201109学期大学物理上作业1

合集下载

(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

dt dx dt
dx
K
0
v0 K
K
答案 (1)3°36′;(2)0.078
解析 (1)轮胎不受路面左右方向的力,而法向力应在水平方向上.
因而有 Nsin θ=mv21,Ncos θ=mg,所以 tan θ= v21 ,代入数据可得θ=3°36′.
R
Rg
(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为μN′,这里 N′为该时刻地面对车的支
Rcot α. at
(2)S=1att2=1Rcot α. 22
2-4 2-5
答案
R-b cc
解析 v=s′=b+ct,at=c,an=vR2=(b+Rct)2,令 at=an,得 t=
R-b. cc
答案 北偏东 19.4°,170 km/h
解析 设下标 A 指飞机,F 指空气,E 指地面,由题可知:
v0 v
0
作业 2
ABBCF
2-2
(1)gsin θ;gcos θ;(2)-g;2 3v2;(3)v0+bt; 2 3g
b2+(v0+bt)4;(4)1ct3;2ct;c2t4;(5)69.8 m/s
R2
3
R
2-3 答案 (1) Rcot α;(2)1Rcot α
at
2
解析 (1)物体的总加速度 a 为 a=at+an,tan α=aant=(aattt)2=aRtt2,t= R
解析 (1)dx=vdt,dx=vdt=v,adx=vdv, adx = vdv , (-kx)dx = vdv ,-1kx2=1v2+C,因
dv dv a
22
为质点静止于 x=x0,所以 C=-1kx20,所以 v=± k(x20-x2). 2

大学物理练习册(上册)答案

大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

大学物理上课程作业及答案1.doc

大学物理上课程作业及答案1.doc

大学物理上作业1单项选择题第1题A、8质每:和向,B在光滑水平臬而上.滑轮与绳的质®以及空气01力均不计,滑轮与其轴之间的呼擦也不汁.系统无初速地释放,则物体A下落的加速度足:(A) g.(B) g/2.^(0^/3. (D)4^/5.Aw答案:D第2题一根细绳跨过•-•光滑的定滑轮,一端挂一质S为M的物体,另一端被人用双手拉着,人的质呈: m=M / 2.若人相对丁•绳以加速度A0句上爬,则人相对丁•地而的加速度(以竖直向上为正)足:(A)(知。

+ g)/3. (B) - (3g-a0)>(C) 一(2。

: +g)/3. (D)a'w答案:A第3题惯性参考系是牛顿第一定排在《屮不能成立的参考系,以上说法:A、正确B、错误C、不确定D、无意义答案:B第4题下列说法哪一条正确?(A)加速度恒定不变时,物体运动方向也不变.(B)平均速率等于平均速度的大小.#(C )不管加速度如何,平均速率表达式总可以写成>v = (vj + v:) 2 .一(D )运动物体速率不变时,速度可以变化.答案:D第5题下列说法屮,哪一个是正确的?(A)3质点在某时刻的瞬时速度是2^/5,说明它在此后Is内一定要经过路程>(B )斜向上抛的物体,在最萵点处的速度最小,加速度最大>(C )物体作曲线运动时,有可能在某时刻的法向加速度为零>(D )物体加速度越大,则速度越大.答案:C判断题第6题作川在标准物体上的力的人小与标准物体所获得的加速度的人小成反比答案:错误第7题作用力反作用力总是M吋发卞、M吋变化、M吋消失,没冇先后因果的区別答案:错误第8题任何两个物体都相互吸引答案:正确第9题叱标系是固结在参考系上的•组冇刻度的射线、曲线或角度。

答案:||•:确第10题矢fig加指运动的合成与分解,发生在同-•参考系,相对性变换指相对运动,涉及不同参考系答案:正确填空题第11题四种基本力答案:万有引力、电磁力、强相互作川(强力)、弱相互作川(弱力)第12题若S为惯性参考系,则任何对于S作运动的参考系都足惯性参考系。

