塑性力学第四章

合集下载

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

σθ
−σr
=
2
p
b2 r2
在 r = a 时取最大值,则 r = a 处首先屈服
(σθ
− σ r ) max
=
2
p
b2 a2
=σs
求得弹性极限载荷(压力)为
pe
=
a2σ s 2b2

p
=
pe
=
b2 − a2 a2
pe
= σs 2
⎜⎜⎝⎛1 −
a2 b2
⎟⎟⎠⎞
(2)弹塑性解
(4-26)
p > pe 时,塑性区逐渐扩张。设弹、塑性区交界处 r = c , a < c < b 。
b
弹性区
c
用边界条件σ r r=a = − p ,可确定出 C′ = − p − σ s ln a ,
a
所以
⎪⎧σ r ⎨ ⎪⎩σθ
= σ s ln r − p − σ s ln a = − p + σ s
=σs
+σr
=
−p
+ σ s (1 +
ln
r) a
ln
r a
(4-27)
塑性区 图 4-3
属静定问题,未用到几何关系。
ΔFi = F&iΔt , ΔTi = T&iΔt , Δui = u&iΔt
(4-10) (4-11)
式中 F&i ,T&i 和 u&i 分别称为体力率、面力率和位移率(速度)。引入率的表达形式
可以简化公式表达。 求解过程为:
已知时刻 t 时,位移 ui ,应变 εij ,应力σij ,加载面 f (σij ,ξ ) = 0 。在 ST 上给

第四章 弹塑性体的本构理论

第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。

塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。

塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。

4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。

常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。

变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。

因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。

对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。

因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。

只有当应力点再次达到该加载面时,才可能产生新的塑性变形。

弹塑性力学第四章

弹塑性力学第四章

代入广义胡克定律
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
c11 x c12 y c13 z c14 xy c15 yz c16 zx
b
广义胡克定律
由应力分量的坐标变换公式(2-20)可得:
广 西 工 学 院 汽 车 工 程 系
xy l11l22 xy xy 2 x l11 x x 2 y l22 y y 2 z l33 z z
上述关系式是胡克(Hooke)定律在复杂应力条件下 的推广,因此又称作广义胡克定律。
广义胡克定律
广义胡克定律的张量表示: ij cijkl kl cijkl 称为弹性系数,一共有36个。
i, j, k , l 1, 2.3
广 西 工 学 院 汽 车 工 程 系
如果物体是非均匀材料构成的,物体内各点受力后将 有不同的弹性效应,因此一般的讲,cmn 是坐标x,y,z 的函数。 如果物体是由均匀材料构成的,那么物体内部各点, 如果受同样的应力,将有相同的应变;反之,物体内各 点如果有相同的应变,必承受同样的应力。 因此cmn为弹 性常数,与坐标无关。 各向同性材料,独立的弹性常数只有两个。
xy yz zx
xy
G
yz
G
zx
G
式中, G
E 2 1 v
为各向同性物体的剪切弹性模量。
表示材料弹性性能的常数有3个,但只有两个是独立的。 张量记法:
1 v v ij ij E E vE ij e E ij ij 1 v 1 v 1 2v

弹塑性力学第四章

弹塑性力学第四章


x

y
)
2019/7/26
36
§4-3 各向同性材料弹性常数

yz

2(1 )
E
yz

xy

2(1
E
)

xy

zx

2(1
E
)
zx
采用指标
符号表示:
ij

1 E
(1 ) ij
ij kk
ij

E
1
ij
1 2
ij kk
2G
0 0 0

2G
0
0
0


2G 0 0 0

2G 0
0



2G 0



2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

塑性力学第四章(1)-塑性本构关系

塑性力学第四章(1)-塑性本构关系
第四章
塑性本构关系
加载与卸载关系 全量型本构关系 增量本构关系
加载与卸载关系
理想弹塑性材料的加卸载准则
r r ∂f =0 d σ ⋅ n = d σ ij ∂ σ ij
r r ∂f ∂f d σ ⋅ n = d σ ij <0 ∂ σ ij
加载 卸载
r dσ
r n

r
f (σ ij ) = 0
o
1 εx = σx − µ σ y +σz E 1 εy = σ y − µ (σ z + σ x ) E 1 εz = σz − µ σx +σ y E

