedure by2. If you reduce the load in this manner, be sure to reduce it by thesame amount throughout the calibration procedure.6.Set the LOAD GAIN potentiometer fully clockwise.7.Check the load signal voltage between terminals 22 and 23. Adjust the LOADGAIN potentiometer for 6.0 Vdc signal. If this voltage is not obtainable, setthe load signal as close as possible to 6 Vdc.8.Remove the load from the generator set.9.Check the voltage between terminals 22 and 23. This voltage should be 0.0 ±0.25 Vdc. If this voltage is not correct, the Load Sharing Module unit isfaulty or there may still be load on the generator.Phasing Check!WARNINGA high voltage across open CTs (current transformers) can cause death or serious injury. Do not disconnect a CT from the Load Sharing Module while the engine is running. The CTs can develop dangerously high voltages and may explode if open circuited while the engine is running.For this check, the generator set must be running isochronously, not paralleled, and with a power factor greater than 0.8.10.Check that the potential connections are made as follows and correct them ifthey are not.• Phase A to terminal 1• Phase B to Terminal 2• Phase C to Terminal 3NOTE The most accurate calibration is made at full load. However, if it is notpossible to run the generator set at full load, run it at less than fullload, and reduce the voltage readings given in this calibrationprocedure proportionally. For example: run a 200 kW generator set at100 kW and divide all voltages given in this calibration procedure by2. If you reduce the load in this manner, be sure to reduce it the sameamount throughout this calibration procedure.11.Start the engine and apply full load to the generator set.ing a dc voltmeter, measure the load signal at terminals 22 and 23. Adjustthe load gain potentiometer to give a 6 Vdc load signal. If 6 Vdc is notobtainable, set the load signal as close as possible to 6 Vdc. Record thisvoltage.13.Shut down the generator set.!WARNINGA high voltage across open CTs (current transformers) can cause death or serious injury. Do not disconnect a CT from the Load Sharing Module while the engine is running. The CTs can develop dangerously high voltages and may explode if open circuited while the engine is running.14.Disconnect the wire from terminal 5 that comes from the phase “A” CT andconnect both wires from this CT to terminal 4.15.Start the generator set and apply full load.16.Measure the load signal at terminals 22 and 23. If the phase “B” and “C”current transformers are connected correctly, this voltage will be 1/3 lower than the voltage recorded in step 13. For example: if the reading was 6 volts in step 13, the reading in this step should be approximately 4 volts.17.Shut down the generator set.18.Reconnect the phase “A” CT wire to terminal 5.19.If the reading in step 16 was correct, proceed to Load Gain Adjustment laterin this chapter. Otherwise, perform the following Phase CorrectionProcedure.Phase Correction ProcedureIf this procedure is followed, the correct connection of the current transformers is assured; the correct CT will be connected to the correct input on the Load Sharing Module with the correct polarity. Use this procedure only if the Phasing Check indicates that the phasing is incorrect.A CT for any phase (A, B, or C), will produce the most positive load signal voltage when it is connected, in the proper polarity, to the terminals on the Load Sharing Module which correspond to the same phase. Any other connections of this CT will produce a less positive load signal voltage. This procedure makes trial connections of the first CT to all three CT inputs on the Load Sharing Module, polarized both ways on each CT input. The load signal voltage is recorded for each connection, and the CT is then connected to the CT input terminals that produced the most positive load signal voltage and with the polarity that produced the most positive load signal voltage.In a like manner, the second CT is tried on each of the two remaining CT input terminals in each polarity, then connected, in the correct polarity, to the terminals which produced the most positive load signal voltage.The remaining CT is then connected to the remaining CT input and the load signal checked for each polarity. This CT is then connected to the CT input, polarized so that it produces the most positive load signal voltage.When the procedure is completed, all three CTs are connected to the proper CT inputs on the Load Sharing Module, with the correct polarity, and are now labeled with their correct designations.The procedure for correcting phase wiring requires that the generator set be shut down and the current transformers disconnected many times. For convenience during the phasing check, the temporary method of connecting the current transformers shown in Figure 4-1 is recommended. By connecting a burden resistor (a 0.5 , 20 W resistor), across each current transformer, that current transformer can be disconnected from the Load Sharing Module after removing all load. The connections between the terminal strip and the Load Sharing Modulecan be changed with the generator set running; however, remove all load before any changes in connections are made. Do not disconnect a wire from a current transformer with load on the system. After completion of the procedure remove the terminal strip and the resistors.Figure 4-1. Temporary CT Connections!WARNINGA high voltage across open CTs (current transformers) can cause death or serious injury. Do not disconnect a CT from the Load Sharing Module while the engine is running. The CTs can develop dangerously high voltages and may explode if open circuited while the engine is running.For this procedure, the generator set must be running isochronously, not paralleled, and with a power factor greater than 0.8.1.Start with the generator shut down.bel each CT wire with the phase and polarity that you think it should be.Even though this identification may prove to be wrong during this procedure, this step is necessary so that the individual wires may be identified during the description of the procedure.3.Disconnect the phase “B” CT wires from terminals 6 and 7 and connect thesetwo wires together. Use a small screw and nut and tape the connection.4.Disconnect the phase “C” CT wires from terminals 8 and 9 and connect thesetwo wires together. Use a small screw and nut and tape the connection.5.Connect the two wires from the phase “A” CT to phase “A” input terminals 4and 5.!WARNINGTO PROTECT AGAINST POSSIBLE PERSONAL INJURY, LOSS OF LIFE, and/or PROPERTY DAMAGE EACH TIME you START the engine, turbine, or other type of prime mover, BE PREPARED TO MAKE AN EMERGENCY SHUTDOWN to protect against runaway or overspeed should the mechanical-hydraulic governor(s), or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), thelinkage(s), or the control devices fail.6.Start the engine and apply full load.7.