济南大学大学物理大作业完整答案
(完整word)大学物理练习册习题及答案1-1
习题及参考答案第一章 运动学x1—1一质点在xy 平面上运动,已知质点的位置矢量为j bt i at r 22+=(其中a 、b 为常量),则该质点作 (A)匀速直线运动 (B )变速直线运动(C)抛物线运动 (D )圆周运动x1—2一质点在xy 平面内运动,其运动方程为)(5sin 105cos 10SI j t i t r +=,则时刻t 质点切向加速度的大小为 (A) (A) 250(m/s 2) (B) )j t 5sin i t 5(cos 250-+(m/s 2) (C ))(m/s j t 5cos 50i t 5sin 502 +- (D )0x1-3质点作曲线运动,r 表示位置矢量,S 表示路程,u 表示速度的大小, a 表示加速度的大小,a t 表示切向加速度的大小,下列表达式中,正确的是 (A)dt ds =υ (B )dt d a υ= (C ) dt dr =υ (D) dt d a t υ =x1—4一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为(A)dt dr (B)dt r d (C)dt r d (D )22)()(dt dy dt dx +x1—5质点作半径为R 的变速圆周运动时的加速度的大小为(设任一时刻质点的速率为u )(A )dt d a υ= (B)R a 2υ= (C )R dt d a 2υυ+= (D)222)()(dt d R a υυ+=x1—6于沿曲线运动的物体,以下几种说法中哪一种是正确的?(A) (A) 切向加速度必不为零。
(B)法向加速度必不为零(除拐点外)。
(C)由于速度沿切线方向,法向分速度为零,因此法向加速度必为零。
(D )若物体作匀速率运动,则其总加速度必为零。
x1—7一质点的运动方程为x =6t-t 2(SI ),则在t 由0至4s 的时间内质点走过的路程为(A) (A ) 10m (B)8 m (C )9 m (D)6 mx1-8某物体的运动规律为t k dt d 2υυ-=,式中的k 为大于零的常数。
济南大学物理答案 相对论答案
第十四章 相对论§14.1-2 狭义相对论的基本原理 洛仑兹变换式一.选择题和填空题1 D2 一切彼此相对作匀速直线运动的惯性系对于物理学定律都是等价的一切惯性系中,真空中的光速都是相等的 3 相对的运动§14.3 狭义相对论的时空观一.选择题和填空题1-6 ABBCA A7 c 23(2.60×108) 3分8 c380(8.89×10-8) 3分二.计算题1 解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s 2分2 解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 )c 354分那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m c 5 4分§14.4 洛仑兹变换式一.选择题和填空题1 A3 c 3分4 c 2分c 2分二.计算题1 解:(1) 从列车上观察,隧道的长度缩短,其它尺寸均不变。
1分隧道长度为 221cL L v -=' 1分(2) 从列车上观察,隧道以速度v 经过列车,它经过列车全长所需时间为v v 0l L t +'=' v02)/(1l c v L +-= 3分 这也即列车全部通过隧道的时间.2 解:根据洛仑兹变换公式: 2)(1/c tx x v v --=' ,22)(1//c c x t t v v --='可得 2222)(1/c t x x v v --=' ,2111)(1/c t x x v v --=' 2分在K 系,两事件同时发生,t 1 = t 2,则21212)(1/c x x x x v --='-' ,∴ 21)/()()/(112122='-'-=-x x x x c v 2分 解得 2/3c =v . 2分 在K ′系上述两事件不同时发生,设分别发生于1t '和 2t '时刻, 则 22111)(1//c c x t t v v --=',22222)(1//c c x t t v v --=' 2分由此得 221221)(1/)(/c c x x t t v v --='-'=5.77×10-6 s 2分§14.5 相对论质点动力学一.选择题和填空题1-5 CACBD 6c 3213分 7 5.8×10-13 2分8.04×10-2 3分 8 20)/(1c m m v -=2分202c m mc E K -= 2分9 4 3分 10 (9×1016 J) c 2 2分(1.5×1017 J) 235c 3分11 )1(20-n c m3分二.计算题1 解:(1) 222)/(1/c c m mc E e v -== =5.8×10-13 J 2分(2) 20v 21e K m E == 4.01×10-14 J 22c m mc E e K -=22]1))/(1/1[(c m c e --=v = 4.99×10-13 J∴ =K K E E /08.04×10-2 3分2 解:设复合质点静止质量为M 0,运动时质量为M .由能量守恒定律可得2202mc c m Mc += 2分其中mc 2为相撞前质点B 的能量. 202020276c m c m c m mc =+=故 08m M = 2分设质点B 的动量为p B ,复合质点的动量为p .由动量守恒定律B p p = 2分利用动量与能量关系,对于质点B 可得42042420224c qm c m c m c p B ==+ 2分对于复合质点可得 420424202264c m c M c M c P ==+ 2分 由此可求得 2202020164864m m m M =-= 004m M = 2分。
大学物理习题与答案解析
dvy dt
kv
2 y
v dvy kdt
2 y
设入水时为计时起点,水面为坐标原点, 0 时,y=0, v y v0 , t 运动过程中t时刻速度为 v y ,将上式两侧分别以 v y和t为积分变量, k 以 和 y 2 为被积函数作积分得: v
v v0 (kv0 t 1)
x x0 vdt A costdt A sin t
0 0
t
t
x A sin t
大学物理
4、一质点在XOY平面内运动,其运动方程为 x at , y b ct 2 式中a、b、c为常数,当质点运动方向与x 轴成 450角时,它的速率为 v 2a 。
则解得
2 t 9
3
3
2 于是角位移为 2 3t 2 3 0.67(rad) 9
大学物理 2 4、一质点作平面运动,加速度为 ax A cost , a y B 2 sin t ,A B,A 0 ,B 0。当 t 0
时,v x 0 0 ,x0 点的运动轨迹。
2 2 t 1s时,v 2e i 2e j (m/s)
t 1s时,a 4e2i 4e2 j (m/s2 )
dv 2t 2t a 4e i 4e j (m/s 2 ) dt
dr 2t 2t v 2e i 2e j (m/s) dt
0
大学物理 6、一质点沿x轴作直线运动,在 t 0时,质点位于x0 2m