大学物理1练习册参考答案

大学物理1练习册参考答案

参 考 答 案练习一1-2、DD 3、i ct v v)31(30+=,400121ct t v x x ++=4、 j 8,j i 4+-,4412arctg arctg -+ππ或5解:(1)j t t i t r)4321()53(2-+++=;(2))/(73;)3(34s m j i v j t i dt rd v s t +=++===;(3))/(12s m j dtvd a ==6 解: ∵ xvv t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v练习二:1-2、CB 3、32ct ,ct 2,R t c 42,R ct 2; 4、212t t +,212t+5、解:(1)由23Rbt dt d R dt ds v -===θ得:Rbt dtdv a 6-==τ,4229t Rb R v a n == n n n e t Rb e Rbt e a e a a4296+-=+=τττ6、当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为jgh i gh u v u v AA )sin 2()cos 2('αα++=+=地练习三:1-3、BCB 4、3s ; 5、ωωωωR j t i t R v R y x )cos sin (222+-==+6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v s lv s v v s t s l t l s t v a =+-=+-=-==船船 7、解: kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0 t k e v dtdxv -==0dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=练习四:1-2 AC3、解: 2s m 83166-⋅===m f a x x 2s m 167-⋅-==mf a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=4、解:小球的受力分析如下图,有牛顿第二定律可知:dtdvm F kv mg =--分离变量及积分得:⎰⎰----=-v tFkv mg F kv mg d dt m k00)(解得:))(1(1F mg e kv t m k--=-5、解:取弹簧原长时m 2所在处为坐标原点,竖直向下为x 轴,m 1,m 2的受力分析如上图所示。

大学物理作业及答案详解1-22

大学物理作业及答案详解1-22

大连理工大学大学物理作业及答案详解作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。

B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。

C .试探电荷受力F 的方向就是场强E 的方向。

D .若场中某点不放试探电荷0q ,则0F =,从而0E =。

答案: 【B 】[解]定义。

场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。

2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。

存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。

3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。

答案:y a qy23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==j y a qyj E E y 2322)(2+==∴πεy y a y y a dy dE 2)(23)(2522222⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。

大学物理学上册答案

大学物理学上册答案

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆; (2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

大学物理规范作业上册答案全

大学物理规范作业上册答案全

R1
r3
R 3R
(G
Mm r2
)dr
3R
Em A
R2 R1
G
Mm r3
r
dr
(G Mm )dr
3R
r2
GMm
3R
21
2.一链条长度为L,质量为m , 链条的一端放在桌面上, 并桌用面手上拉要住做,功另A=一端有1/14悬m。在gL桌边,将链条全部拉到
32 解法1:将链条全部拉到桌面上做功的效果 就是使悬在桌边链条的重力势能增加,
比, dv kv 2 ,式中k为正常数,求快艇在关闭发动机
dt
后行驶速度与行驶距离的关系。
解: 作一个变量代换
a kv 2 dv dv dx v dv dt dx dt dx
得到: kv dv kdx dv
dx
v
积分得到: k x ln v v0
v0为初始速度
8
大学物理规范作业上册
02
17
24
2.质量为m的物体放在光滑的水平面上,物体的两边 分别与劲度系数k1和k2的弹簧相连。若在右边弹簧的
末端施以拉力F,问(1)该拉力F非常缓慢地拉过距离l,F
做功多少?(2)瞬间拉到l便停止不动,F做的功又为 多少?
解:(1)拉力作功只增加二弹 簧的弹性势能。
k2l2 l1
k1l1 l2 l
当t=1秒时,其切向加速度的大小at = 4
;法
向解加:ar速度d2的vt 2大i4小i
an= 2
costj
2 cos tj
v
。 dr
dt
4ti sin tj
dt
根据曲线运动的加速度为
at
dv dt

大学物理上课程作业及答案1

大学物理上课程作业及答案1

大学物理上作业1单项选择题第1题 A、B质量相同,B在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A下落的加速度是:答案:D第2题一根细绳跨过一光滑的定滑轮,一端挂一质量为M的物体,另一端被人用双手拉着,人的质量m=M/2.若人相对于绳以加速度A0向上爬,则人相对于地面的加速度(以竖直向上为正)是:答案:A第3题惯性参考系是牛顿第一定律在其中不能成立的参考系,以上说法:A、正确B、错误C、不确定D、无意义答案:B第4题下列说法哪一条正确?答案:D第5题下列说法中,哪一个是正确的?答案:C判断题第6题作用在标准物体上的力的大小与标准物体所获得的加速度的大小成反比答案:错误第7题作用力反作用力总是同时发生、同时变化、同时消失, 没有先后因果的区别答案:错误第8题任何两个物体都相互吸引答案:正确第9题坐标系是固结在参考系上的一组有刻度的射线、曲线或角度。