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.8.Shut the generator set down and reverse the phase “A” wires on terminals 4and 5.9.Start the engine and apply full load.10.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.11.Shut the generator set down.12.Remove the phase “A” CT wires from terminal 4 and 5 and connect the phase“A” CT wires to the phase “B” input terminals 6 and 7.13.Start the engine and apply full load.14.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.15.Shut the generator set down and reverse the phase “A” CT wires on terminals6 and 7.16.Start the engine and apply full load.17.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.18.Shut down the generator set.19.Remove the phase “A” CT wires from terminal 6 and 7 and connect the phase“A” CT wires to the phase “C” input terminals 8 and 9.20.Start the engine and apply full load.21.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.22.Shut the generator set down and reverse the phase “A” wires on terminals 8and 9.23.Start the engine and apply full load.24.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.25.Shut down the generator set.26.Remove the phase “A” CT wires from terminal 8 and 9 and connect the wiresto the pair of terminals, in the same polarity, that produced the most positive load signal voltage.27.Untape and disconnect the Phase “B” CT wires. Connect the phase “B” CTwires to one pair of the two remaining CT input terminals on the LoadSharing Module.28.Start the generator set and apply full load.29.Measure the load signal voltage at terminals 22 and 23 and record thisvoltage.30.Shut the generator set down and reverse the phase “B” wires on the CT inputterminals.31.Start the engine and apply full load.32.Measure the load signal voltage between terminals 22 and 23 and record thisvoltage.33.Shut down the generator set.34.Remove the phase “B” CT wires from the terminals they are connected to andconnect them to the remaining pair of CT input terminals on the LoadSharing Module.35.Start the generator set and apply full load.36.Measure the load signal at terminals 22 and 23 and record this voltage.37.Shut the generator set down and reverse the phase “B” wires on the CT inputterminals.38.Start the engine and apply full load.。
高低压绕线电机水电阻调速器说明书
TGD系列高低压绕线电机水电阻调速器使用说明书一、 产品简介 1、 概述本产品主要通过改变绕线电动机转子回路串烧的电阻而达到调节电动机转速的目的,是大中型风机、水泵节能改造选调速设备,应用于建材、冶金等工业部门的风机、水泵及其它类似设备的大中型绕线式交流异步电动机的起动与调速。
除适用于风机水泵类的调速器外,本公司还可根据用户要求生产其他类型的专用调速器。
2、 型号说明TGD二、 基本原理TGD 系列高低压绕线电机水电阻起动调速器是通过伺服传动装臵平滑地调整液体电阻中两极板间的距离来改变串入电机转子回路中的电阻大小达到调整电机转速的目的,电阻越大,电机转速越低;电阻为零,电机达到全速。
电机在调速运行状态下电阻长期通电所产生的热量由交换装臵进行散热,即将调速器中的液体强制泵入换热器额定功率设计序号 水电阻调速器使用循环冷却水散热。
三、技术特点1、无级调速,调速比可达2:1,也可提供更大调速比的调速器。
2、节能显著:不同的风机高速风方案其电动机电力消耗特性曲线如图1所示,在输出同样风量的情况下,转子回路串电阻比液力偶合器调速方式的电力消耗稍低。
用调风门来调节风量的办法其电力消耗是最大的,如图1所示。
曲线说明:1-风机转速不变,用阀门调风量2-液力偶合器调速调风量3-绕线电机用液体电阻调速器调速调风量4-交流电机调频或绕线电机串级调速调风量5-不计调速装臵功率消耗,在不同量风下通风系统的功率计算值3、兼作电动机起动之用途,不必另外安装起动装臵,而且具备液体电阻起动器起动电流小,起动平稳的优点;4、与变频调速、可控硅串级调速相比更经济可靠实用,维护简单;5、与液力偶合器相比,布臵灵活,使用方便;6、因为风量与转速成正比,该调速器调节风量的线性度更好。
四、技术参数:(见表1)1、TGD主要技术指标见表1。
表1 TGD技术指标2、TGD1-200~TGD1-700的均为机电一体化结构,其结构示意图及外形尺寸分别见表2及图2表2 TGD1-200~TGD1-700外形及安装尺寸图2 TGD1-200~TGD1-700型结构示意图3、TGD1-1000~TGD1-2000为分体式结构,其结构示意图及外形尺寸分别见图3及表3图3 TGD1-1000~TGD1-2000型结构示意图水电阻柜表3 TGD1400-TGD6000外形尺寸注:更大功率电机用水电阻调速器可根据用户要求另行设计制作。
WOODWARD调速器说明书02301a
4–20 mA/1–5 Vdc Speed SetSpecial circuits provide high- and low-limit adjustments. These limits set the maximum and minimum speed that can be set by varying the speed-setting milliamp or voltage reference. The low limit can be set as high as rated speed, if desired, limiting the ability of the process or computer speed setting to reduce speed. If needed, the low-limit setting can be used to control engine operation on loss of the speed-reference signal.The start-fuel limit sets a maximum actuator position during the start sequence. It is biased out of the way when speed reaches the control set point. This feature can be used to limit excessive startup smoke, reduce cylinder wear caused by the washing action of excessive fuel, and help reduce startup time. An external switch connection is provided to disable the start-fuel limit, if desired, to prevent reverse-acting systems from reverting to the start-fuel position on loss of magnetic pickup.All 2301A controls feature an internal, isolated power supply for improved noise immunity and ground-loop protection. The control provides maximum protection from electromagnetic and radio-frequency interference.Outline Drawing of Remote Speed Reference 2301ASPECIFICATIONSSpeed Range An internal switch selects one of the following speed ranges:500 to 1500 Hz1000 to 3000 Hz2000 to 6000 Hz4000 to 12000 HzSpeed Sensing 1 to 30 Vac. Input Impedance is 1 k( at 1 kHz Externally Applied Speed Reference Proportional to 4–20 mA or 1–5 Vdc input. Speed reference isproportional to applicable input signal.SPM-A Synchronizer Input–5 t +5 Vdc for –3.3% to +3.3% or –1.5 to +1.5 Vdc for –1% to 1%speed change. Impedance is 100 k(.Minimum Fuel Opening the external minimum fuel switch will send a minimum-fuelsignal to the actuator. The minimum-fuel switch is an optionalmeans for a normal shutdown. Not to be used for emergencyshutdown.Droop Where droop is required, an external potentiometer is used to setthe desired percentage of droop. Use a 2 k( potentiometer for up to7.5% droop when 2/3 actuator travel is used for 0–100% load. Leavedroop potentiometer terminals open if only isochronous operation isdesired.Failed Speed Signal Override Close the external contact to override the failed speed protectivecircuit when required for start-up.Weight About 1.1 kg (2.5 pounds). May vary slightly depending on model. POWER SUPPLYHigh Voltage Model90 to 150 Vdc or 88 to 132 VacLow Voltage Model20 to 40 VdcADJUSTMENTSStart Fuel Limit Sets actuator current between 25% and 100% of specifiedmaximum actuator current during start-up. Actuate the Start FuelLimit Override when placing a reverse acting system on line.Level Sets speed set point demanded by minimum control signal input.Range Sets speed reference demanded by maximum control signal input.Low Limit Sets minimum speed reference that can be demanded by controlsignal. May be used to set rated speed in the absence of a controlsignal.High Limit Sets maximum speed reference that can be demanded by controlsignal. Prevents control signals in excess of normal from causingoverspeed.Droop Provides 0 to 10% reduction in speed set point reference betweenno load and full load. External potentiometer required.Gain, Reset, and Actuator Compensation Sets dynamic response. Adjustable to accommodate diesel, gas, orturbine engines.CONTROL CHARACTERISTICSSteady State Speed Band±1/4 of 1% of rated speedLoad Sharing Within ±5% of rated load with speed settings matched and theaddition of a Generator Load SensorOperating Temperature–40 to +85 °C (–40 to +185 °F)Storage Temperature–55 to +105 °C (–67 to +221 °F)Maximum Ambient Humidity95% at 38 °C (100 °F)Vibration and Shock Tests Vibration tested at 4 Gs between 5 and 500 Hz. Shock tested at 60Gs.Woodward/Controls IndustrialPO Box 1519Fort Collins CO, USA80522-1519 1000 East Drake Road。