[
(
)]
体积应变: 体积应变:
θ = εx +ε y +εz
[ [
(
] )]
体积应力: 体积应力:
Θ =σx +σ y +σz
µε = µσ
形变理论( 理论) 形变理论( Hencky — Iliushin 理论)
体积变化是弹性的,且与平均应力成正比。 1. 体积变化是弹性的,且与平均应力成正比。
E σm = εm (1 − 2 µ )
应变偏量与应力偏量成比例。 2. 应变偏量与应力偏量成比例。
弹性阶段: 弹性阶段: 塑性阶段: 塑性阶段:
∂ϕ ⋅ d σ ij = 0 ⇒ 中性变载 ∂ σ ij
r r dσ ⋅ n > 0 r r dσ ⋅ n < 0
加卸载准则
r r dσ ⋅ n = 0
中性变载: 中性变载:当应力增量沿加载 面切线方向变化, 面切线方向变化, 而加载面并不扩大 时,不产生新的塑 性变形。 性变形。

塑性力学-第四章

塑性力学-第四章

本构关系研究的论文。
因此塑性本构理论吸引了一些优秀的科学家在从事这 方面的研究。
基本假设
本课程介绍的弹塑性本构关系除先前的各向同性假设和 静水应力不影响屈服的假设外,还采用了两个假设
(1)小变形假设 (2)率无关假设(仅考虑等温过程中的率无关材料)
内变量的引入
内变量——用来刻划材料加载历史的宏观参量,可以描述 经历塑性变形后材料内部微观结构的变化。较常见(用得 较多)的内变量是等效塑性应变。
(16)
内变量的演化方程
当产生新的塑性变形时,内变量也会有所改变。假定内 变量演化方程有以下的形式 (17) Z ,

ij

将(17)式代入(16)式,解出
g g Z ij ij
f g ˆij g kl ˆ kl ij

(用到了(23)式)
ˆ g ˆ f
g ˆg ˆij g ˆ ˆ f ij g ˆij 1 ij
(24)
(25)
于是得到应变加载准则描述的应力加载准则。
当按应变加载准则判断为弹塑性加载时
(9)
可以得到 常用的表 达式

E ij 1
ik jl 1 2 ij kl kl 1 ij ij ij kk E E
(10)
从上式,注意到应力偏量和应变偏量的定义还可得
(23)
ij ˆ Z 式中, ij

弹塑性加载时
ˆ g

g g P ij kl kl M ijkl ij ij

塑性力学--第四章 塑性本构关系

塑性力学--第四章 塑性本构关系

向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.

弹塑性力学第四章 弹性本构关系

弹塑性力学第四章 弹性本构关系
E K 3(1 2 )
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E