答案:正确第10题矢量叠加指运动的合成与分解,发生在同一参考系,相对性变换指相对运动,涉及不同参考系。

答案:正确填空题第11题四种基本力___,___,___,___。

答案:万有引力、电磁力、强相互作用(强力)、弱相互作用(弱力)第12题若S为惯性参考系,则任何对于S作____运动的参考系都是惯性参考系。

答案:等速直线第13题质点理想模型是___。

答案:有质量且大小形状忽略第14题圆周运动是位矢的___始终不变的一般曲线运动。

答案:大小第15题某时刻质点的动量对时间的变化率等于该时刻作用在质点上所有外力的___。

答案:合力问答题第16题牛顿第一定律正确说明平衡状态是?答案:质点处于静止或匀速直线运动的状态。

第17题引力质量定义?答案:物体感受外物引力大小的度量是引力质量。

第18题什么是物理学?答案:物理学是研究物质的结构和相互作用以及它们的运动规律的科学。

第19题惯性定义?答案:惯性物体保持自己原有运动状态不变的性质叫惯性。

大学物理(上)练习题解答

大学物理(上)练习题解答

大学物理(上)练习题参考解答第一章 质点的运动1.解:平均速率 Sv t∆=∆,平均速度的大小 r rv t t ∆∆==∆∆S r ∆≠∆ ,v v ∴≠速率 0limt S v t∆→∆=∆,速度的大小 0limt r v t∆→∆=∆当0t ∆→时,r S ∆=∆故(B )正确。

2.解:位移大小 (4)(0)8x x x m ∆=-= 令速度 20dx v b t dt==-=,得3t s =,即在3t s =前后,速度方向逆转,所以,路程(4)(3)(3)(0)10S x x x x m ∆=-+-= 3.解:(1)(2)(1)0.5/21x x v m s -==--(2)296dx v t t dt==-,(2)6/v m s ∴=-(3)令0v =,得0t =或1.5s(1.5)(1)(2)(1.5) 2.25S x x x x m =-+-=4.解:由相似三角形的性质得:21M Mh x x h x -=即 112M h x x h h =-两边对时间求导,得 112M h v v h h =-5.解:(1)t dv a a dt =≠, (2)dr dr dr v dtdtdt=≠=,(3)ds v dt= 正确, (4)t dv a a dt=≠。

6.解:(A )错,因为切向加速度t dv a dt=,速率可能不变,如匀速率圆周运动,切向加速度为零。

(B )2n va ρ=,除拐点外,ρ为有限值,0n a ∴≠,故(B )正确。

(C )n a 反应速度方向变化的快慢,只要速度方向有变化,n a 就不为零。

(D )0t dv a dt== ,0n a a ∴=≠。

(E )dv a dt==恒矢量,质点作匀变速度运动,而非匀变速率运动,如抛体运动。

7.解:2ds ct dt=,2Stds ct dt ∴=⎰⎰,即 31()3s t ct =2t dv a ct dt==,224n vc t a RR==第二章 牛顿运动定律1.解:(1)v kx = ,2dv a kv k x dt∴===,故 2F Ma Mk x == (2)由 dx v kx dt==,得1x txdx kdt x∆=⎰⎰,故 101lnx t kx ∆=2.解:(1)子弹进入沙土后,受的力 F kv =-,由牛顿定律得 dv kv mdt -=分离变量并作积分 0t vvk dv dt mv-=⎰⎰,得/0kt mv v e-=(2)dv dv dx dv kv mm mv dtdx dtdx-===分离变量后作积分m axx vkdx m dv-=⎰⎰,得 0max mv x k=3.解:2p mvj mvj mvj ∆=--=-,应选(D )。

大学物理第一学期练习册答案

大学物理第一学期练习册答案

练习一 质点运动学一、选择题1.【 A 】2. 【 D 】3. 【 D 】4.【 C 】 二、填空题1. (1) 物体的速度与时间的函数关系为cos dyv A t dt ωω==; (2) 物体的速度与坐标的函数关系为222()vy A ω+=.2. 走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3.在第3秒至第6秒间速度与加速度同方向。

