8.5 直线与圆锥曲线的位置关系

合集下载

直线与圆锥曲线的位置关系综合应用(附详细答案)【打印讲义】

直线与圆锥曲线的位置关系综合应用(附详细答案)【打印讲义】

二轮专题——直线与圆锥曲线的位置关系综合应用【目标】掌握直线与圆锥曲线的位置关系,并会综合应用知识处理相关问题。

【重点】直线与圆锥曲线中的最值、值域、参数范围问题,定点、定值以及探究性问题。

【难点】圆锥曲线与三角、函数与方程、不等式、数列、平面向量等知识的的综合应用. 【知识与方法】圆锥曲线中的定点、定值、最值问题是圆锥曲线的综合问题,解决此类问题需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的。

如果试题以客观题形式出现,特殊方法往往比较奏效。

2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。

3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值或值域. 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解. 【基础训练】1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( )A 、5B 、10C 、9D 、5+25 2、若关于x 的方程)2(12-=-x k x有两个不等实根,则实数k 的取值范围是( )A 、)33,33(-B 、)3,3(-C 、⎥⎦⎤⎝⎛-0,33D 、⎪⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤ ⎝⎛--33,2121,33 3、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( )A 、双曲线x 2-y 2=1 B 、双曲线x 2-y 2=1的右支 C 、半圆x 2+y 2=1(x<0) D 、一段圆弧x 2+y 2=1(x>22)4、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为5、椭圆191622=+yx在第一象限上一动点P ,若A(4,0),B(0,3),O(0,0),则APBOS 四边形的最大值为题型一、最值及值域问题例1.【广东省梅州市2013届高三总复习质检】已知F 1,F 2分别是椭圆C :22221(0)y x a b ab+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =。

直线与圆锥曲线的位置关系(总结归纳)

直线与圆锥曲线的位置关系(总结归纳)

y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a

4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.

直线与圆锥曲线的位置关系(一)概要

直线与圆锥曲线的位置关系(一)概要

处理圆锥曲线的有关问题要注意设法 减少运算量,本题所求椭圆焦点未定,可 能在x轴上,也可能在y轴上,本题解法运 用待定系数法,避免了两种情况的讨论;
另外,本题解法中对交点采取“设而不求” 的方法,灵活运用韦达定理,从而简化了 运算过程,以上是处理此类问题的常用技 巧,应很好地体会。
例4、直线y-ax-1=0和曲线3x2-y2=1相交,交 点为A、B,当a为何值时,以AB为直径的圆经过 坐标原点。
故 | AB | 2 | x1 x2 | 2
( x1 x2 ) 4 x1 x2
2
90 2 369 192 2 ( ) 4 , 7 7 7 80 2 2 从而 | FC | ( x0 5) y0 2. 7
例3. 已知椭圆中心在原点, 焦点在坐标轴上, 直线y x 1 与该椭圆相交于P, Q, 且OP OQ,| PQ | 10 , 求椭圆方程. 2
当点P落在其它区域时,以点P为中点的弦存在。
检验方法:将求出的直线与曲线联立,看△ >0?
x2 y 2 例2.过双曲线 1的右焦点F作倾角为 的弦AB, 9 16 4 求弦长 | AB | 及弦AB的中点C到F的距离.
解:双曲线焦点为F(5,0),故AB方程为y=x-5,代 入双曲线方程消去y得: 7 x2 90 x 369 0,
90 369 又设A( x1 , y1 ), B( x2 , y2 ), C ( x0 , y0 ), 则x1 x2 , x1 x2 , 7 7
2 2a (a +1) +a +1=0 2 2 3a 3a
2
解得a=±1.
2 2 练习1.设0< < ,曲线x sin y cos 1和 2 2 2 x cos y sin 1, 有4个不同的交点. (1)求的取值范围; (2)证明这4个交点共圆, 并求圆的半径的取值范围.

