压裂原理精选文档
压裂工艺原理分析
压裂工艺原理分析压裂工艺是一种石油开采技术,通过将高压液体注入井中,将岩石层产生压裂断裂,形成一系列裂缝,以增加岩石的渗透性,从而提高油气的产量。
压裂工艺的原理包括压力传递、岩石破裂、裂缝扩展和裂缝固定等环节。
压力传递是压裂工艺的基本原理之一、在压裂工艺中,通过泵送高压液体将压力传递到地下的岩石层。
高压液体通常由水和添加剂组成,通过管道输送至井口,然后通过压裂泵注入井中。
液体的高压作用下,可以产生巨大的压力,使岩石层受到外力影响,导致岩石发生破裂。
岩石破裂是压裂工艺的核心原理之一、在液体高压作用下,岩石层会承受巨大的外力,达到其破裂的极限。
岩石破裂的过程包括岩石断裂前的应力积累和断裂后的应力释放。
首先,岩石层在压力作用下会积累足够的应力,直到其达到破裂的阈值。
然后,在达到破裂阈值后,岩石发生快速破裂,裂缝扩展,形成一系列的断裂面。
裂缝扩展是压裂工艺的重要原理之一、在岩石破裂后,裂缝从断裂面向周围扩展。
这是因为高压液体充填到岩石层中,使岩石层内的应力变化,产生裂缝扩展的推动力。
裂缝扩展的过程中,液体会渗透入岩石层内,从而进一步增加裂缝的长度和宽度,增加岩石的渗透性,提高油气的流动能力。
裂缝固定是压裂工艺的关键原理之一、在裂缝扩展的过程中,高压液体会占据裂缝,形成一系列液相裂缝。
然而,裂缝在压力释放后会有一定的回缩趋势,导致裂缝的尺寸缩小,岩石的渗透性减弱。
为了防止裂缝回缩,需要在液体中添加一定的固化剂,形成固体颗粒的颗粒相裂缝。
这些固体颗粒可以填充液相裂缝的空隙,增加裂缝的稳定性,阻止裂缝的封闭和回缩。
综上所述,压裂工艺的原理包括压力传递、岩石破裂、裂缝扩展和裂缝固定等环节。
通过施加高压液体,使岩石层受到外力作用,产生破裂,形成一系列的裂缝,增加油气的渗透性,提高油气的产量。
然而,压裂工艺仅仅是一种辅助性的开采技术,需要结合其他技术手段,综合应用,才能实现石油资源的高效开采。
压裂工艺原理文档
压裂施工工艺培训资料一、水力压裂的基本原理油层水力压裂一般是指利用液体传压的原理,在地面用高压大排量的泵,将具有一定粘度的液体以大于油层所能吸收的能力向油层注入,使井筒压力逐渐增高,当压力增高到大于油层破裂所需要的压力时,油层就会形成一条或几条水平的或是垂直的裂缝。
当裂缝形成以后,随着液体的不断注入,裂缝还会不断地延伸和扩展,直到液体注入的速度与油层所能吸收的速度相等时为止,此时若取消外力裂缝还会重新闭合。
为了保持裂缝处于张开的状态,随压裂液注入的同时混入一定比例的具有较高强度的固体颗粒做支撑剂来支撑裂缝。
由于支撑是经过严格筛选的,它具有良好的粒度和强度,沉淀在裂缝中,使改变了井筒附近地层的导流能力,从而降低了液体由地层流入井筒的阻力。
二、水力压裂目的和作用油层水力压裂的目的在于改造油层的物理结构,人为地在油层中形成一条或几条高渗透能力的通道,以降低近井地带的流动阻力,增大渗流能力,使油井获得增产效果。
对油层进行水力压裂有以下作用:①解除钻井或修井过程中由于压井液造成的油层污染和堵塞。
②改善厚油层上下渗透性不均匀的层内矛盾。
③提高低渗透油层的渗透能力,调整油井的层间和平面矛盾,改善开发效果;④扩展和沟通油层原有的裂缝和通道,提高油井的产油能力和注水井的吸水能力三、水力压裂效果评价水力压裂效果评价可以从三个方面进行评价:裂缝状况(几何尺寸、导流能力等参数)压后产量变化,经济效益。
水力压裂效果评价的意义:1.小型压裂:获取地层参数、用来指导以后的压裂设计。
2.压裂施工结束后:确定几何裂缝的尺寸,3.产量评价:计算经济指标、优化压裂规模。
评价的结果可以验证或修正水力压裂中使用的规模、选择压裂液、确定加砂量、加砂程序、采用的工艺以及开发方案等,进而降低压裂成本和提高油气采收率,达到开采油气的目的。
根据所选的模型压裂效果评价参数如下:裂缝的长宽高、裂缝的导流能力、压裂液的滤失系数、产量、计算压裂收益。
四、泵注期间压力分析4.1施工压力和时间的关系4.1.1裂缝宽度方程2.52.5缝宽剖面 (cm)330033253350255075100125裂缝中支撑剂浓度 (kg/m2)00.60 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0支撑剂浓度 (kg/m2)4.1.2裂缝内压力方程裂缝内压力梯度取决于压裂液的流变性、流速、缝宽。
采油工艺--压裂工艺技术
采油工艺–压裂工艺技术1. 简介压裂工艺技术是一种常用的采油工艺,旨在通过增加油井的产能和压裂储量来提高油井的采油效果。
本文将介绍压裂工艺技术的原理、分类、应用以及发展趋势。
2. 压裂工艺技术原理压裂工艺技术通过注入高压液体(常用的是水和添加剂)到油井中,使岩石破裂并形成裂缝,从而增加油井的渗透性和储量。