4.则其速度与时间的关系v=32031Ct dt Ct v v t==-⎰, 运动方程为x=400121Ct t v x x +=-. 三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==∆✉ (1)轨迹方程:08y 4x 2=-+; (2) j 2r 0=,j 2i 4r 2-=(3) j 4i 4r r r 02-=-=∆,j 2i 2tr v -==∆∆ 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。

如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。

✉ 选取如图5所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分 dt dx x dt dl l=,dt dl V 0-=,dtdx V = 022V xh x V +-=方向沿着X 轴的负方向。

方程两边对时间微分:xa V V 220+=,xV V a 220-=5图3220xh V a -=,方向沿着X 轴的负方向。

3. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。

如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。

✉ 由速度和加速度的关系式:dt dv a =,dxdvv dt dx dx dv a ==vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=练习二 曲线运动和相对运动一、 选择题1. 【 B 】2.【 D 】3. 【 C 】4.【 B 】 二、填空题其速度j t 5c o s 50i t 5sin 50v+-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。

大学物理上册作业详细答案

大学物理上册作业详细答案

练习2 时间、空间与运动学2.5已知质点沿x轴的运动方程x = f ( t), 怎样求其位移和路程?现有一质点按x= 3 t 2 - t 3 m 的规律运动。

试求:(1) 画出x—t图;(2) 最初4s 内的位移;(3) 最初4s 内的路程。

[分析与解答]在直线运动中,当确定了坐标x的正方向后,位移可由始、末两点的坐标之差来计算,即,其数值只与始末位置有关,并且可以是正值(位移与x轴正方向相同),也可以是负值(位移方向与x轴正方向相反);而路程是质点所走过路径的长度,它不仅与始末位置有关,而且与实际路径有关,并且总是正值。

一般来说只有在单向直线运动中(无反向点)两者数值相同,但在有反向的直线运动中,两者数值就不相同了。

(1)各时刻的数值如表所示。

则x—t曲线如题2.5图所示。

(2)最初4s是指从t=0到t=4s的时间间隔,其位移为式中负号表示位移的方向与x轴正方向相反。

若写成矢量式为(3)求路程时,应首先看有无速度反向点,若有,应求出速度反向的时刻和位置。

由令v=0,得t=2s,此时刻 v=0,a=-12,即为反向点。

此时的位置。

则最初4s内的路程由以上计算表明:位移与路程是两个不同的概念。

2.9通过阅读、研究本章例题, 小结一下求解平均速度与瞬时速度的方法。

今有一质点沿y 轴的运动方程为y = 10 - 5 t2 m, 试求:( 1) 1s~1.1s,1s~1.01s,1s~1.000 01s 各时间间隔的平均速度;( 2) 当t = 1s 时的速度;( 3) 通过上述计算, 如何领会瞬时速度和平均速度的关系与区别?( 4) 求t = 1s 时的加速度, 并分析该质点的运动情况;( 5) 本题能不能用来计算平均速度? 为什么?[分析与解答]:(1)按平均速度的定义,因此,欲求,必须求出。

为此,设时刻①时刻②两式相减,得③故平均速度为④则各时间间隔内的平均速度分别为(负号表示沿-j方向)(2)由题意,,故由时的速度为(方向沿方向)或(3)通过以上计算,可知平均速度与时间间隔有关,不同的时间段内的平均速度是不同的,但当时间间隔越小时,平均速度就越趋近于瞬时速度。

大学物理上册习题答案.docx

大学物理上册习题答案.docx

习题一1. 2 解:(1)最初2s 内的位移为为:Zkx = x(2)-x(0) = 0-0 = 0(m/5)最初2s内的平均速度为:v ave = — = —= 0(m / s) At 2__ dxT时刻的瞬时速度为:v(0 = — = 4 —4tdt2s末的瞬时速度为:u(2) = 4 —4x2 = —4%/s(2) Is末到3s末的平均加速度为:%e = 空=讯3)—V。

)= 皂也"“ A? 2 2⑶3s末的瞬时加速度为:a = d=d(4_40 = _4(”〃$2)。

dt dt1. 3解:由题意知,加速度和时间的关系为bQ = --- 1T利用dv = adt,并取积分得b V b 2C L Q H—t dv , V — CL^t -\ - 1T ) I T再利用dx = vdt,并取积分[设t = 0时兀o = 0 ]得\dx — ivdt f — _ af------ 尸J o 2 6厂r(t) = r(0) + f 0(/)力=”'+ *尸](1) 当4 —八=0,即/ = 2s时,到达x轴。