弹塑性力学___第四章_弹性力学的求解方法

弹塑性力学___第四章_弹性力学的求解方法

叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程

弹塑性力学第四章弹性力学的求解方法

弹塑性力学第四章弹性力学的求解方法

微分方程并求解,最后根据边界条件确定待定常数。
逆解法求解空间问题
逆解法的基本思想
从已知的空间应力或位移函数出发,反推得到弹性体的形状和边界条件。
适用于具有特定应力或位移分布的空间问题
如无限大体、半无限大体等具有特殊应力或位移分布的空间问题。
求解步骤
假设空间应力或位移函数,根据弹性力学基本方程推导得到弹性体的形状和边界条件,并 验证假设的合理性。
04
半解析法在弹性力学中的应用
有限差分法基本原理及步骤
差分原理
有限差分法基于差分原理,将连续问 题离散化,通过求解差分方程得到近 似解。
网格划分
将求解区域划分为规则的网格,每个 网格节点对应一个未知数。
差分格式
根据问题的性质和精度要求,选择合 适的差分格式,如向前差分、向后差 分、中心差分等。
边界处理
电测实验方法介绍及优缺点分析
电阻应变片法
利用电阻应变片将试件表面的应变转换 为电阻变化,通过测量电路获取应变信 息。该方法具有测量精度高、稳定性好 、适用于各种环境和试件形状的优点, 但需要粘贴应变片并进行温度补偿,且 只能进行点测量。
VS
电容传感器法
利用电容传感器将试件表面的位移或应变 转换为电容变化,通过测量电路获取相关 信息。电容传感器法具有非接触、高灵敏 度、宽频响等优点,但易受环境干扰,且 需要进行复杂的电路设计和信号处理。
04 边界条件处理 根据边界条件对总体刚度矩阵和荷载向量进行修正。
05
求解线性方程组
求解总体刚度矩阵和荷载向量构成的线性方程组,得 到节点位移。
边界元法基本原理及步骤
边界积分方程
边界离散化
单元分析
总体合成
求解线性方程组

工程弹塑性力学课件:第四章应力与应变的关系(肖)

工程弹塑性力学课件:第四章应力与应变的关系(肖)
1
弹性力学的基本方程
一、平衡方程 应力分量满足平衡方程:
x yx zx X 0
x y z
xy y zy Y 0
(1.67)
x y z
xz yz z Z 0
x y z
ij, j Fi 0
二、几何方程
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
xy
120
1 4
x
+
3 4
y
3 4
xy
x y
190 10-6 130 10-6
xy 577 10-6
1,2
x
y
2
( x - y
2
)2 +( xy
2
)2 =30 10-6
330 10-6
1=360 10-6,2 =-300 10-6
2
0
=
arctan(
xy x -
y
)
61。
0
0
30.5。 120.5。
(1.82)
应变与位移的关系→本构关系
材料力学中: x
E x
x
1 E
x
y
z
1 E
x
广义虎克定律: ①正应力→正应变,与剪应变无关
②剪应力→剪应变,与正应变无关
例:贴三角形应变花。
0 =190 10-6,60 =200 10-6,120 =300 10-6, 材料常数:E=206.8109 N / m2, 0.3。
2 y
z 2
2 z
y2
2 yz
yz
0
2 z
x2

塑性力学 第四章 塑性本构关系.

塑性力学 第四章 塑性本构关系.

s
s
3G
, s
s , s , s s 1 s
G 3G 3G
10
分别代入(4)得到

s s s 3G 3 3G

s
2
0.707 s

9
(二)对于理想塑性材料: i s 将(2)、(3)代入式(1),得到
2 1 2 i 3
(2) (3)

s
2 1 2 3
,
s
2 1 2 3 3

(4)
(三)在简单加载的条件下,材料进入塑性状态时各应变分 量同时达到屈服,即 又
1
§4-1
建立塑性本构关系的基本要素
描述塑性变形规律的理论可分为两大类: 一类理论认为在塑性状态下仍是应力和应变全量之间的关系 即全量理论;另一类理论认为在塑性状态下是塑性应变增量 (或应变率)和应力及应力增量(应力率)之间的关系即增 量理论或流动理论。 为了建立塑性本构关系,需要考虑三个要素: 1、初始屈服条件; 2、与初始屈服及后继加载面相关连的某一流动法则。即要 有一个应力和应变(或它们的增量)间的关系,此关系包括 方向关系和分配关系。实际是研究它们的偏量之间的关系; 3、确定一种描述材料强化(硬化)特性的强化条件,即加 载函数。有了这个条件才能确定应力、应变或它们的增量之 间的定量关系。
3 2 Sij Sij , i eijeij ) 2 3
ii
i i
1 2 ii E 3 eij i S ij 2 i
6
二、依留申小弹塑性形变理论 1943年,依留申考虑了与弹性变形同量级的塑性变形,给 出了微小弹塑性变形下的应力—应变关系 在弹性阶段:

第四章 弹性变形、塑性变形、本构方程

第四章  弹性变形、塑性变形、本构方程

弹性变形特点: ⑴ 弹性变形特点:
弹性变形是可逆的。物体在变形过程中, ① 弹性变形是可逆的。物体在变形过程中,外力所做 的功以能量(应变能)的形式贮存在物体内, 的功以能量(应变能)的形式贮存在物体内,当卸 载时,弹性应变能将全部释放出来, 载时,弹性应变能将全部释放出来,物体的变形得 以完全恢复; 以完全恢复; 无论材料是处于单向应力状态,还是复杂应力态, ② 无论材料是处于单向应力状态,还是复杂应力态, 在线弹性变形阶段,应力和应变成线性比例关系; 在线弹性变形阶段,应力和应变成线性比例关系; 对材料加载或卸载,其应力应变曲线路径相同。 ③ 对材料加载或卸载,其应力应变曲线路径相同。 因此,应力与应变是一一对应的关系。 因此,应力与应变是一一对应的关系。
◆ 理想线性强化刚塑性力学模型
理想线性强化刚 塑性力学模型, 塑性力学模型,其 应力应变关系的数 学表达式为: 学表达式为:
σ = σ s + E1ε
弹塑性力学
(当ε ≥ 0时)
(4--5)
常用简化力学模型( §4-2 常用简化力学模型(续7)
◆ 幂强化力学模型 为了避免在 ε = ε s 处 的变化, 的变化,有时可以采用幂 强化力学模型。 强化力学模型。当表达式 中幂强化系数 n 分别取 0 或 1 时,就代表理想弹塑 性模型和理想刚塑性模型。 性模型和理想刚塑性模型。 其应力应变关系表达式为: 其应力应变关系表达式为:
弹塑性力学
弹性变形与塑性变形的特点、塑性力学的附加假设( ) §4-1 弹性变形与塑性变形的特点、塑性力学的附加假设(续3)
塑性变形特点: ⑵ 塑性变形特点:
塑性变形不可恢复,所以外力功不可逆, ① 塑性变形不可恢复,所以外力功不可逆,塑性变形的产生必 定要耗散能量(称耗散能或形变功)。 定要耗散能量(称耗散能或形变功)。 在塑性变形阶段,其应力应变关系是非线性的。 ② 在塑性变形阶段,其应力应变关系是非线性的。由于本构方 程的非线性,所以不能使用叠加原理。 程的非线性,所以不能使用叠加原理。又因为加载与卸载的 规律不同, 应力与应变之间不再存在一一对应的关系, 规律不同, 应力与应变之间不再存在一一对应的关系,即 应力与相应的应变不能唯一地确定, 应力与相应的应变不能唯一地确定,而应当考虑到加载路径 (或加载历史)。 或加载历史)。 在载荷作用下,变形体有的部分仍处于弹性状态称弹性区, ③ 在载荷作用下,变形体有的部分仍处于弹性状态称弹性区, 有的部分已进入了塑性状态称塑性区。在弹性区, 有的部分已进入了塑性状态称塑性区。在弹性区,加载与卸 载都服从广义虎克定律。但在塑性区, 载都服从广义虎克定律。但在塑性区,加载过程服从塑性规 而在卸载过程中则服从弹性的虎克定律。 律,而在卸载过程中则服从弹性的虎克定律。并且随着载荷 的变化,两区域的分界面也会产生变化。 的变化,两区域的分界面也会产生变化。 依据屈服条件,判断材料是否处于塑性变形状态。 ④ 依据屈服条件,判断材料是否处于塑性变形状态。 弹塑性力学

弹塑性力学-第4章_本构方程

弹塑性力学-第4章_本构方程

第四章本构方程在前面的章节中,已经建立了变形体的平衡微分方程和几何方程,分别是从静力学方面和从几何学方面考察了变形体的受力和变形。

但是只有这些方程还不足以解决变形体内的应力和变形问题。

对于变形体,未知变量包括6个应力分量,6个应变分量和3个位移分量,一共有15个未知函数,而平衡方程和几何方程一共是9个,未知函数的个数多于方程数。

因此还必须研究物体的物理性质,即应力与应变之间的关系。

通常称这种关系为变形体的本构方程,或称为物性方程。

塑性本构包括三个方面:1、屈服条件,2、流动法则,3、硬化关系;其中屈服条件:判断何时达到屈服,流动法则:屈服后塑性应变增量的方向,也即各分量的比值,硬化规律:决定给定的应力增量引起的塑性应变增量大小。