TG-13 TG-17调速器 说明书
简介............................................................................................................................... 23 初始运行....................................................................................................................... 23 速度降速........................................................................Error! Bookmark not defined. 降速率调整................................................................................................................... 24
第二章 安装 ....................................................................... 7
简介................................................................................................................................. 7 接收................................................................................................................................. 7 存放................................................................................................................................. 7 传动轴旋向..................................................................................................................... 8 改变传动轴旋向............................................................................................................. 8 调速器安装................................................................................................................... 17 连接附件....................................................................................................................... 18
(整理)调速器说明书
WZTS—1型可编程微机调速器说明书目录A 总体概论一、概述 (4)二、主要功能 (4)三、主要参数和技术性能 (5)四、主要特点 (6)B 电气部分一、概述 (6)1 整机的主要性能 (6)2 电气部分主要技术性能 (7)3 结构形式 (7)4 调速器电气部分主要特点 (7)二、电气部分硬件构成 (8)1 电气部分系统配置 (8)2 PLC主机模块CPU 224XP CN (9)3触摸式字符型操作终端E-view MD204L (9)4集成智能可控整流模块MJYS-QKZL-30 (9)三、简单原理 (10)1 调速器的调节特性 (11)2 开机特性 (12)3 停机特性 (13)四、人机界面(智能显示单元) (14)1 触摸式字符型显示操作终端 (14)2 指示灯显示 (16)3 开关按钮操作 (16)五、运行操作 (17)1 微机调速器的运行状态 (17)2 电气部分操作介绍 (18)六、电气部分维护及故障处理 (18)1 一般维护 (18)2 故障类型与处理 (19)C 相关图纸1、直流电动机控制回路接线2、WZTS—1型调速器屏后接线及端子图3、WZTS—1型调速器机箱内部接线图A 总体概论一、概述:WZTS—1型微机调速器是适用于高校模拟实验电厂发电机组数字监控平台的配套装置。
主要部件均采用知名厂家产品,技术成熟、可靠。
调速器具有较为完备的功能,技术先进,抗干扰能力强,可靠性较高,完全满足高校模拟实验电厂发电机组对调速器的各项技术要求。
此外,该微机调速器采用高性能可编程控制器——德国西门子公司的S7-200系列PLC作为硬件主体,平均无故障时间MTBF≥50000小时,装置可靠性高;以触摸式字符型带背光源操作终端作为人机界面,现场操作简便;采用先进的集成静止变流模块,实现了微机调速器的全数字式控制;具有485总线接口,可实现远方监控功能。
二、主要功能1、自动调节与控制功能:◆转速调节:在同步发电机空载运行时,可实现机组转速的调整,与自动准同期装置配合,能实现快速并网。
TG 系列网关 用户手册说明书
TG系列网关用户手册版本91.1.0.7日期:2018年2月1日厦门星纵信息科技有限公司目录1.简介 (4)1.1功能 (4)1.2硬件规格 (5)2.系统设置 (7)2.1SIM卡安装 (7)2.2天线的连接 (7)2.3以太网的连接 (7)2.4电源的连接 (7)3.配置TG网关 (8)3.1管理员登陆 (8)4.状态 (10)4.1系统状态 (10)4.1.1中继状态 (10)4.1.2网络状态 (11)4.1.3系统信息 (12)4.2报告 (12)4.2.1通话记录 (12)4.2.2系统日志 (13)5.系统 (14)5.1网络参数 (14)5.1.1LAN设置 (14)5.1.2VPN设置 (15)5.1.3DDNS设置 (15)5.1.4静态路由 (16)5.2安全中心 (17)5.2.1安全中心 (17)5.2.2警报设置 (17)5.2.3证书 (21)5.2.4防火墙规则 (22)5.2.5IP禁止名单 (23)5.3系统参数 (25)5.3.1密码设置 (25)5.3.2日期和时间 (25)5.3.3自定义提示音 (26)5.3.4邮件配置 (26)5.3.5固件升级 (27)5.3.6备份与还原 (28)5.3.7重置与重启 (28)6短信中心 (30)6.1发送短信 (30)6.2SMS联系人 (30)6.3短信发送记录 (31)6.4短信接收记录 (31)6.5短信设置 (32)6.6短信清空设置 (35)6.7USSD (37)6.8API设置 (37)6.9SMS密码设置 (37)7.网关 (39)7.1手机模块列表 (39)7.1.1手机模块列表 (39)7.1.2模块组 (43)7.2VoIP设置 (43)7.2.1VoIP中继 (43)7.2.2中继组 (50)7.2.3SIP设置 (51)7.2.4IAX设置 (55)7.2.5常规设定 (56)7.3路由配置 (57)7.3.1Mobile to IP (57)7.3.2IP to Mobile (59)7.3.3禁止名单 (62)7.3.4回拨设置 (63)7.3.5AutoCLIP设置 (65)1.简介Yeastar TG系列是一款用来连接移动运营商网络与VoIP网络的网关。
woodward TG13 TG17调速器使用手册
警告在安装、操作或维护本设备前,应通读本手册以及与所进行工作有关的所有其它出版物。
应遵循安全指导和注意事项,不按照说明书会引起人身伤害和/或财产的损失。
发动机、透平或其它类型的原动机应配置超速(超温或超压,在合适的场合)停机装置,这些停机装置应完全独立于原动机的控制设备以防止若机械-液压调速器或电子调节器,执行机构、燃料控制器、传动机构、杠杆机构或被控设备故障时的失控飞车引起的发动机、透平或者其它类型原动机的损坏及人身伤亡事故。
当本手册有重大修改时,手册编号所赋字母按字母表的顺序变为下一个字母。
修改的内容由其边上的竖线表明。
WOODWARD调速器公司保留随时修改本出版物的任何部分的权利。
WOODWARD公司所提供的资料被确认是正确和可靠的。
除非另有明确承诺,对于本手册的使用,WOODWARD调速器公司不负任何责任。
WOODWARD调速器公司 1984年保留所有权利目录第一章概述序言说明参考文献第二章安装序言接收贮存驱动轴转向连杆的连接输出油转速调整连杆热交换器的安装(任选)供油何时需要热交换器?第三章调速器的动行和调整序言首次运行转速不等率不等率的调整第四章作用原理序言运行说明油压和分配飞锤的作用导向阀的功能不等率调整杠杆的功能第五章故障排除外表检查定义摆动波动振荡第六章更换零件更换零件资料图示清单1-1 调速器的输出1-2 TG-13调速器2-1 泵壳组件2-2 泵壳组件2-3 油泵传动销的位置2-4 泵壳组件2-5 调速器驱动轴顺时针旋转的装配2-6 调速器驱动轴逆时针旋转的装配2-7a 螺钉转速调整,铸铁壳体TG-13和TG-17调速器的外形尺寸图2-7b 杠杆转速调整,铸铁壳体TG-13和TG-17调速器的外形尺寸图2-7c 杠杆转速调整,压模铸铝壳体TG-13和TG-17调速器的外形尺寸图2-7d 螺钉转速调整,压模铸铝壳体TG-13和TG-17调速器的外形尺寸图2-8 热交换器接口的位置2-9 热交换器的管路示意图3-1 不等率调整杠杆的移动4-1 TG-13和TG-17示意图(小)4-1 TG-13和TG-17示意图(大)6-1 铸铁壳体,螺钉转速调整TG-13和TG-17调速器的零件6-2 TG-13和TG-17顶盖组件的零件(杠杆转速调整)用于铸铁壳体的TG-13和TG-17 6-3 压模铸铝壳体、螺钉转速调整TG-13和TG-17调速器的零件6-4 压模铸铝壳体、螺钉转速调整,带加长驱动轴TG-13和TG-17调速器的零件6-5 TG-13和TG-17顶盖组件的零件(杠杆转速调整)用于铸铝壳体的TG-13和TG-17第一章概述序言本手册04042提供了有关WOODWARD TG-13和TG-17调速器安装、运行和调整、作用原理、故障排除和更换零件的一般说明。
4、调速器功能说明
工业环境中的多数信号都存在干扰,也可能出现信号突然中断等情况。为保证机组 采用的信号更加接近真实值,使得设备更加安全稳定地运行,就必须对这些信号进行处 理,及时判断信号故障,并作出合理的应急处理。 针对本设备运行环境的特点,设备中采用“限幅滤波”的方式对模拟量信号进行处 理, 即不断地检测本周期采样与上周期采样的差值, 越过设置的容忍范围则本次值无效, 反之则有效,当采样数值越过所使用的传感器的有效量程之后会判采样故障。
4-5
调速器功能说明
※注意:调速器工作在任何状态下出现交流、直流工作电源全部消失的情况,调速 器将报大故障和工作电源消失。 调速器在任何工作状态下,由监控系统启动紧急停机流程或者事故停机流程的同 时,必须向调速器下发停机命令。
Байду номын сангаас
4.3 测量及滤波
4.3.1 信号测量
机组模拟量信号包括机端 PT 频率信号、系统 PT 频率信号、齿盘探头频率信号、 导叶接力器行程信号、机组有功功率信号、上位机功率给定信号、蜗壳水压信号等,调 速器通过测频专用模块、模拟量/数字量转换模块实现对以上信号的测量。
率死区自动投入。 调速器工作于“开度模式” ,负荷的调节方式为脉冲调节,调速器通过远方负荷增 减命令或电柜导叶增减旋钮使机组负荷进行增减操作。 调速器工作于“功率模式” ,则通过 LCU 模拟量给定功率或脉冲增减改变功率给定 值,调速器响应功率给定值变化操作导叶接力器使机组功率调节至给定的功率值。 调速器工作于“频率模式” ,则调速器将调整导叶开度,使得机组频率稳定在机组 额定值, “频率模式”下可以通过通讯下发或者导叶开度增减信号改变开度给定,导叶 开度的最终稳定值由控制器通过 PID 运算得出。
WOODWARD调速器说明书02013