(2) t = 2s时到达x轴的位矢为:r(2) = 12i即质点到达兀轴时的位置为x = 12m, y = 0o1・4解: v(?) = v(0 > [刁⑴力1. 5解:按题意d2xdt2=—G^X-4m/ s12 d 1 2x dv dv dx dv -co x = —— = — = = v —, dt dt dx dt dx/ 、2v = +co\lA 2 —x~ , A 2= — + X QW 丿1. 6解:(1)速度和加速度分别为:v= — = (8t)j+k , dt (2)令r(?) = xi + yj + zk ,与所给条件比较可知x = l, y = 4r 2, z = t所以轨迹方程为:x = l, 丁 = 4于。

1. 7解:在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运4 4动出现往返。

大学物理(上册)参考答案

大学物理(上册)参考答案

大学物理 第一章作业题P21 1.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +==分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即 βωR R =2亦即 t t 18)9(22= 则解得923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1)bt v t sv -==0d dR bt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rba a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a =第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度. 解:2s m 83166-⋅===m f a x x2s m 167-⋅-==mf a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度 1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x --=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t mke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m tk v v d d -=即 ⎰⎰-=vv t m t k v v 00d dmkt e v v -=ln ln 0∴ tm k ev v -=0(2)⎰⎰---===tttm k m ke k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v km m k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m ,方向竖直向下.2.13 作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d,同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量. 解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P88 3.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴ l g23=β(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值;(2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mglω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P145 5.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17mm )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65= 故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程. 解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大.(2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20 于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大学物理(一)练习册参考解答

大学物理(一)练习册参考解答

普通物理A (2)练习册 参考解答第12章 真空中的静电场一、选择题1(C),2(A),3(C),4(D),5(B), 二、填空题 (1). 0, / (2) ; (2). 0 ; (3). -2×103V ; (4).⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε; (5). 0,pE sin ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示.半无限长直线A ∞在O 点产生的场强: ()j i RE-π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理,O 点合场强为:()j i RE E E E+π=++=03214ελBA∞O B A∞∞2. 一“无限长”圆柱面,其电荷面密度为: = 0cos ,式中为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为: φφεσελd s co 22d 000π=π=RE 它沿x 、y 轴上的二个分量为:d E x =-d E cos =φφεσd s co 2200π-d E y =-d E sin =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =002εσ 0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==3. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度;(3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.WORD 格式.整理版按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (40) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()02002εεkSbxdx kS S E E x==+'⎰得到 ⎪⎪⎭⎫⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =4. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为的大平面和面密度为-的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ5.一真空二极管,其主要构件是一个半径R 1=5×10-4m 的圆柱形阴极A和一个套在阴极外的半径R 2=4.5×10-3m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19C)WORD 格式.整理版解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为.按高斯定理有 rE = λ/ 0得到 E = λ/ (20r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R BA B A r rr E U U ελ 120ln 2R R ελπ-=得到 ()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场. 参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l EWORD 格式.整理版按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

大学物理第一册作业答案

大学物理第一册作业答案

第一次 质点运动学一、选择题: 1. C 2.D 3.C 4.A 5.A 6.B 二、填空题:1. 5 ,17m s m s2.212t + , 2 ; 212tt+ ,212t+3. 20m s ,4. rad 0.5(即π90 ︒) 5.6.三、计算题: 1.位移大小为408t t x x x m ==∆=-=,对x求极值,220dx t dt=-= 1t s =,即质点在0到1秒内沿 x 轴正向运动,1秒后反向运动。