2 处,该质点的速度随时间的变化规律是 v 12 3t , 当质点瞬时静止时,其所在的位置和加速度分别为(A) x=来自6m, a=-12 m/s2 .
大物大作业答案(合编版)
A 1 2 B Q2 , 2 0 2 0 2 0 2 0 0 S
(2) (3)
Qd 4 0 S
QB=-Q/4; U c
②CB 间充满介质时同理有:Q′1+Q′2=Q
ECA Q1 Q2 , ECB 0 r S 0S
(1)′ (2)′ ; (3)′
大学物理 II 课程作业(答案)
(2012 年 10 月 4 日 陈辰合编版)
8 真空中的静电场(答案)
一、选择题 1. C; 2.B;3.C; 4.B; 5.B; 6.C; 7.E; 8.A,D; 9.B;10. B,D 二、填空题 ⒈
qb 8 0 R
2 3
, 缺口。 ⒉
q
< ; ⒊ 半径为 R 的均匀带电球面 (或带电导体球) ; 0 , ⒌ 100N/C;-8.85× 10-9C/m2 ;
Q 4 0 R2
0,得 Q
R2 q。 R1
五、附加题 1. 解:在半球的下部再对称地补充一个半球,根据高斯定理, 球内电场强度为零。如果圆形底面上一点电场强度不垂直于底面, 那么如图,上下半球面电场强度叠加将不为零,与前述结论矛盾。 故,半球底面上任何一点电场强度垂直于底面。 2. 解:在细杆上取电荷元 dq=dx (1)球面电荷在线单元 dx 处的电场:
,当 (r>R);
能量密度: w1
1 1 1 er D1E1 0 E12 0 ( )2 ; 3 2 2 2 4 0 R 1 1 1 e 2 D2 E2 0 E2 0 ( )2 2 2 2 2 4 0r
w2
R
总能量: We w1dV w2dV =
Ex d Ex , Ey d Ey , Ez d Ez
大学物理试题大题及答案
大学物理试题大题及答案一、简答题(共30分)1. 请解释牛顿第三定律及其在日常生活中的应用。
(10分)答案:牛顿第三定律,也称为作用与反作用定律,指的是两个物体之间的力是相互的。
即当一个物体对另一个物体施加力时,另一个物体也会对第一个物体施加一个大小相等、方向相反的力。
在日常生活中,这个定律可以解释许多现象,比如当我们推墙时,墙也会给我们一个相等大小的反作用力;当我们走路时,脚对地面施加力,地面也给我们一个反作用力,使我们能够前进。
2. 简述电磁感应定律及其在现代科技中的应用。
(10分)答案:电磁感应定律是由迈克尔·法拉第发现的,它描述了当磁场发生变化时,会在导体中产生电动势。
这个现象是电磁感应的基础,也是发电机和变压器等电气设备工作的基本原理。
在现代科技中,电磁感应被广泛应用于发电、电力传输、无线充电等领域。
3. 描述热力学第一定律及其在能量转换过程中的意义。
(10分)答案:热力学第一定律,也称为能量守恒定律,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
在能量转换过程中,能量的总量保持不变。
例如,在热机中,热能可以转换为机械能;在电池中,化学能可以转换为电能。
热力学第一定律是理解和分析能量转换过程的基础。
二、计算题(共70分)1. 一个质量为2kg的物体从静止开始下落,忽略空气阻力,求物体下落10m时的速度。
(20分)答案:根据自由落体运动的公式,v² = u² + 2as,其中v是最终速度,u是初始速度,a是加速度,s是位移。
由于物体从静止开始下落,所以u=0。
重力加速度g取9.8m/s²,s=10m。
代入公式得v² =2*9.8*10,解得v = √(2*9.8*10) = √196 ≈ 14m/s。
2. 一个电阻为10Ω的电阻器通过一个电流为2A的直流电源供电,求电阻器两端的电压。
(20分)答案:根据欧姆定律,V = IR,其中V是电压,I是电流,R是电阻。
大物习题册答案全套
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a r ρρρωωsin cos += (SI)可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy -==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t cos a m x F A d d ωω=⎰=-022221d a ma x x m ωω⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
大学物理大作业答案(2024)
引言概述:正文内容:一、力学1.牛顿三定律的应用解释牛顿第一定律的原理,并给出实际应用的例子。
找出物体的质心,并计算其位置坐标。
利用牛顿第二定律计算物体所受的合力和加速度。
2.作用力和反作用力解释作用力和反作用力的概念,并给出相关案例。
计算物体所受的作用力和反作用力的大小和方向。
应用牛顿第三定律解决实际问题。
3.动能和动能守恒计算物体的动能,并解释其物理意义。
说明动能守恒定律的原理,给出相应的实例。
利用动能守恒定律解决能量转化问题。
4.力学振动和波动解释简谐振动的特征和公式,并计算相关参数。
介绍波的基本概念和性质,并给出波动方程的解释。
分析机械波的传播和干涉现象。
5.万有引力和天体运动介绍万有引力定律的公式和原理。
计算引力和重力的大小和方向。
描述行星运动的轨道和速度,并解释开普勒定律。
二、热学1.理想气体定律和状态方程解释理想气体和实际气体的区别。
推导理想气体定律,解释每个变量的含义。
计算理想气体的性质和状态。
2.热力学第一定律和功解释热力学第一定律的原理,并给出相应公式。
计算系统的内能变化和热量的传递。
分析功的定义和计算方法。
3.热力学第二定律和熵介绍热力学第二定律的概念和表述方法。
计算熵的变化和热力学过程的可逆性。
解释热力学第二定律对能量转化的限制。
4.热传导和热辐射分析热传导的机制和方法,并计算热传导的速率。
描述热辐射的特性和功率密度。
利用热传导和热辐射解决实际问题。
5.热力学循环和效率给出常见热力学循环的定义和示意图。
计算热力学循环的效率和功率输出。
分析热力学循环的改进方法和应用。
三、电磁学1.静电场和电势描述静电场的特性和形成原理,并给出电势的定义。
计算电场和电势的大小和方向。
利用电势差解决电荷移动和电场中的工作问题。
2.电场和电场强度推导库仑定律和电场强度公式。
计算由点电荷、带电导体和带电平面产生的电场。
分析电场中带电粒子受力和加速度。
3.电容和电容器解释电容和电容器的概念和原理,并计算其电容量。
(完整word版)大学物理大题及答案
1 已知振动曲线如教材P112图所示, 试求: ( 1) 简谐振动方程;( 2) t = 0时振子的运动状态( 如何描述) ? ( 3) t =3/2s 时的相位;( 4) 4s 内振子的位移和路程。
题11.7图??? [分析与解答] (1)由振动曲线可知:A=2cm,T=4s,则ω=2π/T=π/2rad/s, 又因t=0时,由0y =Acos φ,得cos φ=1/2,即φ= ±π/3,由于0v <0, 故取初φ=π/3,则振动方程为 y=2cos(πt/2+π/3)cm(2)当t=0时,振子位于0y =A/2处,并沿-y 方向向平衡位置运动。