其原理主要有以下几个方面:•液体注入:通过注入高压液体进入油井,增加油井的压力,从而使岩石发生破裂。
•裂缝形成:液体的高压作用下,使岩石产生裂缝,从而增加孔隙度和渗透性。
•井壁固化:使用添加剂将油井周围的裂缝固定,防止裂缝的闭合。
•液体回收:通过回收注入的液体,减少资源的浪费。
3. 压裂工艺技术分类压裂工艺技术可根据不同的标准进行分类,下面是一些常见的分类方式:3.1 挤压压裂挤压压裂是一种常用的压裂技术,其特点是施加持续的高压来形成裂缝,适用于一些密度高、渗透性差的岩石。
3.2 爆炸压裂爆炸压裂是一种利用爆炸产生的冲击波来形成裂缝的技术,适用于一些硬度高的岩石。
3.3 液压压裂液压压裂是一种利用高压液体来形成裂缝的技术,适用于一些渗透性较好的岩石。
4. 压裂工艺技术应用压裂工艺技术在石油工业中有广泛的应用,其主要应用领域包括:•陆地油田:压裂工艺技术可以提高陆地油田的产能和采收率。
•海洋油田:压裂工艺技术可以应用于海洋油田,提高海洋油田的开发效率。
•页岩气开采:压裂工艺技术可以用于页岩气的开采,改善页岩气的渗透性。
5. 压裂工艺技术的发展趋势随着石油行业的不断发展,压裂工艺技术也在不断创新和发展。
未来压裂工艺技术的发展趋势主要包括:•绿色环保:未来的压裂工艺技术将更加注重环境保护,减少对地下水资源和环境的影响。
•高效节能:未来的压裂工艺技术将更加注重能源的利用效率,提高工艺的能源利用率。
•智能化:未来的压裂工艺技术将趋向智能化,通过自动化控制和人工智能等技术手段,提高工艺的自动化程度和智能化水平。
压裂基础知识详细资料版
压裂基础知识一、水力压裂原理(一)大体原理水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁周围的地应力和地层岩石抗张强度时,便在井底周围地层产生裂痕;继续注入带有支撑剂的携砂液,裂痕向前延伸并填以支撑剂,关井后裂痕闭合在支撑剂上,从而在井底周围地层内形成具有必然几何尺寸和高导流能力的填砂裂痕,使井达到增产增注的目的。
(二)增产原理1、形成的填砂裂痕的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力;2、由原先渗流阻力大的径向流渗流方式转变成单向流渗流方式,增大了渗流截面,减小了渗流阻力;3、可能沟通独立的透镜体或天然裂痕系统,增加新的油源;4、裂痕穿透井底周围地层的污染堵塞带,解除堵塞,因此能够显著增加产量。
二、压裂材料(一)压裂液在压裂进程中注入的液体统称为压裂液,依照压裂进程中注入井内的压裂液在不同施工时期所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。
1、依照作用不同分类前置液:它的作用是破裂地层并造成必然几何尺寸的裂痕,以便后面的携砂液进人在温度较高的地层里,它还可起必然的降温作用。
有时为了提高前置液的工作效率,在前置液中还加入必然量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的微隙,减少液体的滤失。
携砂液:它起到将支撑剂带入裂痕中并将支撑剂填在裂痕内预定位置上的作用。
在压裂液的总量中,这部份比例专门大。
携砂液和其他压裂液一样,有造缝及冷却地层的作用。
携砂液由于需要携带密度很高的支撑剂,必需利用交联的压裂液(如等)。
顶替液:顶替液是在加砂程序终止后,用来将携砂液全数替人裂痕中,以提高携砂液的效率和避免井筒沉砂。
2、依照类型不同分类依照压裂液类型不同,能够将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。
(1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。
压裂基础知识讲义(精品)
5、替挤 加砂完成后,打开混砂车旁通替挤流程向井内注入 替挤液,将携砂液替挤到油层裂缝中;一般替挤量 小于地面管线和井下管柱容积的1.2倍;
6、关井扩散压力 压裂结束,关闭所有阀门,等待压裂液破胶滤失及 裂缝闭合,防止出砂,造成裂缝口铺砂浓度过低, 出现“包饺子”现象
7、活动管柱 符合不应超过管柱悬重200KN,上提速度控制在0.5 m/min,活动行程不小于5m,达到管柱提放自如, 悬重正常
❖ 1、填砂选压 ❖ 2、单封隔器选压 ❖ 3、双封隔器选压
1、填砂选压
用填砂方法将井内非 选压层封隔开,以免压裂 时压开非选压层。此法一 般适用于封隔下层、选压 上层的压裂井。
管柱结构图
2、单封隔器选压
管柱结构图
当选压层段处于油气
层组的最上部或最下部位
选压层
置时,可采用封隔器将非
选压层分隔开,压裂时只
2、为什么要压裂?