路程 1411910t s vdt vdt vdt m ∆==+=+=⎰⎰⎰2.(1)t R v t R v y x sin , cos ωωωω=-=j t R i t R v⋅+⋅-=∴ sin cos ωωωωt R a t R a y x cos , sin 22 ωωωω==j t R i t R a ⋅+⋅=∴ cos sin 22 ωωωω(2) 222) (R R y x =-+ 或: 22x R R y -±=3.dv a dt= 2dv tdt = 两边积分得:20v v t =+由: dx v dt = , 30013x x v t t =++第二次 牛顿运动定律一、选择题 1. B 2.C 3.C 4.B 5. B二、填空题 1. mg ,Mg ; 2. s m i / 5.1; 3.)( 23 23SI j t i t+ ; 4. ) 4 2sin 42cos 4222r m j t A m i t A m ωωωωω-=⋅-⋅- ;5. 2ωg R -;6. ()2214)21 (RS S m ++⋅+⋅ ; 7. m M F +;mM MF+;mM Fx l m M ++)( 三、计算题1.对B :θμμθcos cos 1 1 1 mg N f mg N ===对A : 0cos sin 0sin cos ' 1' 1 2'1 ' 1 2=---=-+θθθθN f Mg N N f f 且:221 '1 1 ' 1 N f N N f f μ=== ∴ A 对地面的压力 )sin (cos cos θμθθ+⋅+=mg Mg N , 方向竖直向下;摩擦力)cos (sin cos θμθθ-⋅=mg f , 方向水平向左2.对1m :1 1 1 a m T g m F =--μ, 对2m :2222 1a m g m T =-μ,.21 21 21 21 2,1 24)2( 222 2 1 2 2 m m m m g F m m g m g m F a a a ++-=+--=∴=μμμ21 1 2222'42 2 m m g m F m g m a m T F +-⋅=+==μμ3(1)物体与板一起运动,故物体受到板的静摩擦力 N ma f s 2==,方向与 F 相同;还受到板竖直向上的支持力 N mg N A 6.19==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

201109学期大学物理上作业1
单选:A、D、A、A、A
判断:对,错、对、错,对
1、万有引力、电磁力、强相互作用(强力)、弱相互作用(弱力)
2、质点处于静止或匀速直线运动的状态
3、引力质量
4、矢积,或者,叉积
5、非保守力
保守力定义?
如果一个力所做的功与物体移动的路径无关,而只决定于物体的始末位置,这样的力称为保守力。

相对运动的定义?
在不同参考系中观察同一物体的运动所给出的运动描述之间的关系问题。

什么是参考系和坐标系?
参考系是描述物体运动时选作参考的物体,坐标系是固结在参考系上的一组有刻度的射线、曲线或角度。

201109学期大学物理上作业2
单项选择题
1、力矩的功就是力所作的功的一部分,以上说法:B
2、质点动量的改变量不等于它所受合外力的冲量,以上说法:B
3、保守力作功与过程无关,与参考系的选取无关,以上说法:A
4、刚体运动时,若在刚体内所作的任意一条直线都始终保持和自身平行,这种运动就称为___A
5、在下列四个实例中,你认为哪一个实例中物体和地球构成的系统的机械能不守恒C
判断题:
1、物体运动状态的变化是力持续作用的累积效应对
2、在仅有保守力作功时,质点的动能和势能可以互相转换,但动能和势能的总和(机械能)保持不变。


3、内力的冲量=0,内力不能改变质点系的动量。


4、在任意时刻,平动刚体上各点的速度、加速度都相同。


5、定轴转动刚体的动能,等于刚体对转轴的转动惯量与其角速度平方乘积的一半,对
填空
1、在保守力场中与质点位置有关的能量称为势能_。

2、刚体内各点都绕同一直线作圆周运动。

则这种运动叫定轴转动。

3、绕定轴转动刚体的动能定理是_绕定轴转动刚体动能的微分,等于作用在刚体上所有外力之功的代数和_
4、质点系的动量定理___。

增量
5、质点的机械能守恒定律为___。

在仅有保守力作功时,质点的动能和势能可以互相转换,
6、但动能和势能的总和(机械能)保持不变
问答题
1、举出至少两种非保守力摩擦力、爆炸力是非保守力
2、机械能定义。

:质点的动能和势能的总和称为质点的机械能。

3、定轴转动刚体的角动量定理的微分形式。

答:绕定轴转动的刚体的角动量对时间的导数,、等于作用在刚体上所有外力对转轴之矩的代数和。

4、请解释完全非弹性碰撞和非完全弹性碰撞。

答:完全非弹性碰撞是碰后不分离,非完全弹性碰撞是碰后分离,动能有损失。

5、平行轴定理。

答案:刚体对任意已知轴的转动惯量,等于刚体对通过质心并与该已知轴平行的轴的转动惯量加上刚体的质量与两轴间垂直距离d平方的乘积。

201109学期大学物理上作业3
单选:B、
1、在波传播过程中,任一时刻媒质中各振动相位相同的点联结成的面叫做___D、
2、谐振动都可用相应的旋转矢量表示,以上说法:A、
3、描述振动系统的固有属性有周期、频率但圆频率(角频率)不是,以上说法:B、
4、质点离开平衡位置的最大距离为D
判断:
1、简谐振动系统机械能守恒,各时刻的机械能均等于起始能量E0。