Operation of the Low Signal Select (Inverse/Direct) Process Import/Export ControlThe Process Import/Export control compares the input signals to operator-set references. The difference between each input and the reference setting is sent to a circuit which selects the lower speed or power from the prime mover. The output of this circuit is sent, as an operating voltage, to a load or speed control. The load or speed control then changes or maintains the prime mover load or speed and, in turn, the input to the Process Import/Export Control.The Low Signal Select control offers a choice of three different modes of action:• Inverse Process Control:Controls a process where the sensed input signal decreases as the load or speed increases. (Example: where the sensed input is inlet pressure. Also used for import power control.)• Direct Process Control:Controls a process where the sensed input signal increases as the load or speed increases. (Example: where the sensed input is exhaust pressure. Also used for export power control. May be used forImport/Export control with a 4–20 mA transducer.) • Inverse and Direct Process Control:Uses both inverse and direct process inputs to control a process. The controlling action of the Process Control is determined by the sensed-input signal which requires the lowest prime-mover load or speed. (Examples: The Process Control acts as an Inverse Process Control when the controlling input is inlet pressure. The Process Control acts as a Direct Process Control when the controlling input is outlet pressure.)Differential Process ControlThe Differential Process Control subtracts the inverse process input from the direct process input and compares the difference to an operator-set reference. The Process Control output voltage is then sent to a load or speed control which changes or maintains the load or speed of the prime mover to maintain the required differential input to the Process Control.The Differential Process Control is capable of differential process control only. A differential control is required for Import/Export control of electrical generation when a –5 to + 5 Volt or –20 to +20 mA transducer is used.Process Import/Export Control Outline DrawingSPECIFICATIONSInputs from Controlled Parameter1–5 Vdc or 4–20 mAdc signal (0–10 Vdc may be used when using an external control point potentiometer.)±5 Vdc or ±20 mAdc transducer is used with differential unit for import/export control.Outputs:Compatible with most Woodward electronic speed controls and load-sharing controls.Output impedance determined by setting an internal switch.Selections include: High impedanceimpedanceLowLow signal selectHigh signal selectAmbient Temperature Range–40 to +71 °C (–40 to +160 °F)Power SupplyLow Voltage Model Compatible with 12, 24, or 32 Vdc power systems (10 Vdc minimum, 40 Vdcmaximum)High Voltage Model Compatible with 100 to 120 Vac, 45 to 440 Hz, or 125 Vdc (88 to 132 Vac or90 to 150 Vdc)AdjustmentsHigh Limit 0 to 8 Vdc (range)Low Limit –0.6 to high limit settingOptional External High Limit 0 to internal high limit settingInverse Control Point 0 to 5.5 Vdc or 0 to 22 mAdcDirect Control Point 0 to 5.5 Vdc or 0 to 22 mAdcDifferential Units Direct Control Point –5.5 Vdc to 5.5 Vdc (with inverse control point fully clockwise and 0 to 11Vdc external direct control point)Droop 0 to 7.5% with 1 to 5 Vdc or 4 to 20 mAdc input and 0 to 3 Vdc outputGain For setting process control system stability and response time ConstructionWeight: 1.0 kg (2.2 lb)—steel case with durable epoxy-based paint finishTO SPECIFY AN IMPORT/EXPORT CONTROLThe following text is suggested to describe a Process Import/Export control in a system specification:The Process Import/Export control will provide inverse and/or direct process control functions based on watt transducer or process transducer inputs. The Process Import/Export control will be available with either high voltage (88–132 Vac or 90–150 Vdc) or low voltage (10–45 Vdc) power supply inputs. The Process Import/Export control will be available with either Low Signal Select or Differential Process functions. The Process Import/Export control will have on board high limit, low limit, gain, and process set point adjustments. An external high limit potentiometer input will be standard on the Process Import/Export control. The Process Import/Export control will provide 12 or 24 Vdc isolated power supplies for use in providing power for the watt or process transducers. This power supply shall have a current output capacity of 50 mA dc for both 12 and 24 volt power supply outputs. The Process Import/Export control must be UL Listed and CSA Certified (Woodward Governor Company Process Import/Export control or equivalent).WoodwardIndustrialControls PO Box 1519Fort Collins CO, USA80522-1519 1000 East Drake Road Fort Collins CO 80525 Ph: +1 (970) 482-5811 Fax: +1 (970) 498-3058Distributors & Service Woodward has an international network of distributors and service facilities. For your nearest representative, call theFort Collins plant or see the Worldwide Directoryon our website.Corporate Headquarters Rockford IL, USAPh: +1 (815) 877-7441 T his document is distributed for informational purposes only. It is not to be construed as creating or becoming partof any Woodward Governor Company contractual or warranty obligation unless expressly stated in a written sales contract.© Woodward Governor Company, 1988All Rights ReservedTypical System Block DiagramsFor more information contact: 01/12/F。
WoodWardPG-PL型调速器
三、PG-PL调速器基本工作原理
在控制调速弹簧方面是利用操作室调节气压输给 调速器的气鼓薄膜,气鼓薄膜的膨涨带动调速阀柱的 移动,打开由调速器齿轮泵输出的高压油路(有的调 速器在此油路中经过减压后再进入调速阀),使本来 处在封闭状态的调速阀阀口被打开,控制阀阀柱向下 移动而打开调速器齿轮泵输出的高压油路通到控制阀 阀口,一方面在缓冲阀的左边口道流入,从另一方面 高压油通到补偿阀的下端,同时经过针阀的小口渗入 三个方向。
一、Woodward PG-PL调速器简介
PG型调速器主 要由箱体基础加上配 合底座,伺服动力活 塞装置,调速弹簧, 飞锤,飞锤头装置, 还有在动力箱体内的 补偿装置,以及油位 视镜而形成独立的系 统。
二、PG-PL调速器组成部分
PG-PL型调速器基本工作原理图
二、PG-PL调速器组成部分
三、PG-PL调速器基本工作原理
调速器基本工作原理图
三、PG-PL调速器基本工作原理
对缓冲阀来讲,这时左边的油压大于右边的油 压,使缓冲阀活塞向右移动,加强对动力活塞向上 增加油量。对高压油通到补偿阀下端油,也是下面 的油压大于上面的油压,使控制阀向上移动,如果 从转速下降使控制阀向下移动来讲,正好是唱反调, 也就是说使控制阀很快回復原先的位置。对针阀来 将分三路:一方面将高压油通过针阀的阀口帮助推 动动力活塞增加油量外,一方面控制阀的上端与下 端相同,同样道理在缓冲阀的右边口道压力由小同 左边一样大,使缓冲阀活塞回復中间的原来位置。
三、PG-PL调速器基本工作原理
调速器基本工作原理图
三、PG-PL调速器基本工作原理
调速活塞装置设有活塞行程的调节,当调速活塞上移 最低位置,即调速器最低的转速的调校;另一个是调速活 塞向下移动增加最高转速时,为了限制调速活塞再向下, 在调速活塞杆上装设调节顶针,当调速活塞再向下时打开 调速活塞缸内的单向阀,让缸内的油洩漏出来,阻止向下 移动。另外还有地方的调节,即装在控制阀柱上端的停车 杆与调速活塞杆之间移动关系,当调速器转速特别低时, 调速杆向上移动,其顶端面与停车杆上的调节螺母下端的 间隙一接触,已经开始要停车,只要调速杆端面再往上提 ,将令控制阀阀柱打开动力活塞缸内的油泄入油池,调速 器因此而停车。
WOODWARD调速器说明书02021d