(3)t=3/2s 时的相位为 ωt + φ=π/2×3/2+π/3=13π/12 (4)由于T=4s ,所以在4s 内刚好完成一次完整的振动,即回到初始位置。
因此,位移 △y=0,所经历的路程S=4A=8cm 。
2. 已知平面谐波A = 5cm ,ν= 100Hz , 波速u = 400m/ s , 沿x 正方向传播, 以位于坐标原点O 的质元过平衡位置向正方向运动时为时间起点, 试求: (1) 点O 的运动方程; (2) 波动方程;(3) t = 1s 时, 距原点100cm 处质元的相位(1) 要建立O 点的运动方程,关键在于找三个特征量。
由题设条件可知,圆频率ω=2πv=200πrad/s.振幅A=5cm;t=0时,坐标原点O 处质点过平衡位置,且向正方向运动,则O 点的初相位0ϕ =-π/2(或3π/2),于是 O 点的运动方程为 0y =5cos(200πt-π/2)cm(2) 波沿x 轴的正方向传播。
波线上任一点质元的相位较O 点质元落后ωx/u,则波动方程为y=Acos[ω(t-x/u)+0ϕ]=5cos[200π(t-x/400)-π/2]=5cos(200π.t-π.x/2-π/2)cm(3)将t=1s,x=100cm=1m 代入波动方程,得y=5cos(200π-π/2-π/2)=5cos(199π)cmt=1s 时,距原点100cm 处质点的相位为199π(若取230πϕ=,则该点相位为201π)3.将波长λ= 632.8nm 的一束水平的He-Ne 激光垂直照射一双缝, 在缝后D= 2m 处的屏上, 观察到中央明纹和第1 级明纹的间距为14mm 。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
济南大学大学物理练习册振动和波试题
第6章 机械振动基础§6.1-1简谐振动 振幅 周期和频率 相位一.选择题和填空题1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A . [ ]2. 一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -.(B) 2221ωA .(C) 2321ωA -.(D) 2321ωA . [ ] 3.一物体作简谐振动,其振动方程为 )2135cos(04.0π-π=t x (SI) .(1) 此简谐振动的周期T =__________________;(2) 当t = 0.6 s 时,物体的速度v =__________________. 4.√一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________. 0400.cos A x ==φ09030.sin A sin A v =-=-=φφω5. 一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1)若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为 x =______________________. (2)若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为x =_____________________________.二. 计算题1. 一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求: (1) 振动周期T ; (2) 加速度的最大值a m ;(3) 振动方程的数值式.2.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k =25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.§6.1-2简谐运动的能量选择题和填空题1.√ 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2. (C) 2E 1. (D) 4 E 1 [ D ]()12224214221E KA A K E ===2. √ 当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D)ν21.[ B ]3. √一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的[ D ](A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3.总E KA A K Kx E P 412141212121222=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛== 总E E k 43=4. √一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零的状态时,应对应于曲线上的b 、f 点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-kA 的状态时,应对应于曲线上的 a 、e 点.5. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振幅为0.5 cm ,则其振动能量______________.-)]t cos([kA )t (sin kA ϕωϕω2214121222+-=+=2k12E m =v§6.1-3旋转矢量一. 选择题和填空题1. √一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 (A) 1 s . (B) (2/3) s . (C) (4/3) s . (D) 2 s .[ ] 提示:与5题同类型,见5题2. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π. [ ]3. 已知一质点沿y轴作简谐振动,其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是 [ ]题3图 题4图 4.√一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ B ]5.√一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4.[ C ]6. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为(A) π/6. (B) π/3.(C) π/2. (D) 2π/3.(E) 5π/6.[ ]-21B) 21-A21-21--7.√ 一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为为 -ππ或; (2) 振子在平衡位置向正方向运动,则初相为为 2- 23 ππ或;(3) 振子在位移为A /2处,且向负方向运动,则初相为.为 3π8. √一简谐振动用余弦函数表示,其振动曲线如图所示, 则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________.