2、具有一定振动周期和频率的波源,在不同媒质中激起的波的周期和频率是相同的,与媒质的性质有关。


3、平面波的波动方程满足一切平面波。


4、纵波振动方向与波的传播方向相互平行的波。


5、单位时间内通过某一截面的能量称为波通过该截面的能流或能通量。


填空题
机械振动指物体在其平衡位置附近,___随时间t 的周期性变化。

答案:位移
质点离开平衡位置的最大距离为___。

答案:振幅
谐振动在一个周期内的平均动能和平均势能相等,且等于总机械能的___。

答案:50%
振动方向与波的传播方向相互垂直的波叫___。

答案:横波
单位体积中波的能量称为波的___。

答案:能量密度
问答题
写出相位特点定义:
答:相邻波节间各质元相位相同,同起同落,波节两侧各质元相位相反,此起彼落。

机械振动定义。

答:物体在其平衡位置附近,位移x随时间t 的周期性变化。

波的干涉定义。

答:波叠加时在空间出现稳定的振动加强和减弱的分布,称为干涉。

横波定义。

答:振动方向与波的传播方向相互垂直的波。

简谐波概念。

答:如果波源的振动是谐振动,且波所到之处,媒质中各质点均作同频率
的谐振动,这样的波称为简谐波,也叫余弦波或正弦波
201109学期大学物理上作业4
单选:1、使系统状态改变的两种方式B
2、单个分子速率不可预知,大量分子的速率分布是遵循统计规律,是确定的,这个规律也叫D
3、第一类永动机是可能造成的,以上说法:A
4、系统从一种状态变化到另一种状态所经历的过程中的每一中间状态都无限接近平衡态称之为_B
5、对理想气体,内能仅是温度T的函数,是状态函数,以上说法:D
判断题
1、平衡态时分子的速度按方向的分布是各向不均匀的。


2、作功不仅与始末状态有关,还与系统经历的具体过程有关。


3、理想气体的定压摩尔热容大于其定容摩尔热容与摩尔气体常数R之和错
4、理想气体的比热容比只与分子的自由度有关,与气体的温度无关。


5、绝热膨胀过程,温度降低;绝热压缩过程,温度升高。


填空题
分子都在永不停息地作无序热运动,即___。

答案:布郎运动
一瓶氦气和一瓶氮气密度同,分子平均平动动能同,且均处于平衡态,则它们的温度和压强关系___。

答案:P氮气<P氦气
分子的平均平动动能平均地分配在每一个平动自由度上,且每一个平动自由度上的平均平动动能大小都是___。

答案:kT/2
对任一热力学系统, 从状态I变化到状态II的任一过程中,外界对系统作功A?和向它传的热量Q之和等于___。

答案:系统内能的增量
等压过程中, 理想气体吸收的热量, 一部分用于___, 另一部分用于增加系统的内能。

答案:对外作功
问答题
准静态过程定义,简述热力学第一定律。

答案:系统从一种状态变化到另一种状态所经历的过程中的每一中间状
态都无限接近平衡态——准静态过程(平衡过程);对任一热力学系统,
从状态I变化到状态II的任一过程中,外界对系统作功A*和向它传的
热量Q之和等于系统内能的增量。

简述理想气体的分子模型特点。

答案:(1)分子当作质点,不占体积;(因为分子的线度<<分子间的
平均距离);(2)分子之间除碰撞的瞬间外,无相互作用力。

相邻两次
碰撞间的运动是自由运动(忽略重力);(3)弹性碰撞(动能不变);(4)服从牛顿力学。

等压过程中热量转化为什么?
答案:等压过程中, 理想气体吸收的热量, 一部分用于对外作功, 另一部分用于增加系统的内能。

压强定义。

答案:压强是大量分子和容器器壁不断碰撞结果的宏观表现,量值上等于单位时间内与器壁碰撞的所有分子作用于器壁单位面积的总冲量。

焦耳热功当量实验证明什么?
答案:用各种绝热过程使物体升高一定温度, 所需要的功是相同
的。

相关文档
最新文档