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决.②直线与圆锥曲线仅有一个公共点,对于圆或椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行;对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.(2)从代数角度看,可通过将表示直线的方程,代入二次曲线的方程消元后所得的一元二次方程的解的情况来判断.直线l 方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元(x 或y ), 如消去y 后得ax 2+bx +c =0.若f (x ,y )=0表示椭圆,上述方程中a ≠0,若f (x, y )=0表示双曲线或抛物线, 上述方程中a =0或a ≠0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点.直线与圆锥曲线的位置关系重点是相交:相交――→转化联立方程组有两组不等的实数解――→转化一元二次方程有两个不等实数解――→转化判别式大于零.2.弦长的求法求弦长――→转化求两点间的距离――→综合运用⎩⎪⎨⎪⎧消元,解方程组,一元二次方程根与系数的关系.(1)弦长:(直线与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)),直线斜率为k ,一般地,弦长公式|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. (2)若弦过焦点:可用焦半径公式来表示弦长,简化运算. 如x 2a 2+y2b 2=1(a >b >0), |AB |=2a -e(x 1+x 2) (过右焦点), |AB |=2a +e(x 1+x 2) (过左焦点).如抛物线y 2=2px (p >0), |AB |=x 1+x 2+p .3.中点弦问题设A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1上不同的两点,且x 1≠x 2,x 1+x 2≠0,M (x 0,y 0)为AB 的中点,则⎩⎨⎧x 21a 2+y 21b21,x 22a 2+y22b 21.两式相减可得y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·y 0x 0=-b 2a2.类似地,可得圆锥曲线为双曲线x 2a 2-y 2b 2=1时,有k AB ·y 0x 0=b 2a2.圆锥曲线为抛物线y 2=2px (p >0)时,有k AB =py 0.探究点1 直线与圆锥曲线的交点问题例1 已知双曲线C :2x 2-y 2=2与点P (1, 2),求过点P 的直线l 的斜率的取值范围,使l 与C 分别有一个公共点,两个公共点,没有公共点.例1 [解答] (1)当l 垂直x 轴时,此时直线与双曲线相切,有一个公共点.(2)当l 不与x 轴垂直时,设直线l 的方程为y -2=k(x -1)代入双曲线C 的方程中,整理得(2-k 2)x 2+2(k 2-2k)x -k 2+4k -6=0, (*) 当k 2=2,即k =±2时, (*)为一次方程,显然只有一解; 当k 2≠2时,Δ=4(k 2-2k)2-4(2-k 2)(-k 2+4k -6)=48-32k.令Δ=0,可解得k =32;令Δ>0,即48-32k >0,此时k <32;令Δ<0,即48-32k <0,此时k >32.∴当k =±2或k =32或k 不存在时,l 与C 只有一个公共点;当k <-2或-2<k <2或2<k <32时,l 与C 有两个公共点;当k >32时,l 与C 没有公共点.[点评] (1)为了设出直线方程,先讨论斜率是否存在.当斜率存在时,设出方程并与双曲线方程组成方程组,消去y 得到关于x 的方程.当二次项系数为零时,直线与渐近线平行与双曲线只有一个交点;当二次项系数不为零时,若Δ=0,则有一个切点;若Δ>0,则有两个交点;Δ<0,则没有交点.(2)有关直线和圆锥曲线的范围问题,常常使用Δ来体现范围.探究点2 中点弦问题例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP →=PN →,AP →·MN →=0,求直线l 的方程.[解答] (1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2,∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP →=PN →,AP →·MN →=0,∴AP ⊥MN ,且点P 是线段MN 的中点, 由⎩⎪⎨⎪⎧y =kx -2,x 212+y 241,消去y ,得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*),由k ≠0,得方程(*)中Δ=(-12k)2=144k 2>0,显然方程(*)有两个不相等的实数根.设M(x 1,y 1)、N(x 2,y 2),线段MN 的中点P(x 0,y 0),则x 1+x 2=12k 1+3k 2∴x 0=x 1+x 22=6k1+3k 2, ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2即P ⎝⎛⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k1+3k2=-2-2(1+3k 2)6k.由MN →⊥AP →,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.探究点3 相交弦长与面积问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦点到相应准线的距离为22.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点到直线l 的距离为32,求△AOB 面积的最大值.例3 [解答] (1)∵e =c a =63,a 2c -c =22,解得a =3,c =2,∴b 2=3-2=1, 椭圆C 的方程为x 23+y 2=1.(2)当AB ⊥x 轴时,⎝⎛⎭⎫3223+y 2=1,得y 2=34,AB = 3. 当AB 不垂直x 轴时,设直线l 的方程为y =kx +m ,则|m|1+k2=32,得m 2=34k 2+34. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1, |AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1 =3+129k 2+1k2+6≤3+122×3+6=2(k ≠0),当且仅当9k 2=1k 2,即k =±33时,|AB|max =2,当k =0时,AB =3,综上所述|AB|max =2.∴当|AB|最大时,△AOB 面积最大值S =12×32×2=32.变式题:从椭圆x 2a 2+y2b 2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴端点B 的连线AB 平行于OM .(1)求椭圆的离心率;(2)当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203(Q是椭圆上的点),求此时椭圆的方程. [解答] (1)如图,由题意知x M =-c , 故y M =b 2a .又△F 1OM ∽△OAB ,c a =b 2a b ⇒b =c ⇒e =22. (2)设椭圆方程为x 2a 2+y2b 2=1(a>b>0),由(1)知a 2=2b 2,方程变为x 2+2y 2=2b 2.设直线PQ 方程为y -0=2(x -b),联立方程组,得5x 2-8bx +2b 2=0, x 1+x 2=8b 5,x 1x 2=2b 25.|PQ|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=26b5∵|y 2-y 1|=|2(x 2-x 1)|=2(x 1+x 2)2-4x 1x 2=43b5S △F 1PQ =12×||PQ ×||-22b 3=203⇒b 2=25,∴a 2=50,∴椭圆方程为x 250+y 225=1.探究点4 弦的定比分点问题例4 已知椭圆x 25+y 29=1,焦点F (0,2),又点A ,B 在椭圆上,而且AF →=2FB →,求直线AB 的斜率.例4 [解答] AF →=2FB →⇒A ,F ,B 三点共线. 设AB 方程为y =kx +2,与椭圆方程联立,得 (9+5k 2)x 2+20kx -25=0, x 1+x 2=-20k 9+5k 2,x 1x 2=-259+5k2.又AF →=2FB →⇒⎩⎪⎨⎪⎧x1=-2x 2,2-y 1=2y 2-4,所以-x 2=-20k 9+5k 2,-2x 22=-259+5k 2,消去x 2,解得k =±33. 探究点5 综合应用问题例5 已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C的右支于M 、N 两点,试确定λ的范围,使OM →·ON →=0,其中点O 为坐标原点. [解答] 设M(x 1,y 1),N(x 2,y 2),由已知易求B(1,0). 当MN 垂直于x 轴时,MN 的方程为x =1.设M(1,y 0),N(1,-y 0)(y 0>0),由OM →·ON →=0,得y 0=1,∴M(1,1),N(1,-1). 又M(1,1),N(1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52. ∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0. 由题意知λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM →·ON →=0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0,x 1+x 2>0,x 1x 2>0⇒⎩⎨⎧k 2=λ(1-λ)λ2+λ-1,k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λ,λ2+λ-1>0⇒5-12<λ<23.综上知5-12≤λ<23. 变式题:已知点P 1(x 0,y 0)为双曲线x 28b 2-y 2b 21(b 为正常数)上任一点,F 2为双曲线的右焦点,过P 1作右准线的垂线,垂足为A ,连结F 2A 并延长交y 轴于点P 2.(1)求线段P 1P 2的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B 、D 两点,在E 上任取一点Q (x 1,y 1)(y 1≠0),直线QB 、QD 分别交y 轴于M 、N 两点.求证:以MN 为直径的圆过两定点.[解答] (1)由已知得F 2(3b,0),A ⎝⎛⎭⎫83b ,y 0,则直线F 2A 的方程为y =-3y0b (x -3b),令x=0,得y =9y 0,即P 2(0,9y 0).于是直线QB 的方程为:y =y 1x 1+2b(x +2b),直线QD 的方程为y =y 1x 1-2b(x -2b),可得M ⎝⎛⎭⎪⎫0,2by 1x 1+2b ,N ⎝ ⎛⎭⎪⎫0,-2by 1x 1-2b . 则以MN 为直径的圆的方程为: ⎩⎪⎨⎪⎧x 2+⎝ ⎛⎭⎪⎫y -2by 1x 1+2b ⎝ ⎛⎭⎪⎫y +2by 1x 1-2b =0.令y =0得x 2=2b 2y 21x 21-2b 2,而Q(x 1,y 1)在x 22b 2-y 225b 2=1上,则x 21-2b 2=225·y 21,于是x =±5b , 即以MN 为直径的圆过两定点(-5b,0),(5b,0).规律总结本节问题的研究集中体现了解析几何的基本思想和方法,要求有较强的分析问题和解决问题的能力,有些问题涉及代数、三角、几何等多方面的知识,因此在复习中要注意各部分之间的联系和综合利用知识解决问题的能力.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,通过消元最终归结为讨论一个一元二次方程Ax 2+Bx +C =0的实数解的个数问题.应特别注意要分A =0和A ≠0的两种情况讨论,只有A ≠0时,才可用判别式来确定解的个数. 当直线平行于抛物线的对称轴时,直线与抛物线只有一个公共点.这些情况在解题中往往容易疏忽,要特别注意,对于选择、填空题,用数形结合往往快速简捷.2.斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=|x 1-x 2|·1+k 2=|y 1-y 2|·1+1k 2(k ≠0),利用这个公式求弦长时,应注意应用韦达定理.3.与焦点弦长有关的问题,要注意应用圆锥曲线的定义.4.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程时,一般可设A (x 1,y 1)、B (x 2,y 2),利用A 、B 在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m ,y 1+y 2=2n ,故可求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程.5.求圆锥曲线的方程时,通常利用待定系数法.。

直线和圆锥曲线的位置关系

直线和圆锥曲线的位置关系

直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。

直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式

直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式

直线与圆锥曲线的位置关系(1)从几何角度看:要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

(2)从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax°+bx+c=0.①.若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。

1、圆锥曲线的范围问题有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所求量可表示为另一变量的函数,求函数的值域。

2、圆锥曲线的最值、定值及过定点等难点问题。

直线与圆锥曲线的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ>0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ<0时,直线和圆锥曲线没有公共点,相离.直线与圆锥曲线相交的弦长公式:若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B 的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,):(1)1l y k x =+⇒-过定点(,0):2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。