在一口井上进行压裂可能有以下三种原因: 1)穿透近井地带伤害区,使井恢复其自然产能; 2)在地层中延伸有导流的通道,使产量超过自然 水平; 3)改变在地层中的液体流动; 这三种原因常常是重叠的。
3、压裂增产原理?
压裂增产增注的原理主要是通过降低井底附近地层 中流体的渗流阻力和改变流体的渗流状态,使原来的径 向流动改变为油层与裂缝的近视单向流动和裂缝与井筒 间的单向流动,消除了径向节流损失,大大降低了能量 消耗,因而油气井产量或注水井注入量就会大幅度提高。 如果水力裂缝能连通油气层深处的产层(如透镜体)和 天然裂缝,则增产的效果会更明显。另外,水力压裂对 井底附近受损害的油气层有解除堵塞的作用。
压裂知识交流
压裂分公司 王振
目录
第一章 压裂基础知识 第二章 压裂液化学和支撑剂 第三章 压裂技术
压裂工艺技术课件
81.8 113.9 137.4 167.9 191.3 233.8 299.1 416.6
0.5
99.4
77.5
0.696
84
107.9
0.839
69.7
130.2
1.025
57
150.1
1.168
50
181.3
1.428
41
221.5
1.827
32
283.3
0.473 0.659 0.795 0.972 1.107 1.353 1.73
•《压裂工艺技术》
(一)压裂施工过程
⑹ 替挤 完成加砂后,打开混砂车的替挤旁通流程,
向井内注入替挤液,将携砂液替挤到油层裂缝 中去。替挤液量要严格按设计执行,严禁超量 替挤。
•《压裂工艺技术》
(一)压裂施工过程
⑺ 关井扩散压力
压裂施工完成后,应关闭井口所有进出口 阀门,等待压裂液的破胶、滤失及裂缝的闭合, 防止支撑剂随高粘液体反出裂缝。扩散压力时 间不少于压裂液破胶时间。
泵1排量=0~32kg/min,泵2排量=0~90kg/min
电源、发动机、档位、泵速、紧急制动、报警
TS—80、PDU监测系统、数显器
4笔绘图器
HDE现场参数校正仪、SM—A压差式砂密度计
•《压裂工艺技术》
1、大泵水功率1300马 力; 2、柱塞直径114.3mm; 3、冲程203.2mm。
吸、排液管汇 8个阀门, 有替挤旁通。
•《压裂工艺技术》
(三) 压裂工具与管柱 滑套式分层压裂管柱 该管柱用于浅 井不动管柱分 压多层。
•《压裂工艺技术》
第三部分 压裂监督
(一)现场材料质量检测 (二)施工过程监督 (三)压裂曲线监测与分析 (四)压裂施工过程中的异常情况及处理
压裂基础知识
压裂基础知识压裂基础知识一、水力压裂原理(一)基本原理水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产增注的目的。
(二)增产原理1、形成的填砂裂缝的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力;2、由原来渗流阻力大的径向流渗流方式转变为单向流渗流方式,增大了渗流截面,减小了渗流阻力;3、可能沟通独立的透镜体或天然裂缝系统,增加新的油源;4、裂缝穿透井底附近地层的污染堵塞带,解除堵塞,因而可以显著增加产量。
二、压裂材料(一)压裂液在压裂过程中注入的液体统称为压裂液,根据压裂过程中注入井内的压裂液在不同施工阶段所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。
1、根据作用不同分类前置液:它的作用是破裂地层并造成一定几何尺寸的裂缝,以便后面的携砂液进人在温度较高的地层里,它还可起一定的降温作用。
有时为了提高前置液的工作效率,在前置液中还加入一定量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的微隙,减少液体的滤失。
携砂液:它起到将支撑剂带入裂缝中并将支撑剂填在裂缝内预定位置上的作用。
在压裂液的总量中,这部分比例很大。
携砂液和其他压裂液一样,有造缝及冷却地层的作用。