以上构成塑性本构关系。

4.1弹性应变能函数变形固体的平衡问题不仅需要运动微分方程、应变—位移方程(即变形几何方程)还需要将应变分量和应力张量分量联系起来,方能给定物体的材料抵抗各种形式变形的规律。

该规律的理论解释需要对分子间力的本质有深入的认识,该分子力力图使固体粒子间保持—定的距离,也就是需要对固体中应力分量和应变分量有深入的认识。

这种作用机理在非常接近稳定状态的气体中己弄清楚,但对于弹性体情况,目前科学技术发展水平还不能解决这一难题。

如要通过实验探求物体内部的应力和应变的关系,则总是从一些量的测量来推理得到,在一般情况下,这些量并非应力或应变的分量(例如平均应变、体积压缩、物体表面一线元的伸长等等).因此,在现时应力与应变关系主要是通过直接实验建立。

然而该关系中的某些固有的一般特性可以在理沦上加以说朋,如能量守恒定律为应力-应变关系的理论研究提供了基础。

1.1应变能密度假设变形的过程是绝热的,也就是在变形过程中系统没有热的损失,而且假设物体中任意无穷小单元改变其体积和形状所消耗的功与其从未变形状态到最终变形状态的转换方式无关。

这个条件是弹性的另一种定义。

换句话说,就是假设物体粒子互相作用过程中的耗散(非保守)力的作用与保守力的作用相比是可以忽略的。

弹塑性力学-04

弹塑性力学-04

x E y
其中E为弹性常数,这就是熟知的 胡克定律。
在三维应力状态下,描绘一点处的 应力状态需要9个应力分量,与之 相应的应变状态也要用9个应力分 量来表示。在线弹性阶段,应力与 应变间仍有线性关系存在,但在一 般情况下,任一应变分量要受9个 应力分量 制约。
3
由于应力张量与应变张量的对称性
10
x e 2 x , xy xy
y e 2 y , yz yz z e 2 z , zx zx
x x ( y z ) (3 2 ) 2 (3 2 )
正交各向异性的弹性材料的本构关系,可根据任一坐标轴 反转时弹性常数保持不变的要求
c12 x c22 y c23 z c11 , c22 , c33 , c12 , c13 , c23 , c44 , c55 , c66 c13 x c23 y c33 z c44 xy 共9个弹性常数 c55 yz c66 zx
1 x ( x v y ) E 1 y ( y v z ) E v z ( x y ) E 1 xy xy G
如用应变分量表示应力分量
14
对于平面应变问题
z yz zx 0
E x [(1 v) x v y ] (1 v)(1 2v) E y [v x (1 v) y ] (1 v)(1 2v) vE z ( x y ) (1 v)(1 2v) xy G xy
c 41 x c 42 y c 43 z c 44 xy c 45 yz c 46 zx c51 x c52 y c53 z c54 xy c55 yz c56 zx c61 x c62 y c63 z c64 xy c65 yz c66 zx

弹塑性力学第4章

弹塑性力学第4章
3
B 0,0,0
A 1 , 2 , 3
1
2
B点坐标原点,平均应力=0的应力状态
4.2.2屈服曲面:
f 上述屈服条件在应力空间所表达的曲面称之为屈服曲面。
1
, 2 , 3 C
f 1 , 2 , 3 C f 1 , 2 , 3 C
1 2k s , k s
2
Tresca 屈服条件可以表示为:

2 3 s 3 1 s 1 2 s
复杂应力状态下判断物体是否进入塑性阶段的公式。
Tresca 屈服条件的优缺点: 优点:当主应力顺序已知时,表达式简单 缺点: 1)当主应力顺序未知时,表达式复杂 2) 只考虑最大最小主应力 3) 屈服曲面为正六角柱面,棱边处切平面不唯一
Mises 屈服条件 用下列方程表示: 1 2 或
2
2 3 3 1 6B 2
2 2
2

x y

2
y z

2
2 2 2 6B 2 z x +6 xy yz zx


即:
f ij 0
加载过程 卸载过程
点在屈面上移动为加载过程
加载准则
f 0
f 0
f 0
理想材料 强化材料 加载
加载 中性变载
卸载 卸载
屈服条件为Mises的加载准则
J 2 0/ i 0
J 2 0/ i 0
J 2 0/ i 0
2s
3
Mises屈服条件的表达式:
x y y z z x +6 xy 2 yz 2 zx 2 2 s 2

塑性力学课件王仁

塑性力学课件王仁
China UNIVERSITY of Mining & Technology
塑性力学
第4章
屈服条件
第四章 屈服条件
塑性力学
§4.1 初始屈服条件 §4.2 两种常用的屈服条件 §4.3 屈服条件的实验验证 §4.4 后继屈服条件
§4.1 初始屈服条件
一、屈服条件
屈服条件
简单应力状态下的屈服极限: s
在初始屈服前材料处于弹性状态,应力和应变间有一一对应的关系,
(4-1)式简化为 F ij 0 (4 2)
几何意义
屈服条件
屈服条件 F ij 0 在以应力分量为坐标的应力空间中为一曲面。
称为屈服曲面。 屈服曲面是区分弹性和塑性的分界面。
当应力点 ij位于曲面之内,即F ij 0时,材料处于弹性阶段。 当应力点 ij 位于曲面之上,即F ij 0时,材料开始屈服,进入塑性状态。
(4 5)
也可由应力偏张量的不变量表示: f (J2 , J3) 0
(4 6)
二、屈服曲线
主应力空间中任一点P代表一个应力状态,
向量OP 可参照L直线和π平面分解:
OP OP OP
平面
O
屈服条件
L
P
L
P
其中 OP对应于应力状态的球张量
P
部分,即静水压力部分。
也即
的os 2
3
2、在π平面上取x、y轴,如图:
1 轴在x、y轴的投影
3 2

1
cos

,
1 2

1
cos


2 轴在x、y轴的投影 0,2 cos
3 轴在x、y轴的投影
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 1 1 又由于ε r = ε θ = − 2 ε z = − 2 ε , ε θz = 2 γ θz = 2 γ