练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。

A .4B .3C .2D .1分析:作出抛物线232--=x x y ,判断点P(3,2)相对抛物线的位置。

解:抛物线232--=x x y 如图,点P (3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有一条。

故选择D规律提示:含焦点的区域为圆锥曲线的内部。

(这里可以用公司的设备画图)一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。

二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系一、基本知识概要:1.直线与圆锥曲线的位置关系:相交、相切、相离。

从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x 或y 的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。

2. 弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。

焦点弦:若弦过圆锥曲线的焦点叫焦点弦;通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。

3.①当直线的斜率存在时,弦长公式:2121x x k l -+==[]2122124)()1(x x x x k -+⋅+或当k 存在且不为零时21211y y kl -+=,(其中(11,y x ),(22,y x )是交点坐标)。

②抛物线px y 22=的焦点弦长公式|AB|=α221sin 2pp x x =++,其中α为过焦点的直线的倾斜角。

4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。

5.思维方式: 方程思想、数形结合的思想、设而不求与整体代入的技巧。

6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,些直线才是曲线的切线。

一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。

二、例题:【例1】直线y=x+3与曲线14||92=-x x y ( ) A 。

没有交点 B 。

只有一个交点 C 。

有两个交点 D 。

有三个交点〖解〗:当x>0时,双曲线14922=-x y 的渐近线为:x y 23±=,而直线y=x+3的斜率为1,1<3/2,因此直线与双曲线的下支有一交点,又y=x+3过椭圆14922=+x y 的顶点,k=1>0因此直线与椭圆左半部分有一交点,共计3个交点,选D [思维点拔]注意先确定曲线再判断。

【例2】已知直线)22tan(:+=x y l 交椭圆9922=+y x 于A 、B 两点,若α为l 的倾斜角,且AB 的长不小于短轴的长,求α的取值范围。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。

2. 能够运用直线与圆锥曲线的位置关系解决实际问题。

3. 培养学生的逻辑思维能力和数学解决问题的能力。

二、教学内容1. 直线与圆锥曲线的基本概念和性质。

2. 直线与圆锥曲线的相切、相离和相交情况。

3. 直线与圆锥曲线的交点个数与判别式。

4. 直线与圆锥曲线的应用问题。

三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。

2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。

3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。

四、教学准备1. 教学课件和教学素材。

2. 直尺、圆规等绘图工具。

3. 练习题和答案。

五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。

2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。

3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。

4. 练习:让学生进行相关的练习题,巩固所学知识。

6. 作业布置:布置相关的练习题,巩固所学知识。

六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。

2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。

七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。

2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。

八、作业布置1. 完成课后练习题,巩固所学知识。

2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。

九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。

2. 教学方法的适用性,是否达到预期教学效果。

十、教学评价1. 学生作业、练习题和课堂表现的评价。

2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。

3. 教学反馈,了解学生对教学内容的满意度和建议。

直线与圆锥曲线的位置关系的判断

直线与圆锥曲线的位置关系的判断

1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c =0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.(×)(2)直线y=kx(k≠0)与双曲线x2-y2=1一定相交.(×)(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.(√)(4)直线与椭圆只有一个交点⇔直线与椭圆相切.(√)。

直线与圆锥曲线的位置关系 (1)

直线与圆锥曲线的位置关系 (1)

教学过程一、复习预习复习直线的方程与圆锥曲线的方程,圆锥曲线的几何性质。

直线一般方程:Ax +By +C =0(A 、B 不同时为0)椭圆方程:22221x y a b +=焦点在x 轴或22221y x a b +=焦点在y 轴双曲线方程:22221x y a b -=焦点在x 轴或22221y x a b-=焦点在y 轴抛物线方程:22y px =焦点在在x 轴或22x py =焦点在y 轴两点间距离公式: A (x 1,y 1),B (x 2,y 2),则|AB |=x 2-x 12y 2-y 12二、知识讲解本节课主要知识点解析,中高考考点、易错点学习考点1 直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y 0,消去y 后得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则 Δ>0 直线与圆锥曲线C 相交; Δ=0 直线与圆锥曲线C 相切; Δ<0 直线与圆锥曲线C 无公共点.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行.考点2 圆锥曲线的弦长(1)圆锥曲线的弦长直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.(2)圆锥曲线的弦长的计算设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=x2-x12y2-y12=1+k2|x1-x2|=1+1k2·|y1-y2|.(抛物线的焦点弦长|AB|=x1+x2+p=2psin2θ,θ为弦AB所在直线的倾斜角).三、例题精析考向一 直线与圆锥曲线的位置关系【例题1】【题干】设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]【答案】设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得.由题意得Q(-2,0).设l 的方程为y =k(x +2),代入y2=8x 得k2x2+4(k2-2)x +4k2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k2-2)2-16k4≥0,即k2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1. 答案 C【解析】研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,但对于选择题、填空题,常充分利用几何条件,利用数形结合的方法求解.考向二 弦长及中点弦问题 【例题2】【题干】若直线l 与椭圆C :x 23+y 2=1交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.【答案】解 设A (x 1,y 1),B (x 2,y 2). (1)当AB ⊥x 轴时,|AB |=3;(2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知,得|m |1+k2=32,即m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0. ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-13k 2+1. ∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m 23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,上式=3+129k 2+1k2+6≤3+122×3+6=4,当且仅当9k 2=1k ,即k =±33时等号成立.此时|AB |=2;当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值S max =12×|AB |max ×32=32.【解析】联立直线和椭圆方程,利用根与系数关系后代入弦长公式,利用基本不等式求出弦长的最大值即可.方法总结 当直线(斜率为k)与圆锥曲线交于点A(x1,y1),B(x2,y2)时,则|AB|=1+k2·|x1-x2|= 1+1k2|y1-y2|,而|x1-x2|=x1+x22-4x1x2,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.考向三 圆锥曲线中的最值(或取值范围)问题 【例题3】【题干】已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【答案】解 (1)∵a 2=2,b 2=1,∴c =1,F (-1,0), ∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M ⎝ ⎛⎭⎪⎫-12,t ,则圆半径r =⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-122=32, 由|OM |=r ,得⎝ ⎛⎭⎪⎫-122+t 2=32,解得t =±2,∴所求圆的方程为⎝ ⎛⎭⎪⎫x +122+(y ±2)2=94.(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根.如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k +1+k 22k +1=-k 22k +1=-12+14k +2,∵k ≠0,∴-12<x G <0,∴点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0. 【解析】(1)求出圆心和半径,得出圆的标准方程;(2)设直线AB的点斜式方程,由已知得出线段AB的垂直平分线方程,利用求值域的方法求解.方法总结直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.考向四 定值(定点)问题【例题4】 【题干】椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=322时,求直线l 的方程.(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值.【答案】(1)解 因椭圆焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆方程为y 22+x 2=1.直线l 垂直于x 轴时与题意不符.设直线l 的方程为y =kx +1,将其代入椭圆方程化简得(k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2, |CD |=k 2+1·x 1+x 22-4x 1x 2=22k 2+1k 2+2.由已知得22k 2+1k 2+2=322,解得k =± 2. 所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符.设直线l 的方程为y =kx +1(k ≠0且k ≠±1),所以P 点坐标为⎝ ⎛⎭⎪⎫-1k,0.设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2, 直线AC 的方程为y =y 1x 1+1(x +1), 直线BD 的方程为y =y 2x 2-1(x -1),将两直线方程联立,消去y 得x +1x -1=y 2x 1+1y 1x 2-1. 因为-1<x 1,x 2<1,所以x +1x -1与y 2y 1异号. ⎝ ⎛⎭⎪⎫x +1x -12=y 22x 1+12y 21x 2-12=2-2x 222-2x 21·x 1+12x 2-12=1+x11+x 21-x 11-x 2=1+-2k k 2+2+-1k 2+21--2k k 2+2+-1k 2+2=⎝ ⎛⎭⎪⎫k -1k +12.又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1=21-k 1+kk 2+2=-21+k 2k 2+2·k -1k +1,∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1同号, ∴x +1x -1=k -1k +1,解得x =-k . 因此Q 点坐标为(-k ,y 0).O P →·O Q →=⎝ ⎛⎭⎪⎫-1k ,0·()-k ,y 0=1.故O P →·O Q →为定值.【解析】(1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充分利用已知条件进行等价转化.方法总结 解决圆锥曲线中的定值问题的基本思路很明确:即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积等,其不受变化的量所影响的一个值即为定值,化解这类问题的关键是引进参数表示直线方程、数量积等,根据等式的恒成立、数式变换等寻找不受参数影响的量,解题过程中要注意讨论直线斜率的存在情况,计算要准确.四、课堂运用【基础】1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ).A .至多为1B .2C .1D .0答案:B 解析:由题意知:4m 2+n2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.【巩固】1.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若AB =22,OC 的斜率为22,求椭圆的方程.答案:椭圆方程为x 23+23y 2=1.解析:解 法一 设A (x 1,y 1)、B (x 2,y 2), 代入椭圆方程并作差得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k oc =22, 代入上式可得b =2a .再由|AB |=1+k 2|x 2-x 1|=2|x 2-x 1|=22, 其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故⎝⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1)、B (x 2,y 2), 则|AB |=k 2+1x 1-x 22=2·4b 2-4a +bb -1a +b2.∵|AB |=22,∴a +b -aba +b =1.①设C (x ,y ),则x =x 1+x 22=ba +b,y =1-x =aa +b,∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.2.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.答案:解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧y 1y 2=4, ①y 1+y 2=8+p2, ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2, 得抛物线G 的方程为x 2=4y .(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4kx -16k =0,④∴x 0=x C +x B2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 的中垂线方程为y -2k 2-4k =-1k(x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2,对于方程④,由Δ=16k 2+64k >0得k >0或k <-4. ∴b ∈(2,+∞).解析:(1)主要考察的是直线的点斜式及圆锥曲线的结合应用,加入向量的关系使得题目更加综合。