携砂液由于需要携带密度很高的支撑剂,必须使用交联的压裂液(如冻胶等)。
顶替液:顶替液是在加砂程序结束后,用来将携砂液全部替人裂缝中,以提高携砂液的效率和防止井筒沉砂。
2、根据类型不同分类根据压裂液类型不同,可以将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。
(1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。
压裂技术详解
压裂技术详解压裂技术又称为水力压裂技术,是一种利用高压水进行地下岩石层破裂的技术。
在油气开采中,压裂技术被广泛应用,可以刺激原油和天然气井的产量,提高资源回收率。
本文将对压裂技术的原理、优劣性和应用范围进行详细的介绍。
1. 压裂技术的原理压裂技术是一种利用高压水强制进入地下岩石层,形成高压水力作用,使岩石产生破裂和裂缝的技术。
具体而言,压裂技术可以分为两种类型:垂向压裂和水平压裂。
垂向压裂是将高压水垂直注入岩石层,形成一系列垂向的裂缝和破裂,加快油气运移速度,促进油气在储层内的聚集。
水平压裂则是将高压水以水平方向注入岩石层,增加破裂面积,形成连通的立方体形状的裂缝,从而实现储层中原油和天然气的释放和采集。
1)改善油藏渗透性:压裂技术通过制造一系列地下岩石支架破裂和裂缝,增加原油和天然气的采集率,能够将原本不可采取的储量变成可开采的储量。
2)提高油气产量:压裂技术可以在原油和天然气井中形成一系列裂缝,加速原油和天然气从储层中运动到井筒内,提高井筒的产量。
3)可重复使用:压裂技术是可重复使用的技术,可实现多次压裂,提高原油和天然气生产效率。
与此同时,压裂技术也存在以下缺点:1)环境污染:压裂技术需要大量的水和化学添加剂,通过高压水注入地下岩石层,将混合物压入地下。
这些添加剂中可能会含有有毒物质,从而对环境造成污染。
2)地震风险:压裂技术可能会导致地震,特别是在地震活跃区进行压裂活动更容易引起地震。
3)资金投入高:压裂技术需要大量的资金投入,对于早期开采的小油田来说,压裂技术可能投入不够经济。
压裂技术最初是在美国被广泛使用的。
目前,在美国和加拿大,压裂技术已成为油气开采的主流技术,占据了大部分市场。
除此之外,压裂技术还被应用于中国、俄罗斯、澳大利亚等国家和地区。
压裂技术的应用范围主要有以下几个方向:1)钻井工作:在油气勘探、钻井等领域,压裂技术可以使深部地层中的原油和天然气排入井口,方便开采。
2)页岩气勘探和开发:在成功开采美国页岩气后,压裂技术被广泛应用于页岩气勘探和开发工作中,可以将原本积存在深部页岩层中的天然气释放出来,大幅提高天然气资源的利用。
第一章 压裂
采集方法二:注入-关井试验
试验方法:完成注入试验后关井,记录压力和时间,
绘制压力与时间平方根的关系曲线,曲线拐点对应
的压力即为闭合应力。
石油与天然气工程学院
36
《油气井增产技术》 压裂
采集方法三:经验公式法 原理:关联实测闭合压力和由测井计算的v/(1-v)。
pc / m 0.12819 1
油气井参数 油气层参数 压裂参数 经济参数
设计参 数分类
石油与天然气工程学院
7
《油气井增产技术》 压裂
井类型、井径
储层孔饱渗 有效厚度
井下管柱与井口
油气 井参 数 油气 层参 数
储层压力 储层温度 流体性质 岩石力学性质 地应力性质
固井质量
射孔参数
井下工具
石油与天然气工程学院
遮挡层性质
8
《油气井增产技术》 压裂
石油与天然气工程学院
28
《油气井增产技术》 压裂
(3)施工参数计算法
或
pB pw pH p f pM
pB pI pH GF p B H
(4)统计分析
石油与天然气工程学院
29
《油气井增产技术》 压裂
G f 0.01589 3.5 10 H
6
0.83
图2 中原油田文留构造压力梯度和破裂压力梯度
31.5
31.3