提示:周期T=13-1=12s二.计算题1. 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .该题已讲2. 一简谐振动的振动曲线如图所示.求振动方程.3. √ 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.解:依题意画出旋转矢量图,由图可知两简谐振动的位相差为π21.-§6.2简谐运振动的合成一.填空题1. 两个同方向的简谐振动曲线如图所示.合振动的振幅为_______________________________,合振动的振动方程为________________________________.2.√ 一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___________,初相为_______________.二.计算题一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.该题已讲·--第7章 机械波§7.1机械波的产生 波长 波线及波面 波速一.选择题和填空题1. 在下面几种说法中,正确的说法是:[ ](A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计). (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) 2.√一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则 [ C ] (A)O 点的振幅为-0.1 m . (B)波长为3 m .(C) a 、b 两点间相位差为π21. (D)波速为9 m/s . 3. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 [ ](A)波的频率为a . (B)波的传播速度为 b/a . (C)波长为 π / b . (D)波的周期为2π / a .4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻[ D ] (A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D) D 点振动速度小于零. 5.√一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为 )23c o s (2.02πππ+-t 二.计算题1.√ 一个沿x 轴正向传播的平面简谐波(用余弦函数表示)在t = 0时的波形曲线如图所示.(1) 在 x = 0,和x = 2,x = 3各点的振动初相各是多少? (2) 画出t = T / 4时的波形曲线.. 解:(1) x = 0点 π=210φ; 1分 x = 2点 π-=212φ; 1分x =3点 π3-=φ; 1分(2) 如图所示. 2分xyO 1234t =T /4时的波形曲线§7.2平面简谐波,一.选择题1. √一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 [ C ](A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y , (SI).提示:t=2s 时, 00>'=y O ,y 点向上运动,排除(A )、(B )(D )2.√如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为[ D ](A) ])/(cos[0φω+-=u x t A y . (B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y . (D) })]/([cos{0φω++=u x t A y .二.计算题1. √ 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为 )2c o s(φν+π=t A y 由图可知,t = t '时 0)2c o s(=+'π=φνt A y 22πφν±=+'t π0)2sin(2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ2212分x = 0处的振动方程为 ]21)(2cos[π+'-π=t t A y ν 1分(2) 该波的表达式为 ]21)/(2cos[π+-'-π=u x t t A y ν 3分xuO t =t ′y2. √ 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 t y π⨯=-4c o s 1032 (SI). (1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.解:(1) )20(4cos 1032x t y +⨯=-π (2) B 点相位比A 点落后ππϕ=⨯=∆4205B 点的振动方程为)4cos(1032π-⨯=-t y B πB 点为坐标原点的波动方程为))20(4cos[1032π-+⨯=-xt y π§7.3波的能量一. 选择题与填空题1. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是[ ](A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.2. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4 [ ]3. 当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ] (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大.4. √ 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则 [ B ](A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播. (C) B 点处质元的振动动能在减小. (D) 各点的波的能量密度都不随时间变化.(C) o ',d . (D) b ,f .6. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中ABxu5. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是: [ ](A) o ',b ,d ,f . (B) a ,c ,e ,g .(A) 它的势能转换成动能. (B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D )它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小. [ ]7. √一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是 5J .8. √一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积∆S 1和∆S 2,则通过它们的平均能流之比=21P /P 2122/R R22221144R P R P ππ=§7.4 惠更斯原理 §7.5 波的干涉一.