第3讲 直线与圆锥曲线的位置关系

第3讲 直线与圆锥曲线的位置关系
解:(1)设椭圆的半焦距为 c,依题意ac= 36, a= 3,
∴b=1,∴所求椭圆方程为x32+y2=1.
(2)设 A(x1,y1),B(x2,y2). ①当 AB⊥x 轴时,|AB|= 3. ②当 AB 与 x 轴不垂直时,设直线 AB 的方程为 y=kx+m.
由已知
|m| = 1+k2
23,得
2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦
直线 l:f(x,y)=0,曲线 r:F(x,y)=0,l 与 r 的两个不同的交
点 A、B,A(x1,y1)、B(x2,y2),则(x1,y1)、(x2,y2)是方程组
fx,y=0,
Fx,y=0
的两组解.方程组消元后化为关于 x(或 y)的一元二
次方程 Ax2+Bx+C=0(A≠0).判别式 Δ=B2-4AC,应用 Δ>0,
题型一 直线与圆锥曲线的位置关系
【例 1】 已知椭圆 C:xa22+by22=1(a>b>0)的离心率为 36,短轴 一个端点到右焦点的距离为 3. (1)求椭圆 C 的方程; (2)设直线 l 与椭圆 C 交于 A、B 两点,坐标原点 O 到直线 l 的 距离为 23,求△AOB 面积的最大值.
则 P(-4,0),显然直线 l 的斜率存在,设直线 l 的方程为 y=k(x+4), 如图设点 M(x1,y1),N(x2,y2),其中点 G(x0,y0). 将 y=k(x+4)代入x82+y42=1, 整理得:(2k2+1)x2+16k2x+32k2-8=0. 由 Δ=(16k2)2-4(2k2+1)(32k2-8)>0,
拓展提升——开阔思路 提炼方法 圆锥曲线与探索型问题包含两类题型,一是无明确结论,探索结论问
题;二是给定明确结论,探索结论是否存在问题.设置此类问题,旨在考 查创新意识和探究能力.

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

基本计算
1. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2 ,y2)则弦长公式为:
| AB | 1 k x1 x2
2
1 k ( x1 x2 ) 4 x1 x2
2 2
2.在与弦中点、弦的斜率有关的题型中,用韦达 定理是常见思路。
例1 已知抛物线的方程为 y 4 x ,直线 l 过定点P(-2,1),斜率为 k ,k 为值时,直线 l 与抛物线 y 2 4 x :只有一个公共点;有两个公 共点;没有公共点?
b|b 公共点,则b的取值范围为
2 若直线y=x+b与曲线
x 1y
2
恰好有一个
2或 - 1 b 1

3 在y轴上的截距为1的直线与焦点在x轴上的椭圆
x2 y2 1恒有公共,则m的取值范围是 [1,5)∪(5,+∞) 变2.是否存在实数m,使在y轴上的截距为1的直
基本方法
1 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的情 况的讨论来研究,即方程消元后得到一个一元二次 方程,利用判别式 来讨论。 2 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解决。 3 特殊情形: (1)在双曲线中,当直线平行于其渐近线时,直 线与双曲线有且仅有一个公共点。 (2)在抛物线中,平行于其对称轴的的直线和抛 物线有且仅有一个公共点。
2 x2 y2 y 2 1 2x 1 )恒有公共 线与椭圆 (或 5 m m
点。若存在,则求出m;若不存在,请说明理由。
y2 x2 变3.不论k为何值,直线y=kx+b 与椭圆 1 9 4 总有公共点,则b的取值范围为 -3≤b≤3

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 知识与技能:(1)理解直线与圆锥曲线的位置关系;(2)学会运用直线与圆锥曲线的性质解决相关问题。

2. 过程与方法:(1)通过观察、分析、推理等方法,探索直线与圆锥曲线的位置关系;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神,提高学生的表达沟通能力。

二、教学重点与难点1. 教学重点:(1)直线与圆锥曲线的位置关系;(2)运用直线与圆锥曲线的性质解决相关问题。

2. 教学难点:(1)直线与圆锥曲线的位置关系的判断;(2)灵活运用直线与圆锥曲线的性质解决实际问题。

三、教学过程1. 导入:(1)复习相关知识点,如直线、圆锥曲线的定义及性质;(2)提出问题,引导学生思考直线与圆锥曲线的位置关系。

2. 探究:(1)分组讨论,让学生观察直线与圆锥曲线的位置关系,总结规律;(2)每组派代表分享探究成果,师生共同总结直线与圆锥曲线的位置关系。

3. 讲解:(1)讲解直线与圆锥曲线的位置关系的判断方法;(2)举例说明如何运用直线与圆锥曲线的性质解决实际问题。

4. 练习:(1)布置课堂练习题,让学生巩固所学知识;(2)挑选部分练习题进行讲解,解答学生疑问。

5. 总结:(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调直线与圆锥曲线位置关系在实际问题中的应用。