31.1 0 12 24 36 48 60 思考:裂缝中流体随施工时间的变化规律? 距缝口的距离,m
图3 缝中流体温度和缝壁温度分布
石油与天然气工程学院
51
《油气井增产技术》 压裂
2. 裂缝几何尺寸模拟计算
宽度方程 压 裂 模 型 的 基 本 方 程 二维模型 压 裂 模 型 的 分 类 拟三维模型 全三维模型 集总参数模型
压裂工艺原理范文
压裂工艺原理范文压裂工艺是一种重要的油气工程技术,通过将高压液体注入裂缝中,迅速扩展裂缝,从而增加岩石的渗透性,提高油气产能。
下面是对压裂工艺原理的详细介绍。
其次,高压液体的注入还可以改变岩石的渗透性。
当高压液体注入岩石中时,液体会填充岩石孔隙,同时压力作用下液体会扩张孔隙,增加渗透性。
此外,液体的流动还可通过岩石的裂缝系统,进一步提高渗透性。
在实际操作中,压裂工艺分为以下几个步骤:1.孔隙压裂:首先需要选择合适的井孔作为注水孔隙,在孔隙中注入高压液体。
由于高压液体的作用,孔隙会被扩大,增加油气的渗透性。
2.裂缝压裂:对于岩石中已有的裂缝,使用高压液体可以进一步扩张和延伸裂缝,增加裂缝的长度和面积,提高渗透性。
3.人工裂缝压裂:如果岩石中没有足够的裂缝,可以通过人工方式进行裂缝压裂。
具体方法是在井孔内部注入高压液体,通过压力扩展出人工裂缝。
压裂工艺可以应用于各种类型的油气藏。
例如,对于致密油气藏,裂缝压裂可以有效地提高岩石的渗透性,增加油气的产能。
对于页岩气藏,压裂工艺可以使岩石中的微小孔隙连接起来,形成一定的渗透通道。
除了常规的压裂工艺,目前还有一些新兴的技术被应用于油气开发中。
例如,水力酸化压裂(acid fracturing)利用酸溶液来溶解岩石,形成更多的裂缝。
超临界CO2压裂(supercritical CO2 fracturing)利用超临界CO2代替传统水基液体,提高压裂效果。
总之,压裂工艺是一种重要的油气工程技术,通过注入高压液体,扩展裂缝和提高岩石的渗透性,从而增加油气产能。
不断创新和发展压裂工艺,将有助于提高油气勘探和开发效率,推动能源产业的可持续发展。
压裂工艺原理分析
压裂液
1、压裂液的定义
-压裂施工中用到的工作液。 -压裂液是由多种添加剂按一定配比形成的非均质不稳定化
学体系。
-按泵注顺序和所起的作用不同,压裂液分为前置液、携 砂液和顶替液。
压裂液
2、压裂液应用必备的条件
-与地层岩心和流体配伍性良好;
-能造出一定宽度、有足够导流能力的裂缝;
-造缝并向张开延伸的裂缝输送支撑剂;
(一般取区块值)
Pm = RL × H (RL:压裂液的油技术手册)
压裂基本概念
6、地面施工泵压曲线
①如果施工压力保持恒定,压裂液性能稳定,地面施工泵压与地下井底压力的变化是一致的; ②加砂会对施工泵压有一定的影响; ③油管压裂时,套压反映井底压力变化。
压裂形成的裂缝与地应力分布、岩石力学性质、压 裂液的性质以及注入方式等有密切关系。
压裂基本概念
4、地应力与裂缝的形态和方位
δz>δx>δy 垂直缝
δz>δy>δx 垂直缝
δx,y>δz 平缝
水
裂缝的形态取决于地层地应力的大小和方向。
压裂裂缝总是与地层最小主应力垂直,与地层最大主应力平行。
压裂基本概念
-耐温、耐剪切;
-施工完成后能够破胶,迅速反排;
-易于控制、安全;
-经济可行。
压裂液
3、压裂液按化学性状分类(分散介质) -水基--交联冻胶、线性胶;比重为1 -油基--稠化柴油、稠化原油;比重为0.75 -乳化--水包油、油包水;比重为0.85 -泡沫--氮气 、二氧化碳、双元 ;比重为0.3
压裂液
6、压裂液特性
支撑剂
1、压裂支撑剂体系
a、支撑剂需要支撑压开的裂缝,以增加流动能力 b、理想的特性: -高强度 -抗腐蚀 -低比重 -容易获得,费用低廉 c、支撑剂类型 -石英砂:强度中等,密度较低,价格便宜。 -陶粒;强度高,密度高,价格高。 -树脂涂层砂或陶粒:可固结,可控制返砂,价格高。
压裂——精选推荐