⎛ 2 1 2⎞ εi = ⎜ε + γ ⎟ 3 ⎠ ⎝
(2)
(二)对于理想塑性材料: σi = σs (3) 将(2)、(3)代入式(1),得到
σ=
σs
⎛ 2 1 2⎞ ⎜ε + γ ⎟ 3 ⎠ ⎝
2G
2σ i
(因 σ i = Eε i = 2(1 + μ )Gε i ,而塑性状态 μ = 0.5) 当应力从加载面卸载时,也服从广义Hooke 定律,但是不能写成全量形式,只能写成增 量形式。 1 − 2μ 1
dε ii = E dσ ii , deij = 2G dS ij
§4-3
全量型本构方程
1 2) ε ij = 2 (u i , j + u j ,i )
3)
2 σi ⎧ S = ⎪ ij 3 ε eij ⎪ i ⎨ ⎪σ = E ε kk kk ⎪ 1 − 2μ ⎩
σi =
3 S ij S ij 2
,ε i
=
2 eij eij 3
4) σ ij li = f j 5)
ui = ui
200 100
2
1
随动强化
3
ε / 10 − 3
等向强化
解:(1)随动强化 ε P = 0.002 时,相应的应力和应变分别为
σ = 246.5MPa , ε = 0.003232
塑性模量的表达式为
E P = mn ε
( )
P n −1
P ε 在 = 0.002 时的背应力为
b=∫
0.002
0
mn ε
2、与初始屈服及后继加载面相关连的某一 流动法则。即要有一个应力和应变(或它们 的增量)间的关系,此关系包括方向关系和 分配关系。实际是研究它们的偏量之间的关 系; 3、确定一种描述材料强化(硬化)特性的 强化条件,即加载函数。有了这个条件才能 确定应力、应变或它们的增量之间的定量关 系。
§4-2
( )
0 <σ ≤σs
n
σ >σs
式中 σ s = 200 MPa , E = 200GPa , m = 300 MPa , n = 0.3 。 P ε = 0.002 ,然后卸载并方向加 拉伸加载至 载,针对下面两种情况,求出方向加载中的 应力—应变关系。 (1)随动强化;(2)等向强化。
σ / MPa
⎛ σ + 200 ⎞ + 0.004 − ⎜ − ε = ε +ε = ⎟ 200000 300 ⎠ ⎝
e P
σ
1 0 .3
§4-4
全量理论的基本方程 及边值问题的提法
全量理论的边值问题及解法 设在物体V内给定体力 f i ,在应力边界 ST 上 给定面力 f i ,在位移边界 Su 上给定 ui ,要求 物体内部各点的应力 σ ij 、应变ε ij 、位移 ui 。 确定这些未知量的基本方程组有: 1) σ ij ,i + f j = 0
Δσ ε = 0.003232 + = 0.000767 E
由此可得强化(硬化)函数为
k ε P = σ s + m(ε P ) n
( )
当应力σ < −246.5MPa ,材料进入压缩硬化, 等向硬化的加载条件为
σ = −k
(∫ dε ) = −σ
P
P n − m ( ε ) s
于是,应力—应变关系为
3 εi ε ij = S ij 2 σi
1 − 2μ ε ii = σ ii E
(1)
3(1 − 2 μ ) 第一式,且 μ = 0.5, ε ij = eij ,


2 σi S ij = ε ij 3 εi
1 2 又因为 S z = σ z − σ m = σ z − σ z = σ , Sθz = τ θz = τ 3 3 σi σi 其展开式为 σ = ε i ε ,τ = 3ε i γ
k , ki i , jj ij , j i

在弹性状态时,上式右端等于零,可得 到弹性解。将它作为第一次近似解,代入上 式右端作为已知项,又可以解出第二次近似 解。重复以上过程,可得出所要求精度内接 近实际的解。在小变形情况下,可以证明解 能够很快收敛。在很多问题第二次近似解已 能给出较为满意的结果。
其余应力分量为零。当按照同时拉伸与扭转, 在 γ 的比值保持不变条件下进入塑性状态
ε
到 εs = 力。
σs
E
,γ s =
τs
G
,用全量理论求筒中的应
解:(一)由全量理论
3ε i eij = S ij , σ i = Φ (ε i ) 2σ i
第二式可以写为 σ m = 3Kε m 其中 K = E
2G ′ = S ij S ij ekl ekl = J2 = ′ J2
1 ( 2G ′
即ψ