四、课后作业1. 完成课堂练习题;2. 选取一个实际问题,运用直线与圆锥曲线的性质进行解答;3. 预习下一节课内容。

五、教学反思1. 反思教学效果:(1)学生对直线与圆锥曲线的位置关系的掌握程度;(2)学生运用直线与圆锥曲线的性质解决实际问题的能力。

2. 改进措施:(1)针对学生掌握不足的地方,进行有针对性的讲解和练习;(2)提供更多实际问题,让学生锻炼运用所学知识解决问题的能力。

六、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现,如参与度、理解程度等;(2)反思自己在课后作业中的表现,如完成情况、解决问题能力等。

圆锥曲线:第五讲 直线与圆锥曲线(1)

圆锥曲线:第五讲  直线与圆锥曲线(1)

第五讲 直线与圆锥曲线1.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度来看有三种:相离时,直线与圆锥曲线______公共点;相切时,直线与圆锥曲线有______公共点;相交时,直线与椭圆有______公共点,直线与双曲线、抛物线有一个或两个公共点.一般通过它们的方程来研究:设直线l :Ax +By +C =0与二次曲线C :f (x ,y )=0,由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元,如果消去y 后得:ax 2+bx +c =0, (1)当a ≠0时,①Δ>0,则方程有两个不同的解,直线与圆锥曲线有两个公共点,直线与圆锥曲线________; ②Δ=0,则方程有两个相同的解,直线与圆锥曲线有一个公共点,直线与圆锥曲线________; ③Δ<0,则方程无解,直线与圆锥曲线没有公共点,直线与圆锥曲线________. (2)注意消元后非二次的情况,即当a =0时,对应圆锥曲线只可能是双曲线或抛物线.当圆锥曲线是双曲线时,直线l 与双曲线的渐近线的位置关系是________;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴的位置关系是________. (3)直线方程涉及斜率k 要考虑其不存在的情形. 2.直线与圆锥曲线相交的弦长问题(1)直线l :y =kx +m 与二次曲线C :f (x ,y )=0交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,f (x ,y )=0得ax 2+bx +c =0(a ≠0),则x 1+x 2=________,x 1x 2=________,||AB = . (2)若弦过焦点,可得焦点弦,可用焦半径公式来表示弦长,以简化运算. 3.直线与圆锥曲线相交弦的中点问题中点弦问题常用“根与系数的关系”或“点差法”求解.(1)利用根与系数的关系:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.(2)点差法:若直线l 与圆锥曲线C 有两个交点A ,B ,一般地,首先设出A (x 1,y 1),B (x 2,y 2),代入曲线方程,通过作差,构造出x 1+x 2,y 1+y 2,x 1-x 2,y 1-y 2,从而建立中点坐标和斜率的关系. 无论哪种方法都不能忽视对判别式的考虑. 【答案】1.无 一个 两个 (1)①相交 ②相切 ③相离 (2)平行或重合 平行或重合 2.(1)-b a ca1+k 2||x 1-x 2=1+k2b 2-4ac||a【基础自测】1 双曲线x 24-y 2=1与直线y =kx +1有惟一公共点,则k 的值为( )A .22B .-22C .±22D .±22或±12解得k =±22.综上知D 正确,故选D.2 已知直线x =1过椭圆x 24+y 2b 2=1的焦点,则直线y =kx +2与椭圆至多有一个交点的充要条件是( )A .k ∈⎣⎡⎦⎤-12,12 B .k ∈⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫12,+∞ C .k ∈⎣⎡⎦⎤-22,22 D .k ∈⎝⎛⎦⎤-∞,-22∪⎣⎡⎭⎫22,+∞解:易知椭圆中c 2=a 2-b 2=4-b 2=1,即b 2=3,∴椭圆方程是x 24+y 23=1.联立y =kx +2可得(3+4k 2)x 2+16kx +4=0.由Δ≤0可解得k ∈⎣⎡⎦⎤-12,12.故选A. 3 已知两点M ⎝⎛⎭⎫1,54,N ⎝⎛⎭⎫-4,-54,给出下列曲线方程:①4x +2y -1=0;②x 2+y 2=3;③x22+y 2=1;④x 22-y 2=1.在曲线上存在点P 满足|MP |=|PN |的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④解:∵点P 满足|MP |=|PN |,∴点P 在线段MN 的垂直平分线l 上,l 的方程为y =-2x -3. 解法一:曲线①是直线,且与直线l 平行,故点P 不在曲线①上; 曲线②是圆心(0,0),半径为3的圆,圆心到直线l 的距离为d =35<3,即直线l 与圆相交,故存在点P在曲线②上;将直线l 的方程代入曲线③的方程得9x 2+24x +16=0,Δ=0,即存在点P 在曲线③上; 将直线l 的方程代入曲线④的方程得7x 2+24x +20=0,Δ>0,即存在点P 在曲线④上. 综上所述:曲线②③④满足题意.解法二:易知曲线①是直线;曲线②是圆心为(0,0),半径为3的圆;曲线③是椭圆;曲线④是双曲线.作出它们的图形,用数形结合来验证.故选D.4 过点(2,4)作直线与抛物线y 2=8x 有且只有一个公共点,则这样的直线有________条.解:注意到点(2,4)是抛物线上的点,用数形结合知满足题意的直线有两条,其一是过该点的切线;其二是过该点且与对称轴平行的直线.故填2.5 已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为__________.【典例】类型一 弦的中点问题例一 (1)已知一直线与椭圆4x 2+9y 2=36相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.解法一:设通过点M (1,1)的直线AB 的方程为y =k (x -1)+1,代入椭圆方程,整理得 (9k 2+4)x 2+18k (1-k )x +9(1-k )2-36=0. 设A ,B 的横坐标分别为x 1,x 2, 则x 1+x 22=-9k (1-k )9k 2+4=1,解之得k =-49. 故直线AB 的方程为y =-49(x -1)+1,即4x +9y -13=0. 解法二:设A (x 1,y 1). ∵AB 中点为M (1,1), ∴B 点坐标是(2-x 1,2-y 1).将A ,B 点的坐标代入方程4x 2+9y 2=36,得4x 21+9y 21-36=0,①及4(2-x 1)2+9(2-y 1)2=36,化简为4x 21+9y 21-16x 1-36y 1+16=0.②①-②,得16x 1+36y 1-52=0,化简为4x 1+9y 1-13=0. 同理可推出4(2-x 1)+9(2-y 1)-13=0.∵A (x 1,y 1)与B (2-x 1,2-y 1)都满足方程4x +9y -13=0, ∴4x +9y -13=0即为所求.解法三:设A (x 1,y 1),B (x 2,y 2)是弦的两个端点,代入椭圆方程,得⎩⎪⎨⎪⎧4x 21+9y 21=36, ①4x 22+9y 22=36, ②(2)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||FQ =2,则直线l 的斜率等于________.解:设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,x 1+x 2=-2k 2-4k 2=-2+4k 2,y 1+y 2=k (x 1+x 2)+2k =4k ,设Q (x 0,y 0),则x 0=x 1+x 22=-1+2k 2,y 0=y 1+y 22=2k,即Q ⎝⎛⎭⎫-1+2k 2,2k ,又F (1,0),∴||FQ =⎝⎛⎭⎫-1+2k 2-12+⎝⎛⎭⎫2k 2=2,解得k =±1.故填±1. 【评析】(1)本题的三种解法很经典,各有特色,解法一思路直接,但计算量大,解法三计算简捷,所列式子“整齐、美观,对称性强”,但消去x 1,x 2,y 1,y 2时,要求灵活性高,整体意识强.(2)本题解答看似正确,但细想会发现:缺少对“直线与抛物线相交于A ,B 两点”这一几何条件的检验(这是易出错的地方,切记),即⎩⎪⎨⎪⎧k ≠0,Δ=(2k 2-4)2-4k 4>0,解得k ∈(-1,0)∪(0,1),而当k =±1时,直线l 恰好与抛物线相切,似与题意不符.