压裂压裂压裂是指在井筒中形成⾼压迫使地层形成裂缝的施⼯过程。
通常指⽔⼒压裂,⽔⼒压裂是指应⽤⽔⼒传压原理,从地⾯泵⼊携带⽀撑剂的⾼压⼯作液,使地层形成并保持裂缝,是被国内、外⼴泛应⽤的⾏之有效的增产、增注措施。
由于被⽀撑剂充填的⾼导流能⼒裂缝相当于扩⼤了井筒半径,增加了泄流⾯积,⼤⼤降低了渗流阻⼒,因⽽能⼤幅度提⾼油、⽓井产量,提⾼采油速度,缩短开采周期,降低采油成本。
第⼀节压裂设备及管柱⼀、地⾯设备1、压裂井⼝压裂井⼝⼀般可分为两类:①⽤采油树压裂,采油树型号可分为250、350、600、700、1050型,250型⼯作压⼒25MPa,主要⽤于浅井,其它型号分别⽤于中深井、深井和超深井,如果单位以⼤⽓压计算,⼯作压⼒基本与型号命名相同。
②采⽤⼤弯管、投球器、井⼝球阀与井⼝控制器的专⽤压裂井⼝,完成压裂施⼯,⼤弯管、投球器及井⼝球阀⼯作压⼒70MPa或100MPa。
2、压裂管汇⽬前压裂管汇种类很多,承压和最⼤过砂能⼒也不相同。
常⽤的有压裂管汇车和专⽤的地⾯管汇。
专⽤的地⾯管汇有8个连接头,压裂车可任选⼀个连接。
⾼压管线外径Ф76mm,内径Ф60mm,最⾼压⼒可达100MPa。
3、投球器投球器有两种,⼀种是前⾯井⼝装置中⽤于分层压裂管柱中投钢球的投球器,另⼀种是选压或多裂缝压裂封堵炮眼⽤投球器。
美国进⼝投球器,最⼤⼯作压⼒100MPa,⼀次装Ф22mm的堵球200个,电动旋转投球每分钟12圈,每圈投4个球。
⼆、压裂车组压裂设备主要包括压裂车、混砂车、仪表车、管汇车等。
1、压裂泵车压裂车是压裂的主要动⼒设备,它的作⽤是产⽣⾼压,⼤排量的向地层注⼊压裂液,压开地层,并将⽀撑剂注⼊裂缝。
它是压裂施⼯中的关键设备,主要由运载汽车、驱泵动⼒、传动装置、压裂泵等四部分组成。
压裂泵是压裂车的主机。
对压裂车技术性能要求⼤部分是对压裂泵提出的。
⽬前各油⽥压裂车组在产地、品牌和型号上有很多不同种类。
⼏种常见的压裂车性能参数见表1,S—2000型泵压⼒排量表见表2。
压裂常识讲座全
•控制压裂层位准确、可靠; •施工中两个封隔器之间拉力较大,对深 井和破裂压力高的地层,不宜采用; •两个封隔器之间的所有井下工具、短节 的本体和螺纹抗拉强度必须大于施工时 的最大拉力; •喷砂器应紧接于下封隔器上部,以免施 工时封隔器上形成沉砂; •起管柱前,应先反循环将下封隔器上部 沉砂冲净,起管柱时,应先上下活动, 不得猛提。
如何认识水力压裂的裂缝尺寸
•应力剖面决定缝高延 伸,特别是产、隔层间 的应力差值;
•一般缝宽为支撑剂粒 径的4-10倍;
•缝长与液量、砂量、 砂比、排量有关,相对 而言人为设计的空间较 大;
•岩性对裂缝尺寸影响 较大。
裂缝高度测试(温度、示踪剂)
隔层
压后井温曲线
压裂层
热鼻现象
压前井温基线
隔层
五、水力压裂施工方式
封隔器+填砂分层压裂工艺
压第一层
压第二层
•可以不动管柱、不压井、不放 喷一 次施工分压多层; •由于受管柱内径限制,一般最多只 能用三级滑套,一次分压四层; •管柱结构复杂,容易造成砂卡,施 工完后应立即起出管柱; •如逐层压裂求产完再打开滑套压上 层,在打开滑套前应先反循环将管 柱内外沉砂冲净,以免造成砂卡; •滑套外径应小于所通过的管柱最小 内径,并与滑套坐落短节密封良好。
如何判断水力压裂的裂缝方位
1、地面微地震方法 2、井下微地震方法 3、测斜仪方法 4、电阻率层析成像方法
1、声发射定位裂缝监测与诊断技术
通过测定微震震源 辐射出的地震波运动学 参数,反演微震震源的 空间位置,微震震源的 空间分布反映了人工裂 缝的轮廓。可记录3000 米以内深度的-2级地震。 本次测试采用的是改进 后的6点无线传输定位 系统。
压裂工艺原理范文
压裂工艺原理范文压裂工艺是一种通过施加高压液体来分解和切割岩石,从而增加岩石渗透性的工艺。
它通常用于油气开采和地下水开采中,能够显著提高油气或水的产量。
本文将就压裂工艺的原理进行详细介绍。