1 2 σi 2σ i 3 = 3 2 3ε i εi 4
3 σi = SijSij 2
2 , εi = eijeij 3
1 , J2 = SijSij 2
1 ′ , J2 = eijeij 2
以μ = 0.5 代入 σ i = Eε i (1 − ω ) 得到 σ i = 3Gε i (1 − ω ) 则
求解方法和弹性问题一样,可以用两种 基本方法:按位移求解或按应力求解。在全 量理论适用并按位移求解弹塑性问题时,依 留申提出的弹性解法显得很方便。
将 S ij = 2G (1 − ω )eij代入用位移表示的平衡 微分方程得: E G⎞ ⎛ K = ⎜ K + ⎟u + Gu − 2G (ωe ) + f = 0 其中 3(1 − 2μ ) 3⎠ ⎝
应力—应变的全量关系,而又不包含历史的 因素,只有在某些特殊加载历史下才有可能 因此,这种关系只能在特定条件下应用。 一、全量理论的基本假设 1、体积的改变是弹性的,且与静水应力成 正比,而塑性变形时体积不可压缩。
1 − 2μ θ = θ = ε ii = σ ii E
e
,
θP =0
2、应变偏张量与应力偏张量相似且同轴,即, e ij = ψ S ij
3、‘单一曲线假设’:不论应力状态如何,对 于同一种材料来说,应力强度是应变强度的 (ε i ) 确定函数 σ i = Φ,是与Mises条件相应的。 ( σ i = Eε i (1 − ω ) ,单拉时 σ = Eε (1 − ω ) )
ε
ii
全量型塑性 本构方程为
e ij
1 − 2μ σ = E 3ε i S ij = 2σ i = Φ (ε
⎛ σ + 107 ⎞ + 0.004 − ⎜ − ε = ε +ε = ⎟ 200000 300 ⎠ ⎝
e P
σ
1 0.3
(2)等向强化 当应力从σ = 246.5MPa 开始减小到 σ = −246.5MPa 材料重新进入屈服。在此过程中塑性应变保 P ε 持不变为 = 0.002 ,仅产生弹性应变,因此, 在 σ = −246.5MPa 时,对应的应变为
Δσ ε = 0.003232 + = 0.00123 E
当应力σ < −153.5MPa ,将产生压缩塑性变形, P ( ε − 0.002) < 0 在此阶段,塑性应变增量为 其绝对值是 0.002 − ε P ,累积塑性应变为
∫ dε
P
= 0.002 + 0.002 − ε = 0.004 − ε
S ij = 2G (1 − ω )eij
这是全量理论的另一种表达形式。
例4-1、在薄壁筒的拉伸与扭转问题中,若 材料为理想弹塑性,且 μ = 0.5 。设拉力为P, 扭矩为 M ,筒的平均半径为r,壁厚为t。于 是筒内应力为均匀应力状态,有
P M ,τ θz = σz = 2πrt 2πr 2t
§4-1
建立塑性本构关系的基本要素
描述塑性变形规律的理论可分为两大类: 一类理论认为在塑性状态下仍是应力和应变 全量之间的关系即全量理论;另一类理论认 为在塑性状态下是塑性应变增量(或应变率 和应力及应力增量(应力率)之间的关系即 增量理论或流动理论。 为了建立塑性本构关系,需要考虑三个 要素: 1、初始屈服条件;
由于在塑性变形状态应力和应变不存在 一一对应的关系。因此,必须用增量形式来 表示它们之间的关系。只有在知道了应力或 应变历史后,才可能沿加载路径积分得出全 量的关系。由此可见,应力与应变的全量关 系必然与加载的路径有关,但全量理论企图 直接建立用全量形式表示的,与加载路径无 关的本构关系。所以全量理论一般说来是不 正确的。不过,从理论上来讲,沿路径积分 总是可能的。但要在积分结果中引出明确的
ε ,τ =
σs
⎛ 2 1 2⎞ 3 ⎜ε + γ ⎟ 3 ⎠ ⎝
γ
(4)
(三)在简单加载条件下,材料进入塑性时 各应变分量同时达到屈服,即 ε = ε s , γ = γ s , 又 3G G 3G 分别代入(4)得到
εs = σs
,γ s =
τs
=
σs 1
=
σs
3G
σ=
σs
σs
⎛ ⎛ σ ⎞ 2 1 ⎛ σ ⎞ 2 ⎞ 3G ⎜⎜ s ⎟ + ⎜ s ⎟ ⎟ ⎜ ⎝ 3G ⎠ 3 ⎝ 3G ⎠ ⎟ ⎠ ⎝
G⎞ ⎛ K + ⎜ ⎟u k ,ki + Gu i , jj + f i = 2G (ωeij ), j 3⎠ ⎝
§4-5
全量理论的适用范围 简单加载定律
Hale Waihona Puke 目前已经证明,全量理论在小变形并且 是简单加载的条件下与实验结果接近,可以 证明是正确的。 一、简单加载 0 ( ) σ = α t σ ij 物体内 在简单加载的情况下, ij 每一点的应力和应变的主方向都保持不变。 其主值之比也不改变。在应力空间中,应力 点的轨迹是直线。 依留申在1943年继续解决了在什么条件
相关文档
最新文档