本节课时作业第8题对本题已知条件数据作了修改,使满足题意的直线l 是存在的,进而可求得直线l 的斜率.变式 已知双曲线2x 2-y 2=2.(1)求以M (2,1)为中点的双曲线的弦所在的直线的方程;(2)过点N (1,1)能否作直线l ,使直线l 与所给双曲线交于P 1,P 2两点,且点N 是弦P 1P 2的中点?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)设以M (2,1)为中点的弦两端点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,y 1+y 2=2.又∵A ,B 两点在双曲线上,∴2x 21-y 21=2,2x 22-y 22=2,两式相减得2(x 1+x 2)(x 1-x 2)=(y 1+y 2)(y 1-y 2). 由双曲线的对称性知x 1≠x 2, ∴k AB =y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2=4. ∴所求直线的方程为y -1=4(x -2),即4x -y -7=0.类型二 定点问题例二 已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.解:(1)如图,设动圆圆心O 1(x ,y ),由题意,||O 1A =||O 1M ,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于点H ,则H 是MN 的中点,||MH =12||MN =4,∴||O 1M =x 2+42.又||O 1A =(x -4)2+y 2,∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0);当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2kb -8)x +b 2=0,其中Δ=(2kb -8)2-4k 2b 2=64-32kb >0,得kb <2.由根与系数的关系知x 1+x 2=8-2kbk 2,① x 1x 2=b 2k2,②∵x 轴是∠PBQ 的角平分线,∴y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③ 将①②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, 化简得k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),且过定点(1,0).【评析】第(1)问设动圆圆心坐标,利用圆的半径、弦的一半和弦心距组成的直角三角形求解,第(2)问设直线方程y =kx +b 和轨迹方程联立,再设两个交点坐标,由题意知直线BP 和BQ 的斜率互为相反数,导出k 和b 的关系,最后应用方程特点证明直线过定点.解析几何解答题的一般命题模式是先根据已知的关系确定一个曲线的方程,然后再结合直线方程与所求曲线方程把问题引向深入,其中的热点问题有:参数范围、最值、直线或曲线过定点、某些量为定值等.在直线与圆锥曲线交于不同两点的相关问题中,一般是设出点的坐标,然后确定点的坐标之间的关系(特别是直线是动直线时这个方法是必需的),再进行整体处理(通常是利用韦达定理处理这类问题).变式 若直线l :y =kx +m 与椭圆C :x 24+y 23=1相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.式得(4m 2-12)(k 2+1)4k 2+3-8km (km -2)4k 2+3+4+m 2=0,整理得7m 2+16mk +4k 24k 2+3=0,即(7m +2k )(m +2k )4k 2+3=0.解得m =-27k 或-2k .当m =-27k 时,y =kx -27k =k ⎝⎛⎭⎫x -27,过定点⎝⎛⎭⎫27,0; 当m =-2k 时,y =kx -2k ,过定点(2,0),即过椭圆右顶点,与题意矛盾. 所以直线l 过定点⎝⎛⎭⎫27,0. 类型三 定值问题例三 已知直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两点,且△OPQ 的面积S =62,其中O 为坐标原点.证明:x 21+x 22和y 21+y 22均为定值.证明:当直线l 垂直于x 轴时,设直线l 的方程为x =a (|a |<3),代入椭圆C 的方程得a 23+y 22=1,即y 1,2=±2⎝⎛⎭⎫1-a23,∴|PQ |=|y 1-y 2|=22⎝⎛⎭⎫1-a 23. ∵△OPQ 的面积S =62, ∴12|a |·22⎝⎛⎭⎫1-a 23=62,解之得a 2=32. ∴x 21+x 22=2a 2=3,y 21+y 22=2.由韦达定理得x 1+x 2=-6km3k 2+2, x 1x 2=3(m 2-2)3k 2+2.∴|PQ |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+2)2-12(m 2-2)3k 2+2=1+k 2·26·3k 2+2-m 23k 2+2.∵原点O 到直线l 的距离为d =|m |1+k 2,△OPQ 的面积S =62,∴12·1+k 2·26·3k 2+2-m 23k 2+2·|m |1+k 2=62. 令3k 2+2=t ,化简得t =2m 2,即3k 2+2=2m 2.x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝⎛⎭⎫-6km 3k 2+22-6(m 2-2)3k 2+2 =3.y 21+y 22=(kx 1+m )2+(kx 2+m )2 =k 2(x 21+x 22)+2km (x 1+x 2)+2m 2=3k 2-12k 2m 23k 2+2+2m 2=2.综上知,x 21+x 22=3,y 21+y 22=2,即均为定值.【评析】(1)繁难的代数运算是定值问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算;(2)对题目的两个几何特征的代数形式要有合理的预判,以便设计解题思路,优化解题过程.变式 已知椭圆的中心在坐标原点O ,焦点在x 轴上,斜率为1且过椭圆的右焦点F 的直线交椭圆于A ,B 两点,OA →+OB →与a =(3,-1)共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且OM →=λOA →+μOB →(λ,μ∈R ),证明:λ2+μ2 为定值.解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F (c ,0),则直线AB 的方程为y =x -c ,代入椭圆方程得(a 2+b 2)x 2-2a 2cx +a 2(c 2-b 2)=0. 设A (x 1,y 1),B (x 2,y 2),(2)由(1)知,a 2=3b 2,故椭圆方程可化为x 2+3y 2=3b 2.设M (x ,y ),则OM →=(x ,y ),由已知得(x ,y )=λ(x 1,y 1)+μ(x 2,y 2),即⎩⎪⎨⎪⎧x =λx 1+μx 2,y =λy 1+μy 2.∵M (x ,y )在椭圆上,∴(λx 1+μx 2)2+3(λy 1+μy 2)2=3b 2,即λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2,①由(1)知,x 1+x 2=32c ,x 1x 2=38c 2.∴x 1x 2+3y 1y 2=x 1x 2+3(x 1-c )(x 2-c ) =4x 1x 2-3c (x 1+x 2)+3c 2=0.∵A ,B 在椭圆上,∴x 21+3y 21=3b 2,x 22+3y 22=3b 2,代入①式得λ2+μ2=1,故λ2+μ2为定值1.类型四 与弦有关的范围与最值问题例四 已知曲线C :y 2=-4x (x >-3),直线l 过点M (1,0)交曲线C 于A ,B 两点,点P 是AB 的中点,EP 是AB 的中垂线,E 点的坐标为(x 0,0),试求x 0的取值范围.解:由题意可知,直线l 与x 轴不垂直,可设l :y =k (x -1),代入曲线C 的方程得k 2x 2+2(2-k 2)x +k 2=0(-3<x ≤0),①由方程①得x A +x B =2(k 2-2)k 2,x P =12(x A +x B )=k 2-2k 2,y P =k (x P -1)=-2k, ∴直线EP 的方程为y +2k =-1k ⎝⎛⎭⎫x -k 2-2k 2.