压裂工艺的原理基于以下几个关键概念和过程:岩石断裂、岩石渗流和压裂流体。
首先,岩石断裂是指岩石中的裂缝或裂隙在受到外部应力的作用下发生断裂。
岩石的断裂性质受到多种因素的影响,包括岩石的组成、结构、应力状态等。
当岩石受到足够大的压力时,其中的裂缝会被打开或扩大,形成新的断裂面。
这些断裂面可以提供新的渗流通道,从而增加岩石的渗透性。
其次,岩石渗流是指液体在岩石中的渗透和移动过程。
当岩石渗透性较低时,液体的渗流通道有限,导致液体无法充分流动和被采集。
而通过压裂工艺可以创造新的渗流通道,提高岩石的渗透性,使液体能够更加自由地流动和被采集。
最后,压裂流体是用于压裂工艺的关键介质。
压裂流体通常是由水、砂和化学添加剂组成的混合物。
在施加高压液体时,压裂流体能够通过岩石的裂缝和裂隙,进入岩石内部。
当压力减小时,压裂流体会迅速流回到井口,而留下砂颗粒填充住断裂面。
这些砂颗粒起到支撑和稳定断裂面的作用,防止断裂重新闭合。
同时,压裂流体中的化学添加剂可以改变岩石的物化性质,进一步增加岩石的渗透性。
根据以上原理,压裂工艺的具体步骤如下:1.设计压裂参数:根据地质条件和开采需要,确定压裂的液体类型、压力、流量、时间和砂颗粒的大小等参数。
2.注入压裂流体:将设计好的压裂流体通过注水井注入到岩石层中。
由于高压作用,压裂流体会逐渐进入岩石中的裂缝和裂隙。
3.压力释放:当岩石中的压力达到一定值时,停止注入压裂流体,减小压力。
这样,压力会迅速释放,使岩石的裂缝和裂隙更加打开和扩大。
4.压裂砂注入:随着压力释放,砂颗粒会通过压裂流体的推动进入岩石中的断裂面,充分填充和支撑断裂面,防止断裂重新闭合。
5.压裂流体回流:减小注入压力,使注入的压裂流体迅速回流到井口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
八十年代,水力压裂已不再仅仅被孤立地作为单井的增产、 增注措施来考虑,而是与油藏工程紧密结合起来,用于调 整层间矛盾(调整产液剖面)、改善驱油效率,成为提高 动用储量、原油采收率和油田开发效益的有力技术措施
进入九十年代以后,水力压裂逐渐成为决定低渗透油田开 发方案的主导因素。在研究制定低渗透油田开发方案时, 按水力裂缝处于有利方位确定井排方位;通过研究分析不 同井网、布井密度及裂缝匹配对各项开发指标的影响,以 提高油田整体开发效果和经济效益为目标,确定井网类型、 布井密度和压裂施工规模,使水力压裂与油藏工程结合的 更加紧密,使低渗透油田的高效开发成为可能
3
我国在五十年代起已开始进行水力压裂技术的研究,迄 今为止已取得了很好的技术成就与较高的经济效益 大庆油田 1973年开始采用水力压裂作为油田增产增注的 一项重要技术措施,至今已有 30年的历史。随着油田的 开发进程,针对不同时期不同对象及其对于改造技术的 不同要求,压裂工艺技术不断发展、完善和提高
5
水力压裂原理
6
7
8
水力压裂造缝机理 形成水力裂缝的条件:
地应力的大小及其分布 岩石力学性质 压裂液性能 注入方式
9
三向主应力: σX、σY、σZ
裂缝垂直于最小主应力
水力裂缝形态:
σZ>σH σH >σZ
垂直裂缝 水平裂缝
10
水力压裂增产机理
1、改变流型 在压裂前,地层中的流体是径向地流向井底,压裂后由 于地层中形成了一条高导流能力的填砂裂缝,从井底延 伸至地层深处,所以流体就先单向地进入裂缝中,然后 单向地流入井底。从原来的径向流改变为单向流,就节 省了大量的能量
20
计算炮眼摩阻碍的公式为:
Ppf=
3.57Q2ρ n2d4
×106
式中: Ppf:炮眼摩阻, 10-1MPa; Q: 注入排量, m3/min; ρ:压裂液密度, kg/m3 n:射孔炮眼数量; d:炮眼平均直径, mm
21
投球法多裂缝压裂工艺技术