• Digital signal processing makes the MSLC resistant to power line distortions and harmonics• Digital communications across the LON reduce susceptibility to noise on the load sharing lines• Three-phase true RMS power sensing makes the MSLC accurate even with unbalanced phase loading and voltage fluctuations• Local Area Network carries plant parameters for use in a distributed control systemOPERATING MODESSynchronizing—The MSLC controls all DSLC-equipped generators to match both frequency and voltage between the local bus and the main, and then closes the utility tie breaker when they are synchronized.Base Load—The MSLC talks over its LON to set all DSLC-equipped generators in isochronous load sharing to a chosen percentage of their individual rated loads and power factor.Import/Export Control—TheMSLC controls real load andreactive power across theutility tie. Real load (kW) iscontrolled by changing theload levels; reactive load(kVAR) is controlled bychanging the power factorreference on all DSLC-equipped system generatorswhich are in isochronous loadsharing.Process Control—TheMSLC control adjusts thereal load on the plantgenerators to maintain aprocess at a chosen level.ADJUSTMENTSThe Woodward Hand Held Programmer makes all adjustments quickly and easily through the control’s ten convenient menus. The control saves all set points in permanent memory, which does not require batteries or other power sources to retain data. The Hand Held Programmer prevents tampering with set points, yet allows entries to be changed at any time. The Hand Held Programmer displays in plain English, so there are no codes to look up or memorize.•Menu 1–Synchronizer•Menu 2–Load Control•Menu 3–Load Limits and Switches•Menu 4–Process Control•Menu 5–Configuration•Menu 6–Calibration•Menu 7–Electric Parameters•Menu 8–Control Status Monitor•Menu 9–Discrete Inputs/Outputs•Menu 0–DiagnosticsTypical Wiring ConnectionsSPECIFICATIONSEnvironmental SpecificationsOperating Temperature.....................................................–40 to +70 °C (–40 to +158 °F)Storage Temperature........................................................–55 to +105 °C (–67 to +221 °F) Humidity...............................................................................95% at 38 °CElectromagnetic Susceptibility.........................................ANSI/IEEE C37.90.2; ANSI C37.90.1-1989Mechanical MIL-STD 810C, Method 516.2, Procedures I, II, V MIL-STD 167, Type IElectrical SpecificationsControl Power Supply Input Operating.............................................................................8–32 Vdc continuous (as low as 10 Vdc, 1.8 A max, or as high as 77 Vdc for upto 5 min) Reverse................................................................................–56 Vdc continuous Burden..................................................................................18 W, 1 A maximumVoltage Sensing Inputs120 Vac Input (L-N) Wye PT Configuration....................65–150 Vac, terminals 4–5, 7–12, 9–12, and 11–12240 Vac Input (L-N) Wye PT Configuration....................150–300 Vac, terminals 3–5, 6–12, 8–12, and 10–12120 Vac Open Delta PT Configuration...........................65–150 Vac, terminals 3–5, 6–8, 8–10, and 10–6240 Vac Open Delta PT Configuration...........................150–300 Vac, terminals 3–5, 6–8, 8–10, and 10–6 Phases.................................................................................Three phase utility bus, single phase generator bus Frequency............................................................................45–66 Hz Burden..................................................................................Less than 0.1 VA per phase Accuracy...............................................................................0.1% of full scaleCurrent Transformer Inputs (CTs) Current..................................................................................0–5 Arms, 7 Arms max. Frequency............................................................................56 to 66 Hz Burden..................................................................................Less than 0.1 VA per phase Accuracy...............................................................................0.1% of full scale Phases.................................................................................Three phase utility busDiscrete Inputs ...................................................................18–40 Vdc @ 10 mAAnalog Inputs......................................................................4–20 mA @ 243 A or 1-5 Vdc @ 10 k AAnalog Outputs...................................................................Speed Bias: ±2.5 Vdc, 0.5–4.5 Vdc, 1–5 Vdc across 243 A, or 500 Hz PWMVoltage Bias: high in ±9 Vdc, low in ±3 Vdc, current 50 mARelay Driver Outputs..........................................................18–40 Vdc @ 200 mA sinkLocal Area Network ...........................................................Echelon® LonWorks™ Technology, Standard Protocol, 1.25 MBPS Calibration and Diagnostics Port ...................................RS-422ComplianceUL/cUL..................................................................................ListedMSLC PartVersion N umberWye, 120 or 240 Vac9907-004Open delta, 120 Vac9907-005Open delta, 240 Vac9907-006MSLC/DSLC Hand Held Programmer9907-205PO Box 15191000 East Drake Road Fort Collins CO, USA 80522-1519Ph: (1)(970) 482-5811 Fax: (1)(970) 498-3058 Plants & Subsidiaries Australia (New South Wales) Brazil (Campinas)China (Tianjin)Germany (Aken/Elbe)India (Haryana)Japan (Tomisato & Kobe) Netherlands (Hoofddorp & Rotterdam)SingaporeUK (Reading, England, & Prestwick, Scotland)US (Colorado, Illinois, Michigan, New York, South Carolina, Tennessee) Branch/Regional Offices China (Beijing)Czech Republic (Plzen) Germany (Tettnang)Korea (Pusan)Mexico (Mexico City)New Zealand (Christchurch) Poland (Warsaw)UAE (Abu Dhabi)UK (Dundee, Scotland)US (Alabama, California, Illinois, Pennsylvania, Texas, Washington) Distributors & Service Woodward has an international network of distributors and service facilities. For your nearest representative call(1)(800) 835-5182 or see the Worldwide Directory on our web site (). CORPORATE HEADQUARTERS Rockford IL, USAPh: (1)(815) 877-7441T his document is distributed for informational purposes only. It is not to be construed as creating or becoming part of any Woodward Governor Company contractual or warranty obligation unless expressly stated in a written sales contract.© Woodward Governor Company, 1993All Rights ReservedMSLC Outline DrawingDSLC™ Control in a Parallel Bus/Utility Parallel Application with an MSLC (Master Synchronizer and Load Control)For more information contact:99/7/F。
WOODWARD调速器说明书02010b
© Woodward Governor Company, 1993 All Rights Reserved
98/7/L
MAGNETIC PICKUP
OUTLINE DRAWING
For more information contact:
INSTALLATION
The MPU is usually mounted radially to the gear, either through the housing or on a rigid bracket. If the MPU must be mounted off the face of the gear, be sure to check for gear end play in addition to gear runout.