令y =0,得x 0=-1-2k 2.∵34<k 2<1, ∴-113<x 0<-3,即x 0的取值范围是⎝⎛⎭⎫-113,-3. 【评析】对于参数的取值范围问题,要能从几何特征的角度去分析参数变化的原因,谁是自变量,定义域是什么,这实际是函数问题,要学会用函数的观点分析这类问题.变式 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值. 解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63,a =3,得c =2,b 2=a 2-c 2=1, 所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2). 当AB 与x 轴垂直时,|AB |= 3. 当AB 与x 轴不垂直时, 设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34(k 2+1).=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(1+k 2)(3k 2+1-m 2)(3k 2+1)2=3(1+k 2)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6≤3+122×3+6=4(k ≠0).当且仅当9k 2=1k 2,即k =±33时等号成立.当k =0时,|AB |= 3. 综上所述:|AB |max =2.∴当|AB |最大时,△AOB 的面积取得最大值 S =12×|AB |max ×32=32. 类型五 对称问题例五 已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.解:设A (x 1,y 1)和B (x 2,y 2)为抛物线y =ax 2-1上的关于直线x +y =0对称的两相异点,则y 1=ax 21-1,y 2=ax 22-1.联立直线AB 与抛物线的方程并消去y ,得 ax 2-x +1a-1=0.依题意,上面的方程有两个相异实根, ∴Δ=1-4a ⎝⎛⎭⎫1a -1>0,解得a >34. ∴a 的取值范围是⎝⎛⎭⎫34,+∞. 【评析】应用判别式法解决此类对称问题,要抓住三点:(1)中点在对称轴上;(2)两个对称点的连线与对称轴垂直;(3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”、“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围.变式 已知椭圆C :x 24+y 23=1,试确定m 的取值范围,使得椭圆上有两个不同的点关于直线y =4x +m 对称.解:设P (x 1,y 1),Q (x 2,y 2)是椭圆C 上符合条件的两点,M (x ,y )是PQ 的中点,则有⎩⎪⎨⎪⎧3x 21+4y 21=12,3x 22+4y 22=12, 两式相减,得3(x 1-x 2)(x 1+x 2)+4(y 1-y 2)(y 1+y 2)=0. ∵x 1≠x 2,x 1+x 2=2x ,y 1+y 2=2y , ∴3x4y =-y 1-y 2x 1-x 2=-k PQ . ∵k PQ =-14,∴y =3x .【名师点睛】1.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程或动弦中点M (x ,y )轨迹时,一般可设A (x 1,y 1),B (x 2,y 2),利用A ,B 两点在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m (或2x ),y 1+y 2=2n (或2y ),从而求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程,或者得到动弦所在直线斜率与中点坐标x ,y 之间的关系,整体消去x 1,x 2,y 1,y 2,得到点M (x ,y )的轨迹方程.2.对满足一定条件的直线或者曲线过定点问题,可先设出该直线或曲线上两点的坐标,利用坐标在直线或曲线上以及切线、点共线或共圆、对称等条件,建立点的坐标满足的方程或方程组.为简化运算应多考虑曲线的几何性质,求出相应的含参数的直线或曲线,再利用直线或曲线过定点的知识加以解决. 以“求直线l :y =kx +2k +1(k 为参数)是否过定点?”为例,有以下常用方法:①待定系数法:假设直线l 过点(c 1,c 2),则y -c 2=k (x -c 1),即y =kx -c 1k +c 2,通过与已知直线方程比较得c 1=-2,c 2=1.所以直线l 过定点(-2,1).题中“k”不仅可以是一个参数,还可以是一个由参数组成的表达式.②赋值法:令k=0,得l1:y=1;令k=1,得l2:y=x+3,求出l1与l2的交点(-2,1),将交点坐标代入直线系得1=-2k+2k+1恒成立,所以直线l过定点(-2,1).赋值法由两步构成,第一步:通过给参数赋值,求出可能的定点坐标;第二步:验证其是否恒满足直线方程.③参数集项法:对直线l的方程中的参数集项得y=k(x+2)+1,令k的系数为0,得x=-2,y=1,k的取值是任意的,但l的方程对点(-2,1)恒成立,所以直线l过定点(-2,1).若方程中含有双参数,应考虑两个参数之间的关系.3.给出曲线上的点到直线的最短(长)距离或求动点到直线的最短(长)距离时,可归纳为求函数的最值问题,也可借助于图形的性质(如三角形的公理、对称性等)求解.4.圆锥曲线上的点关于某一直线对称的问题,通常利用圆锥曲线上的两点所在直线与已知直线l(或者是直线系)垂直,圆锥曲线上两点连成线段的中点一定在对称轴直线l上,再利用判别式或中点与曲线的位置关系求解.5.要重视对数学思想、方法进行归纳提炼,以达到优化解题思路、简化解题过程的目的.(1)方程思想解析几何题不少以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就能简化运算.(2)函数思想对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线段的长度及a,b,c,e,p之间构成函数关系,函数思想在处理这类问题时就很有效.(3)对称思想由于圆锥曲线和圆都具有对称性,所以可使分散的条件相对集中,减少一些变量和未知量,简化计算,提高解题速度,促成问题的解决.(4)参数思想参数思想是辩证思维在数学中的反映,一旦引入参数,用参数来划分运动变化状态,把圆、椭圆、双曲线上的点用参数形式设为(x0,y0),即可将参数视为常量,以相对静止来控制变化,实现变与不变的转化;另外,对于有些参数,视具体情况可在解题过程中将其消去,达到“设而不求”的效果.(5)转化思想解决圆锥曲线问题时要充分注意直角坐标方程与参数方程的联系及转化,达到优化解题的目的.除上述常用思想方法外,数形结合、分类讨论、整体思想、构造思想也是不可忽视的思想方法,复习时也应给予足够的重视.【针对训练】1.若双曲线x2-y2=1的右支上一点P(a,b)到直线y=x的距离为2,则a+b=()A .-12B .12C .±12D .±1解:由点到直线的距离公式得|a -b |2=2,即|a -b |=2. 又点P (a ,b )在双曲线的右支上,∴P 点在直线y =x 的下方,a -b >0.∴a -b =2. 又a 2-b 2=1,即(a -b )(a +b )=1,∴a +b =12.故选B.2.设斜率为2的直线过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OF A (O 为坐标原点)的面积为4,则抛物线的方程为( ) A .y 2=±4x B .y 2=±8x C .y 2=4xD .y 2=8x解:焦点F 坐标为⎝⎛⎭⎫a 4,0,设直线的方程为 y =2⎝⎛⎭⎫x -a 4,则A 点纵坐标为-a2,△OF A 的面积为 S =12·⎪⎪⎪⎪a 4·⎪⎪⎪⎪-a 2= a 216=4,解得a =±8.故选B. 3.直线y =2k 与曲线9k 2x 2+y 2=18k 2||x (k ∈R ,且k ≠0)的公共点的个数为( ) A .1B .2C .3D .4解:将y =2k 代入9k 2x 2+y 2=18k 2||x ,得9k 2x 2-18k 2||x +4k 2=0,∵k ∈R ,且k ≠0,∴9||x 2-18||x +4=0,即9(||x -1)2-5=0,解得||x =1±53,x =1±53或-1±53,因此公共点的个数为4.故选D.4.