可用于常规射孔井,根据压开层位吸液能力高的特点,在 一个压裂层段内压开第一层后,在低压下挤入高强度暂堵 剂将已压开层的炮眼堵住,提高泵压压开第二层,然后再 堵第二层再压第三层,这样可在一个层段内形成多条裂缝, 达到一井压多段,一段压多层,提高油井源自能23其它压裂工艺技术
一、滑套式分层压裂工艺技术
滑套式分层压裂管柱由投球器、井口球阀、工作 筒和堵塞器、水力压差式封隔器、滑套喷砂器组 成。其原理是利用不压井、不放喷井口装置、井 下工作筒和堵塞器,可使压裂管柱实现不压井、 不放喷起下作业。利用井下滑套喷砂器多级开关, 自下而上实现多层压裂。当每压完一层时,从井 口投入不同直径的钢球,将滑套憋到已压开层的 喷吵器上将其水眼堵死,同时打开上一层喷砂器 的水眼,开始对上一层进行压裂,从而实现不动 管柱一次连续压多层。
18
压裂工艺技术
大庆油田有限责任公司采油工艺研究院
19
限流法压裂技术
采取低密度射孔,大排量施工,依靠压裂液通 过射孔炮眼时产生的摩阻,大幅度提高井底压 力,从而使压裂液自动转向,以相继压开破裂 压力相近的各个目的层 这项技术的关键是,根据目的地层的物性,砂 岩厚度、纵向相邻油层情况及平面上的连通关 系,确定合理的布孔方案,确定每个目的层所 射孔炮眼数量及直径,以此来控制不同油层的 处理强度,获得所需要的产液剖面
22
定位平衡压裂技术
首先建立在水平裂缝的前提下,在常规射孔井进 行水力压裂时,在一定的排量下通过节流产生压 差,使定位压裂封隔器坐封。利用定位平衡压裂 封隔器上的长胶筒和喷砂体的组合来控制压裂目 的层的裂缝形成的位置和吸液炮眼的数量,达到 裂缝定位和使目的层产生水平裂缝的目的。在需 要保护的薄夹层的邻近高含水部位装有平衡装置, 该装置只进液不进砂,使高含水层与压裂目的层 处于同一压力系统中,夹层上下压力平衡而得到 保护。通过大排量施工,依靠压裂液通过吸液炮 眼所产生的摩阻,大幅度提高井底压力,从而相 继压开破裂压力相近的各个目的层,一次施工可 压开3-5个目的层。
11
水力压裂增产机理
12
2、沟通油气储集区
由于地质上的非均质性,地层中有产能的地区并不一定 与井底相连通。例如:砂层中透镜体,三角洲沉积的砂 体等不一定都被井所钻穿。通过压裂所形成的人造裂缝, 可以将它们与井底沟通起来,就增加了新的供油区,大 型压裂压出的较长裂缝甚至可将几个透镜体压穿,沟通 油气储集区是压裂增产的重要原因
水力压裂原理
大庆油田有限责任公司采油工艺研究院
1
压裂技术的发展历程
1947年在美国进行了首次水力压裂增产作业,由于增产 效果十分显著,因此对压裂艺技术的研究和应用受到普 遍重视
五、六十年代,压裂主要作为单井的增产、增注措施, 以追求单井增产增注效果为目标,没有考虑实施压裂措 施后,对油田开采动态和开发效果的影响
对于天然裂缝油藏,在于人工裂缝沟通天然裂缝
13
3、克服井底附近地层的污染 压裂后的裂缝可以解决井底污染所造成的低产后果。为 此目的所进行的压裂可以是小规模的,只要穿过堵塞区 的深度即可。但是对裂缝的导流能力却要求很高。因为 井底附近裂缝的渗透率在油气生产中是个关键
14
水力裂缝模型
为 矩
剖 面
PKN
4
水力压裂是油气井增产、水井增注的一项重要技术 措施。当地面高压泵组将高粘液体以大大超过地层吸收 能力的排量注入井中,在井底附近憋起超过井壁附近地 应力及岩石抗张强度的压力后,即在地层中形成裂缝。 随着带有支撑剂的液体注入裂缝中,裂缝逐渐向前延伸。 这样在地层中形成了足够长度一定宽度及高度的填砂裂 缝。由于它具有很高的渗滤能力,使油气能够通畅流入 井中,起到增产增注的作用
形均 模
,为 型
裂一 :
缝椭 宽
高圆 度
度, 剖
恒垂 面
定直 及
剖水
面15平
水力裂缝模型
形 , GDK
水 平 剖 面 为 椭 圆 形
模 型 : 宽 度 剖 面 为
矩
16
水力裂缝模型
问缝按在 题内三三 进液维维 行体弹模 处流性型 理动问中
按题, 两进裂 维行缝 流考启 动虑裂
, 17
压裂施工过程中 净压力与时间关系