选择题与填空题1. √ S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是 (A) 4I 0,4I 0. (B) 0,0. (C) 0,4I 0 . (D) 4I 0,0. [ D ]S 1外侧:πλλππλπϕϕ2432221212-=--=---)r r (P 点相干加强,振幅为2A ,强为4I 0 S 2外侧:πλλππλπϕϕ=+-=---432221212)r r ( P 点相干相消,振幅为0,强为02.如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为 )212cos(1π+π=t A y ,则S 2的振动方程为(A) )212cos(2π-π=t A y . (B) )2cos(2π-π=t A y . (C) )212cos(2π+π=t A y (D) )1.02cos(22π-π=t A y .[ ]3.√ 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为(A) λk r r =-12. (B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ D ] 4.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为5.(3065) 频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为 0.233m .SS 12 r二.√计算题在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.解:(1) πλπλπλπφk xxx24)2(2±==--=∆ ( k = 0,1,2,…)即 λk x 21±=时,合振幅最大,A A A A 32max =+= 4分 (2) πλπφ)12(4+±==∆k x ( k = 0,1,2,…) 即 4/)12(λ+±=k x 时, 合振幅最小,A A A A =-=2m i n 4分三.√问答题设P 点距两波源S 1和S 2的距离相等,若P 点的振幅保持为零,则由S 1和S 2分别发出的两列简谐波在P 点引起的两个简谐振动应满足什么条件?答:两个简谐振动应满足振动方向相同,振动频率相等,振幅相等,相位差为π.§7.6、7.7 驻波、多普勒效应一.选择题和.填空题1. 在驻波中,两个相邻波节间各质点的振动 [ ](A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同.2. 在波长为λ 的驻波中,两个相邻波腹之间的距离为 [ ](A) λ /4. (B) λ /2. (C) 3λ /4. (D) λ .3. 若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:[ ](A) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI). (B) ]50.0)10(2cos[10.01π--π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI). (D )]75.0)10(2cos[10.01π+-π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI). 4. 电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:[ ](A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. 5.一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ).[ ](A) 810 Hz.(B) 699 Hz.(C) 805 Hz.(D) 695 Hz.6. 两列波在一根很长的弦线上传播,其表达式为y1 = 6.0×10-2cosπ(x - 40t) /2 (SI) y2 = 6.0×10-2cosπ(x + 40t) /2 (SI) 则合成波的表达式为__________________________________________________;在x = 0至x = 10.0 m内波节的位置是_____________________________________ __________________________________;波腹的位置是______________________ _________________________________.7. 电磁波在媒质中传播速度的大小是由媒质的____________________决定的.8. 一静止的报警器,其频率为1000 Hz,有一汽车以79.2 km的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是___________________和______________(设空气中声速为340 m/s).。
大学物理学课后习题答案
习题解答 习题一1-1 |r ∆|与r ∆ 有无不同t d d r 和t d d r 有无不同 t d d v 和td d v 有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v tsd d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d r r r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττ += 式中dtdv就是加速度的切向分量. (tt rd ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理习题练习及答案
直放置,下端悬挂一小球,球的质量为m0,开始时使
弹簧为原长而小球恰好与地接触。今将弹簧上端缓慢
地提起,直到小球刚能脱离地面为止,在此过程中外
力作功为 m2g 2 2k 。
解:小球刚能脱离地面时,弹簧伸长量为 x mg
A弹
mg k
(k x)dx
m2
g
2
0
2k
k
A外
A弹
m2 g 2 2k
第三章 动量守恒定律和能量守恒定律
a)2
2l
(2)链条开始离开桌面的 速度为多大?
以桌面为重力势能零点,根据功能原理 W f E 有
mg(l
2l
a)2
(1 2
mv2
1 2
mgl)
(0
a l
mg
a) 2
v g [(l2 a2 ) (l a)2 ]
l
第三章 动量守恒定律和能量守恒定律
动量守恒和能量守恒内容提要
物理学教程 (第二版)
的位移例为,一个r 质 点4i在恒5 力j F6k(m3)i
5 j 9k (N) 作用下
则这个力在该位移过
