介电材料类型应用及发展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

介电材料的类型、应用及发展

文博

(建筑科技大学材料与矿资学院,710055)

摘要

介电材料(dielectric material),又称电介质,是电的绝缘材料。介电材料主要包括电容器介质材料和微波介质材料两大体系。

其中用作电容器介质的介电材料,要求材料的电阻率高,介电常量大,在整个介电材料中占有很大比重。它可分为有机和无机两大类,其种类繁多。近年来,新型瓷介电材料获得快速发展,其中独石电容器是典型的代表。随着微波器件的小型化、轻量化、高可靠性化,微波介质材料有了很大发展,并成为新兴的重要介电材料。介电材料分类应用及发展是本课题研究的主要容。

关键词:介电材料,电容器,复合材料,瓷

Abstract

Dielectric materials, also known as dielectric and Electric insulating materials. Dielectric material including dielectric materials for microwave dielectric materials and two systems.

Used as a capacitor dielectric material, requiring the high resistivity of the material, the dielectric constant, dielectric material as a whole accounts for a large proportion. It can be divided into two big categories of organic and inorganic, its range. In recent years, the rapid development of new ceramic dielectric materials, multilayer ceramic capacitors is a typical representative. Microwave device miniaturization, light weight, high reliability of microwave dielectric materials have greatly developed, and become an important emerging dielectric materials. Classification, application and development of dielectric materials is the main content of this study.

Key Words: Dielectric, capacitors, composite material, ceramic

0 引言

电介质材料可用于控制/存储电荷及电能,在现代电子及电力系统中具有重要的战略地位。人们对介电材料的研究最初是从无机压电瓷材料开始的,无机压电瓷材料具有高介电常数和高热电稳定性,但其脆性大、加工温度较高。随

着信息和微电子工业的飞速发展对半导体器件微型化、集成化、智能化、高频化和平面化的应用需求增加,越来越多的电子元件,如介质基板、介质天线、嵌入式薄膜电容等,既要介电材料具备优异的介电性能,又要其具备良好的力学性能和加工性能。因此,单一的无机介电材料已经不能满足上述要求。具有高介电性能的有机功能电介质材料可用于制备高储能密度介质,在脉冲率及电子封装技术等军/民用领域有着引人瞩目的实用前景[1,2]。

近年来,人们通过以聚合物为基体,引入高介电常数或易极化的纳米尺度的无机颗粒或者其它有机物形成聚合物基复合介电材料。无机颗粒与基体间的界面结构把不同材料结合为一个整体,并且对整体的性能产生重要的影响。然而,无机颗粒材料在聚合物体系中易发生团聚,在聚合物中分散不均匀,宏观上出现相分离现象,严重影响了复合材料的加工性能和介电性能。因此,无机颗粒材料和聚合物的界面状态显得尤为重要,无机颗粒的表面修饰为解决上述问题提供了可能[3]。

1介电材料的类型

1.1按性能分类

(铁电陶瓷材料、聚合物材料) (SiLK 、FOx 、MSQ 、Nanoglass )

1.3按性质分类

2 介电材料的应用

在电工技术中,电介质主要用作为电气绝缘材料,故电介质亦称为电绝缘材料。随着科学技术的发展,发现一些电介质具有与极化过程有关的特殊性能。如不具有对称中心的晶体电介质,在机械力的作用下能产生极化,即压电性;不具有对称中心,而具有与其他方向不同的唯一的极轴晶体存在自发极化,当温度变化能引起极化,即具有热释电性;当自发极化偶极矩能随外施电场的方向而改变,它的极化强度与外施电场的关系曲线与铁磁材料的磁化强度与磁场的关系曲线极为相似,即具有电滞曲线(铁电性)。具有压电性、热释电性、铁电

性的材料分别称为压电材料、热释电材料、铁电材料。这些具有特殊性能的材料统称为功能材料。它是电介质的一个重要组成部分。可用作机械、热、声、(空气、N 2、He 、O 2、H 2、CH 4) (苯、CCl 4、汽油、煤油、乙醇) (金刚石、硫磺、聚氯乙烯、晶体)

(苯、PVDF 、聚酰胺PA )

(金刚石、硫磺、铁电陶瓷材料)

光、电之间的转换,在国防、探测、通信等领域具有极为重要的用途[4]。

2.1低介电材料应用

随着ULSI器件集成度的提高,纳米尺度器件部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要原因,微电子器件正经历着一场材料的重大变革;除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(K:3.9-4.2)作介质层[5]。对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。

这些低k材料必须要具备以下性质:在电性能方面:要有低损耗和低泄露电流;在机械性能方面:要有稳定性和低收缩性。

2.1.1有机低k材料

有机低k材料种类繁多,性质各异,其中以聚合物低k居多,重点介绍聚酰亚胺(PI)。聚甲酰胺是一类以酰亚胺环为结构特征的高性能聚合物材料,介电常数为3.4左右,掺入氟,或将纳米尺寸的空气分散在聚酰亚胺中,介电常数可以降至2.3~2.8。介电损耗角正切值为10~3,介电强度为1~3MV/cm,体电阻率为1017Ω·cm。这些性能在一个较大的温度围和频率围仍能保持稳定。聚酰亚胺薄膜具有耐高低温特性和耐辐射性、优良的电气绝缘性、粘结性及机械性能。聚酰亚胺复合薄膜还具有高温自封粘的特点。聚酰亚胺低k材料目前已广泛应用于余宇航、电机、运输工具、常规武器、车辆、仪表通信、石油化

相关文档
最新文档