Regional Sales Offices
Canada, Québec China, Beijing Czech Republic, Plzen Germany, Tettnang Korea, Pusan Mexico, Mexico City New Zealand, Christchurch Poland, Warsaw United Arab Emirates, Abu Dhabi United States, Alabama, California, Illinois, Pennsylvania, Texas, Washington
WOODWARD飞机调速器构造原理及调试方法
WOODWARD飞机调速器构造原理及调试方法孙一【摘要】针对WOODWARD 210776\"C系列\"调速器的研究,该类调速器主要安装于TB系列飞机,对调速器构造及工作原理进行深入分析,并详细介绍了调试方法,可以帮助一线维修人员减少维修工时,提高效率,也有助于提高飞行教员和学员对飞机调速器的理论认识.【期刊名称】《技术与市场》【年(卷),期】2019(026)008【总页数】2页(P126-127)【关键词】调速器;调试【作者】孙一【作者单位】中国民用航空飞行学院飞机修理厂,四川德阳618300【正文语种】中文0 引言WOODWARD公司成立于美国,从电子机械和液压运动控制器制造商逐渐发展成为具有130多年发动机控制器设计和制造经验的大公司,在先进的飞行控制系统、集成式驾驶舱控制器、精确执行机构、运动控制和传感方面树立了航空和防御工业的全球标杆。
其产品种类主要有电磁阀、调速器、调节控制系统、电控液压放大器、执行器、电流压力转换器等,广泛应用于航空、工业发动机及发电控制。
WOODWARD公司所制造的调速器型号众多如210776、210761、210681、210681等,本文主要针对WOODWARD 210776“C系列”调速器进行研究。
210776 C调速器主要安装于TB系列飞机,其作用是对螺旋桨变距滑油压力的控制,以实现变距角度的控制,不断地调整螺旋桨的角度使螺旋桨在一定范围内,都保持适中的迎角,使得螺旋桨具有较高的工作效率和发动机保持稳定的工作状态。
1 WOODWARD飞机调速器基本构成WOODWARD飞机调速器由头部组件、壳体组件、基座组件组成。
头部组件包括顶盖、操纵摇臂组件、调速弹簧、柱塞组件。
操作摇臂组件通过外置的控制摇臂可实现人工变距,为了提高工作效率,飞行员操纵变距杆(即转速调节控制摇臂)来压缩或放松调速弹簧,即改变调速弹簧力,这样与之平衡的飞重离心力就需要改变,从而实现发动机转速的改变。
WOODWARDPG_PL调速器的维护和调试[1]
WOODWARD PG 2P L 调速器的维护和调试严慧萍1,蒋湘佺2Maintenance and C ommissioning of W OODW ARD PG 2P L G overnorY an Hui 2ping 1,Jiang X iang 2quan 2(11兰州工业高等专科学校,甘肃省兰州市 730050;21兰化维达建筑安装工程公司,甘肃省兰州市 730060)摘 要:通过分析PG 2P L 机械液压式调速器结构和工作原理,提出日常维持保养方法及在线调试技术,为实践工作提供可行、实用、简单的方法。
关键词:调速器;离心力;在线调试中图分类号:TH13715 文献标识码:B 文章编号:100024858(2002)12200252031 引言调速器是调整与恒定汽轮机转速的部件,它对汽轮机组开停车及正常运行起着至关重要的作用。
其种类很多,常用的有德国某公司的SRI V 全液压调速器、美国某公司的PG 2P L 机械液压式调速器、W OOD 2W ARD505电子调速器等。
2 调速器结构分析211 调速器主要组成(1)汽轮机转速感应机构:用于检测汽轮机实际转速;(2)转速参考设定机构;(3)比较器:用于将汽轮机实际转速与转速参考设定点相比较;(4)执行机构:是与汽轮机的调节气阀相连的机构,用于控制汽轮机进气量。
以上4部分组成的汽轮机转速闭环控制系统如图1所示。
图1 汽轮机转速闭环控制系统 收稿日期:2002207201 作者简介:严慧萍(1964—),女,副教授,硕士研究生,主要从事机械制造及自动化方面的工作。
(4)负载压力 液压缸出口油接比例溢流阀进口腔,负载压力通过AD7520完成D/A 数模转换及电液控制器控制比例溢流阀定压提供。
比例溢流阀输出的压力与输入的电流信号的大小呈线性关系,改变电流的大小,可改变比例溢流阀的输出压力。
电流信号大小改变通过单片机发送给AD7520的数字量大小来实现。
--WOODWARD调速器参数修改及调速阀校验作业指导书
1 适用范围适用于WOODWARD调速器505D、505E。
2 目的熟悉WOODWARD调速器的组态方法,通晓参数所包含的意义并能够修改参数;校验WOODWARD调速阀的阀门特性,使其精确工作。
3 人员资格、人员数量及职责分工3.1人员资格和数量3.1.1熟悉WOODWARD调速器的接线、调速器的组态方法、调速阀供油系统,会正确使用WOODWARD的操作界面,能正确修改参数。
3.1.2作业前应协同分工,一般应有2-3人进行,2人操作,另外人员配合。
3.2 职责分工3.2.1 车间技术组是本作业指导书的主管部门,负责对作业的技术指导、监督、检查。
3.2.2 各班组在作业过程中应严格执行操作技术要求及相应安全生产禁令。
4 工器具准备及要求4.1作业前准备一份空白的505调速器组态菜单。
4.2仪表常用工具一套。
4.3信号发生器一台、万用表一台、对讲机一对。
4.4干净抹布几块。
5作业前检查项目5.1检查对讲机通话是否正常、信号发生器工作是否正常、万用表的电流档是否完好。
5.2检查需要修改的参数是否在所选择的菜单里,参数值是否正确同时对系统的原参数进行记录以备核对。
5.3检查WOODWARD调速器工作正常、无系统报警。
5.4检查WOODWARD调速阀供油压力正常。
5.5检查并确认T&T阀中TRIP阀在全关位置。
6技术要点6.1了解WOODWARD调速器的接线。
6.2了解WOODWARD调速器的组态方法。
6.3了解WOODWARD调速器的操作界面。
6.4了解WOODWARD调速阀的供油系统6.5了解WOODWARD调速器的人机界面7使用具体作业步骤7.1确认T&T阀中的TRIP阀处于全关位置(机组停车)7.2在WOODWARD调速器上按PROGRAM,屏幕上会要求输入PASSWORD,输入密码后就进入组态界面。