程中所作的功为:
(A)
( A) 67 J ,
(B) 91 J ,
( C) 17 J ,
(D) 67 J
分析:W
F r
(4i 5 j 6k )(3i 5 j 9k )
第三章 动量守恒定律和能量守恒定律
动量守恒和能量守恒内容提要
物理学教程 (第二版)
例 一人质量为M,手中拿着质量为m的小球自地
面以倾角 ,初速 v0 斜向前跳起,跳至最高点时以
相对人的速率 u 将球水平向后抛出,问人前进的距离
大学物理大题及答案
内容为:P37-7.8.14.15.19.21.25;P67-8.11.14.17;P123-11.14.15.17.19.21; P161-7.10.12.15;P236-9.10~14.16.18~23.27.28第九章 静电场9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aqa q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r qεe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=Lr qE 20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅sQ E r S E 0i2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时,302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为 re rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL E r <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 0a a x εσl E l E 电势变化曲线如图(b )所示.9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅VV d 1d 0ρεS E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qUE E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.第十章 静电场中的导体与电介质10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E =r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度 02='E 空气中电场强度δd UE -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.第十一章 恒定磁场11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR IrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得 r <R 12211ππ12πr R μr B =⋅21012πR IrμB =R 1 <r <R 2I μr B 022π=⋅rIμB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πRIrμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-21 从太阳射来的速度为0.80×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v第十二章 电磁感应 电磁场和电磁波12-7 载流长直导线中的电流以tId d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tIMd d -=ξ求解. 解1 穿过面元d S 的磁通量为x d xIS B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===ddIdx xIdΦΦμμ再由法拉第电磁感应定律,有tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20dI ΦM μ==当电流以tId d 变化时,线圈中的互感电动势为 tI d t I Md d 21ln π2d d 0)(μξ=-=题 12-7 图12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫⎝⎛+=2π212即B R txRB t ΦE v 2d d 2d d -=-=-=由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰-由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO 即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OPOP E vl αB lo d cos 90sin ⎰=v()()l θB θωlod 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B =由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效. 12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d dd ξ tBr E r k d d ππ22-=⋅解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?第十四章 波 动 光 学14-9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m 双缝间距: d =d ′λ/Δx =1.34 ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ??,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd ()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得d D h 4min λ=. 14-11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ=1.4 ×10-6m . 14-16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为3.0 ×10-2m ,用λ=589.3 nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λNl =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得 T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 14 -18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n =1.40 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了7.0 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.。