7.2.1WOODWARD505调速器的组态菜单共有十三个大菜单,分别为:1、TURBINE START(透平启动)主要包含:启动方式、启动时速度斜率、IDLE设定点、冷启动与热启动的时间设定、冷启动与热启动的斜率设定、IDLE延迟时间、是否使用外部跳闸以及是否使用复位来清除跳闸输出等等。
背压式汽轮机运行规程
背压式汽轮机运行规程(试行)一、汽轮机型号参数:形式: 单级背压式汽轮机型号:B1.4-1.1/0.22汽轮机为单级背压式,型号B1.4-1.1/0.22汽轮机为单侧进汽,采用水平进汽和水平排汽的结构,排汽口左右对称,两侧接排汽管道。
1、设计参数:2、主要零部件材质:二、本体结构本汽轮机为单缸背压式汽轮机,本体主要由转子部分和静子部分组成。
转子部分包括主轴、叶轮叶片、危急遮断器、滚珠推力轴承、汽轮机端半联轴器等;静子部分包括汽缸、汽阀总成、过载阀、喷嘴组、转向导叶环、汽封、轴承、轴承座、调节汽阀连杆、危急遮断器连杆、油箱底盘等。
1、汽缸本机组汽缸为单缸结构,汽缸为铸钢件, 汽缸下部分成两部分,用法兰面和螺栓连接,侧排汽,下半汽缸后部的两侧均设有排汽口,以方便现场布置。
汽阀总成侧挂在汽缸前部的右侧,新蒸汽从汽阀总成入口进入汽阀总成壳体内,由调节汽阀控制进汽量。
汽阀总成通过汽阀座架支撑在油箱底盘上。
过载阀用螺栓固定在汽缸前部的左侧,当汽轮机在额定工况运行时处于常关位置,当负荷增加或超负荷时将其打开,以提高机组出力。
汽缸通过半圆法兰与前轴承座连接,前轴承座通过弹性支撑安放在油箱底盘上,当汽缸受热膨胀时,半圆法兰推动前轴承座向前移动,由弹性支撑承受机组运行过程中的热膨胀。
在汽缸下半底部的排汽口处设有疏水口。
2、蒸汽室本机蒸汽室与汽缸铸为一体。
新蒸汽由调节汽阀控制进入蒸汽室后直接进入喷嘴组。
3、喷嘴组、转向导叶环本机喷嘴组通过螺栓与蒸汽室连接。
转向导叶环则固定在喷嘴组上。
4、汽封本机设有前、后汽封,结构相同。
转子上镶有汽封片,与汽封齿构成迷宫式汽封。
小量漏汽通过轴封冷却器抽出,以冒汽管不冒出蒸汽为准。
5、转子和叶轮本机组转子采用套装式转子,为叶轮套装结构,是带反动度的双列冲动级,双列复速级叶轮“红套”于主轴上。
转子前端装有危急遮断器,同时设有转速传感器齿轮,后部凸起的轮盘上设有盘车用插孔,可用随机供应的盘车工具进行手动盘车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
警告在安装、操作或维护本设备前,应通读本手册以及与所进行工作有关的所有其它出版物。
应遵循安全指导和注意事项,不按照说明书会引起人身伤害和/或财产的损失。
发动机、透平或其它类型的原动机应配置超速(超温或超压,在合适的场合)停机装置,这些停机装置应完全独立于原动机的控制设备以防止若机械-液压调速器或电子调节器,执行机构、燃料控制器、传动机构、杠杆机构或被控设备故障时的失控飞车引起的发动机、透平或者其它类型原动机的损坏及人身伤亡事故。
当本手册有重大修改时,手册编号所赋字母按字母表的顺序变为下一个字母。
修改的内容由其边上的竖线表明。
WOODW ARD调速器公司保留随时修改本出版物的任何部分的权利。
WOODWARD公司所提供的资料被确认是正确和可靠的。
除非另有明确承诺,对于本手册的使用,WOODW ARD调速器公司不负任何责任。
WOODW ARD调速器公司1984年保留所有权利目录第一章概述序言说明参考文献第二章安装序言接收贮存驱动轴转向连杆的连接输出油转速调整连杆热交换器的安装(任选)供油何时需要热交换器?第三章调速器的动行和调整序言首次运行转速不等率不等率的调整第四章作用原理序言运行说明油压和分配飞锤的作用导向阀的功能不等率调整杠杆的功能第五章故障排除外表检查定义摆动波动振荡第六章更换零件更换零件资料图示清单1-1 调速器的输出1-2 TG-13调速器2-1 泵壳组件2-2 泵壳组件2-3 油泵传动销的位置2-4 泵壳组件2-5 调速器驱动轴顺时针旋转的装配2-6 调速器驱动轴逆时针旋转的装配2-7a 螺钉转速调整,铸铁壳体TG-13和TG-17调速器的外形尺寸图2-7b 杠杆转速调整,铸铁壳体TG-13和TG-17调速器的外形尺寸图2-7c 杠杆转速调整,压模铸铝壳体TG-13和TG-17调速器的外形尺寸图2-7d 螺钉转速调整,压模铸铝壳体TG-13和TG-17调速器的外形尺寸图2-8 热交换器接口的位置2-9 热交换器的管路示意图3-1 不等率调整杠杆的移动4-1 TG-13和TG-17示意图(小)4-1 TG-13和TG-17示意图(大)6-1 铸铁壳体,螺钉转速调整TG-13和TG-17调速器的零件6-2 TG-13和TG-17顶盖组件的零件(杠杆转速调整)用于铸铁壳体的TG-13和TG-176-3 压模铸铝壳体、螺钉转速调整TG-13和TG-17调速器的零件6-4 压模铸铝壳体、螺钉转速调整,带加长驱动轴TG-13和TG-17调速器的零件6-5 TG-13和TG-17顶盖组件的零件(杠杆转速调整)用于铸铝壳体的TG-13和TG-17第一章概述序言本手册04042提供了有关WOODW ARD TG-13和TG-17调速器安装、运行和调整、作用原理、故障排除和更换零件的一般说明。
说明WOODW ARD TG-13和TG-17是一种机械-液压转速有差调速器,用于不需要同步即恒转运行场合中的汽轮机控制。
TG-13和TG-17调速器的最大输出轴行程为40度。
空载到满载的推荐行程为2/3的调速器满行程。
TG-13和TG-17调速器最大工作能力以及有关调速器输出轴行程资料见图1-1。
A-过行程以保证达到原动机的限位点B-空负荷至满负荷行程,通常推荐为2/3的调速器满行程C-原动机加速所需的行程D-原动机减速或停机所需的行程在调速器40度的满行程内,TG-13的最大工作能力为12.2英尺-磅,TG-17为17.5英尺-磅。
推荐的调速器输出行程见上图。
在特殊的使用场合,原动机的最小或最大限位可以处于调速器的限位之外。
TG-13和TG-17内置油泵的大小以满足在下列标准转速范围内进行:1100~2400转/分2400~4000转/分4000~6000转/分TG-13调速器运行时的内部油压力为1034KPa,(左图为螺钉转速调整,右图为杠杆转速调整)而TG-17调速器为1379KPa。
任一种调速器都就设置在由用户订货时指明的转速范围。
在有些应用场合中,高转速的调速器(4000~6000转/分)可能需要热交换器。
(见第二章)两种调速器都能在低于规定转速范围之下控制转速,但此时的输出力矩和控制性能将有所下降。