大学物理教程练习题答案
大学物理教程练习题答案大学物理教程练习题答案大学物理是一门重要的基础课程,对于培养学生的科学素养和理性思维具有重要意义。
在学习物理过程中,练习题是巩固知识和提高解题能力的重要途径。
然而,很多学生在学习过程中遇到了一些困难,特别是对于一些复杂的题目,往往难以找到答案。
因此,本文将为大家提供一些大学物理教程练习题的答案,希望能够帮助大家更好地理解和掌握物理知识。
1. 力学部分1.1 题目:一个质量为m的物体以初速度v0沿着水平方向从高度h自由落下,求它落地时的速度。
答案:根据牛顿第二定律F=ma,物体在自由落体过程中只受到重力作用,所以F=mg。
根据动能定理,物体的动能变化等于外力做功,即ΔE=mgΔh。
由于物体从高处自由落下,所以Δh=-h。
代入公式得到ΔE=-mgh。
根据动能定理,ΔE=ΔK,所以-mgh=ΔK,即-mgh=mv^2/2-0,解得v=sqrt(2gh)。
所以物体落地时的速度为v=sqrt(2gh)。
1.2 题目:一个质量为m的物体以速度v水平地撞击一个静止的质量为M的物体,碰撞后两个物体一起运动,求碰撞后的速度。
答案:根据动量守恒定律,碰撞前后系统的总动量保持不变。
设碰撞前物体1的速度为v1,物体2的速度为0,碰撞后物体1和物体2的速度分别为v'1和v'2,则有mv1=Mv'1+Mv'2。
根据动能守恒定律,碰撞前后系统的总动能保持不变。
设碰撞前物体1的动能为1/2mv1^2,物体2的动能为0,碰撞后物体1和物体2的动能分别为1/2Mv'1^2和1/2Mv'2^2,则有1/2mv1^2=1/2Mv'1^2+1/2Mv'2^2。
根据以上两个方程,可以解得碰撞后的速度v'1和v'2。
2. 电磁学部分2.1 题目:一个电荷为q的点电荷在真空中以速度v运动,与一个固定电荷Q之间存在库仑力,求点电荷所受到的库仑力的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南大学大学物理大作业答案完整版第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A t ωβωωωββsin 2cos e 22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 00d 4d tt tv=2t 2v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 24rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v二.计算题1.解:选取如图所示的坐标系,以V表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V的大小为: ()2cos 222222αgh u gh uy x ++=+=V V V V 的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f和质量为m 的物块对它的拉力F的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v2. 解:球A 只受法向力N 和重力g m,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/c o s (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -2021kx3. R GmM 32RG m M 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分 (2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m-其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分al -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m v 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ²s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q mt ∆,这时矿砂动量的增量为(参看附图)图1分12v v vm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v 2分设传送带作用在矿砂上的力为F,根据动量定理)(v m t F ∆=∆ 于是 N 2.213.98/)(==∆∆=m q t m F v2分 方向: ︒==︒∆2975θ,sin sin )(θm m 2v v 2分由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ²m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵βθωω2202-=当ω=0 时, rad 612.0220==βωθ物体上升的高度h = R θ = 6.12³10-2 m 2分(3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ²s -2 2分 (2) M r =ml 2β / 12=-0.25 N ²m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 110 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分a§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212m R J m r J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(l m l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ²s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5³10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90³102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A x-由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22c o s (100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。