TG-13和TG-17都有两种不同的结构,铸铁壳体和压模铸铝壳体。
调速器的稳定运行要求具有转速不等率,转速不等率在工厂设定,但内部可调。
TG-13和TG-17有两种转速调整方式:标准型为螺钉转速调整。
杠杆转速调整是可选项,并由伸出上盖两边的带花键轴组成构成。
图1-2TG-13调速器注释:TG-13和TG-17调速器由它们的上盖组件形式来加以鉴别。
通常,称为TG-13和TG-17调速器或TG-13和TG-17杠杆式调速器。
两种调速器的驱动轴转向都是单方向的。
对于铸铁和压模铸铝壳体的调速器,都可以现场改变其转动方向。
铸铁壳体调速器能通过内部变化来改变其转向。
而压模铸铝壳体调速器可通过拆除四个螺钉并将泵壳旋转180度来外部改变其转向。
(见第二章)由于动作零件少、耐风雨的结构和自供油,使TG-13和TG-17调速器的维护工作降至最低限度。
调速器的驱动轴带动一台常压油泵。
内部油泵油压由减压阀/蓄能器控制。
安装在调速器壳体每边的油位计便于检查油的状况和油位。
参考文献其它有关的说明参考WOODW ARD发布的资料,这些资料可以网上下载(网址:/ic)编号名称04038 TG-13和TG-17调速器的产品技术规范。
25071 液压调节器的用油。
第二章安装序言在搬运和安装TG-13和TG-17调速器时须小心,尤其是要避免对驱动轴、输出轴和转速调整轴或调整螺钉的撞击。
不当使用会损坏密封件,内部零部件和改变工厂的设定值。
不能用调速器驱动轴作为支承来放置调速器。
接收TG-13或TG-17从工厂发运时是垂直放置在木架上用螺栓固定并用包装箱包装。
壳体的每边都装有一个油位计,通气口/注油口罩盖的位置处于调速器垂直安装运行的位置上。
TG-13或TG-17在工厂试验调整后,放去调速器油,并进行油封和喷漆。
这样,内部零件上都复盖着一层薄薄的油膜以防止生锈。
外伸轴喷涂润滑剂。
在安装和运行或用户重新试验前不需要进行内部清洗。
贮存从我们工厂接收到的TG-13或TG-17调速器可以作短期贮存。
对于长期贮存,贮存在不利环境中(即大的温差、潮湿或腐蚀性空气),或者调速器安装在汽轮机上的贮存,应将调速器注满油并按照WOODW ARD手册25075“用于机械-液压式调节器贮存的商品保护包装”中的保护包装说明采取一定的保护措施。
如果用于水平运行的调速器的通气口/注油罩盖已被拆除,而调速器又需要垂直贮存时,在给调速器注油前应用螺塞来取代罩盖以防止油罩盖处泄漏。
驱动轴转向WOODW ARD调速器驱动轴的转动方向由调速器顶部看其转向加以确定。
注释:从TG-13或TG-17调速器的顶部观察,其正确的转动方向应与铭牌上打印的“CW”(顺时针)或“CCW”(逆时针)一致。
调速器的驱动轴只能作单向旋转,当从调速器顶部看,其转动方向应与安装凸缘处看到的汽轮机轴转动方向一致。
如果调速器油泵的旋转方向不对,就无法建立起油压。
没有油压,油泵部件就开始发热,从而引起转动部件的卡死。
注意!当从调速器和安装凸缘的顶部看,调速器传动与汽轮机驱动的方向必须一致。
不正确的传动转向会损坏调速器。
改变驱动转向不在底座上加工油泵偏心环的TG-13或TG-17(见图2-1)采用下列步骤:图2-1 泵壳组件3.将调速器横放,使冷却器接口朝上。
4.转动驱动轴使键槽朝上。
5.拆去四个泵壳固定螺钉,拆下泵壳。
6.查看泵壳上转向箭头标记,转动偏心环使其销子孔位于所需的轴转向箭头旁。
7.将销子插入偏心环上的销孔中(销子必须低于平面)。
图2-2泵壳组件图2-3油泵传动销的位置8.将油泵的内、外齿轮装入泵壳。
9.确保驱动轴上的键槽朝上,油泵传动上的方头销处于适当位置。
10.将泵壳组件装在驱动轴上,使内齿轮上的槽与油泵传动销对准。
注释:不要为了让内、外油泵齿轮啮合而转动驱动轴,因为转动驱动轴有可能使油泵传动销子掉出来。
油泵传动销子上的方头必须如图2-3所示保持其相对于壳体底部的位置。
11.用四个螺钉将泵壳固定在壳体上,拧紧力矩为33.9N·m。
12.应确保驱动轴旋转自如。
13.将飞锤保持卡圈装在驱动轴上。
在泵壳和卡圈之间留有0.010英寸的间隙,拧紧力矩为5.6N·m。
注释:如果驱动轴不能旋转自如,松开泵壳的四个螺钉,使油泵对中,然后再拧紧螺钉。
在底座上加工油泵偏心环的TG-13和TG-17(见图2-4),采用下列步骤:1.见图2-5和2-6;2.拆去四个泵壳螺钉;图2-4泵壳组件注释:当泵壳旋转180度时,应使泵壳组件平面紧靠调速器壳体(见下面的警告)。
如果让油泵传动轴(124)与飞锤驱动轴(123)脱开的话,(见图6-3)调速器输出时达到最大燃料位置,这可能引起超速的危险。
警告!如果在重新装配油泵时,飞锤轴没有与油泵传动轴连上,会引起人身伤亡和/或设备损坏事故。
3.将泵壳组件旋转180度。
4.将泵壳上的转向箭头对准调速器壳体上的基准点。
图2-5示出了调速器驱动轴顺时针(CW)旋转时的装配。
图2-6示出了调速器逆时针(CCW)旋转时的装配。
图2-5调速器驱动轴顺时针旋转的装配图2-6调速器驱动轴逆时针旋转的装配从图2-5中可以看到,被称作“顺时针”旋转的TG-13或TG-17的装配时应将表明逆时针旋转的转向箭头靠近调速器壳体上的基准点。
而被称作“逆时针”旋转的TG-17装配时,如图2-6所示,应将表明顺时针旋转的转向箭头靠近调速器壳体上的基准点。
这是因为正常的转向定义为从调速器顶部向下看所看到的转向,而在作转向改变时是从调速器的底部看。
5.如果调速器配置了转速调整螺钉,将转速调整螺钉顺时针拧到底。
如果调速器配置的是杠杆转速调整机构,用花键留钣手030943将转速调整轴钣至最大燃料位置,并使其保持在该位置上,这样就能在压缩调速器的调速弹簧以防止调速器驱动轴(124)与飞锤组件(123)脱开(见图6-3)。
应确保驱动轴的花键头与接套啮合。
当重新装上四个螺钉时应保持压紧调速弹簧,拧紧力矩为9.0N·m。
如果高速配备了加长驱动轴的话(见图6-4),其螺钉的拧紧力矩为2.6~7.0N·m。
6.确保驱动轴旋转自如。
7.打开顶盖,确保当油泵传动旋转时,飞锤亦旋转。
飞锤没有啮合好,就有可能需要重新装配油泵。
如果飞锤与油泵传动轴脱开,调速器的输出将处于最大燃料位置,这可能会引起超速的危险。
警告!如果在重新装配油泵时,飞锤轴没有与油泵传动轴连上,会引起人身伤亡和/或设备损坏事故。
调速器安装该调速器能够垂直或水平安装。
当观察安装基座上的调速器时,如果其驱动轴处于垂直或水平位置,就称为垂直或水平安装。