已知椭圆mx 2+ny 2=1与直线x +y -1=0相交于A ,B 两点,过AB 中点M 与坐标原点的直线的斜率为22,则mn =( ) A .22B .322C .1D .25.若直线mx +ny -5=0与圆x 2+y 2=5没有公共点,则过点P (m ,n )的一条直线与椭圆x 27+y 25=1的公共点的个数是( ) A .0B .1C .2D .1或2解:由已知得5m 2+n 2>5,即m 2+n 2<5.又m 27+n 25≤m 25+n 25<1,所以点P 在椭圆内,因此过点P 的一条直线与椭圆有两个公共点.故选C.6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是-2,-1],那么直线P A 1斜率的取值范围是( ) A.⎣⎡⎦⎤12,34 B.⎣⎡⎦⎤38,34 C.⎣⎡⎦⎤12,1D.⎣⎡⎦⎤34,1解:由题意知点P 在第一象限,设P 点横坐标为x ,则其纵坐标y =32·4-x 2,由P A 2的斜率知-2≤32·4-x 2x -2≤-1,∵2-x >0,2+x >0,∴上式可化为1≤32·2+x 2-x ≤2,即23≤2+x 2-x ≤43.∴P A 1的斜率k =32·4-x 2x +2=32·2-x 2+x ∈⎣⎡⎦⎤38,34.故选B. 7.已知P (4,2)是直线l 被椭圆x 236+y 29=1截得线段的中点,则直线l 的方程为________.解:线段两端点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4. ∵A ,B 在椭圆上,∴⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1,8.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||FQ =23,则直线l 的斜率等于________.解:设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,由⎩⎪⎨⎪⎧k ≠0,Δ=(2k 2-4)2-4k 4>0,解得k ∈(-1,0)∪(0,1),x 1+x 2=-2k 2-4k 2=-2+4k 2,y 1+y 2=k (x 1+x 2)+2k =4k ,设Q (x 0,y 0),则x 0=x 1+x 22=-1+2k 2,y 0=y 1+y 22=2k,即Q ⎝⎛⎭⎫-1+2k 2,2k ,又F (1,0),∴||FQ =⎝⎛⎭⎫-1+2k 2-12+⎝⎛⎭⎫2k 2=23,解得k =±22.故填±22.9.如图,M 是抛物线y 2=x 上的一点,动弦ME ,MF 分别交x 轴于A ,B 两点,且MA =MB .若M 为定点,证明:直线EF 的斜率为定值.证明:设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k , ∴直线ME 的方程为y -y 0=k (x -y 20).联立⎩⎪⎨⎪⎧y -y 0=k (x -y 20),y 2=x ,消去x ,得ky 2-y +y 0(1-ky 0)=0.解得y E =1-ky 0k ,∴x E =(1-ky 0)2k 2.同理,y F =1+ky 0-k,∴x F =(1+ky 0)2k 2.∴k EF =y E -y F x E -x F =1-ky 0k -1+ky 0-k (1-ky 0)2k 2-(1+ky 0)2k 2=2k -4ky 0k 2=-12y 0(定值).∴直线EF 的斜率为定值. 10.设动直线l :y =kx +m 与椭圆E :x 24+y 23=1有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出M 点的坐标;若不存在,说明理由.解:联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,即x 1=-4km,代入直线l 的方程得y 1=-4k 2m +m =3m.由图形的对称性,假设存在点M (t ,0),则MP →·MQ →=0,根据题意得Q (4,4k +m ),∴MP →=⎝⎛⎭⎫-4k m -t ,3m ,MQ →=(4-t ,4k +m ).∴MP →·MQ →= -4(4-t )k m -t (4-t )+12k m +3= (4t -4)k m -t (4-t )+3=4k (t -1)m +(t -1)(t -3)=0,当t =1,等式恒成立.∴坐标平面内存在定点M (1,0),使得以PQ 为直径的圆恒过点M .11.在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB ∥OA ,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C . (1)求C 的方程;(2)P 为C 上的动点,直线l 为C 在P 点处的切线,求O 点到直线l 的距离的最小值. 解:(1)设M (x ,y ),∵MB ∥OA ,∴B (x ,-3). 又∵A (0,-1),∴MA →=(-x ,-1-y ), MB →=(0,-3-y ),AB →=(x ,-2). ∵MA →·AB →=MB →·BA →, ∴(MA →+MB →)·AB →=0, 即-x 2+(-4-2y )·(-2)=0, 即y =14x 2-2.∴曲线C 的方程为y =14x 2-2.∴O 点到直线l 的距离d =|2y 0-x 20|x 20+4.∵y 0=14x 20-2,∴d =12x 2+4x 20+4=12(x 20+4+4x 20+4)≥2(当且仅当x 0=0时等号成立). ∴O 点到直线l 的距离的最小值为2.12 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A (2,1),离心率为22,过点B (3,0)的直线l 与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)求BM →·BN →的取值范围;(3)设直线AM ,AN 的斜率分别为k AM ,k AN ,求证:k AM +k AN 为定值.解:(1)由题意得⎩⎨⎧4a 2+1b 2=1,a 2=b 2+c 2,c a =22,解之得a =6,b = 3. ∴椭圆C 的方程为x 26+y 23=1.(2)由题意显然直线l 的斜率存在,可设直线l 的方程为y =k (x -3). 由方程组⎩⎪⎨⎪⎧y =k (x -3),x 26+y 23=1消去y 整理得(1+2k 2)x 2-12k 2x +6(3k 2-1)=0. ∵直线l 与椭圆C 交于不同的两点M ,N , ∴Δ=144k 4-24(1+2k 2)(3k 2-1)=24(1-k 2)>0, 解之得-1<k <1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12k 21+2k 2,x 1x 2=6(3k 2-1)1+2k 2,∴BM →·BN →的取值范围是(2,3]. (3)证明:由(2)知k AM =y 1-1x 1-2, k AN =y 2-1x 2-2,则 k AM +k AN =y 1-1x 1-2+y 2-1x 2-2=(kx 1-3k -1)(x 2-2)+(kx 2-3k -1)(x 1-2)(x 1-2)(x 2-2)=2kx 1x 2-(5k +1)(x 1+x 2)+4(3k +1)x 1x 2-2(x 1+x 2)+4=)21(424)13(6)21()13(412)15()13(62222222k k k k k k k k k ++--+∙++∙+--∙ =-4k 2+42k 2-2=-2.∴k AM +k AN 为定值-2.。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与椭圆的位置关系直线与圆锥曲线问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n 的区别)2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ⇔OA OB ⊥⇔121K K ∙=- ⇔0OA OB ∙= ⇔ 12120x x y y += ②“点在圆内、圆上、圆外问题” ⇔“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题” ⇔12120x x y y +>>0; ③“等角、角平分、角互补问题” ⇔斜率关系(120K K +=或12K K =); ④“共线问题”(如:AQ QB λ= ⇔数的角度:坐标表示法;形的角度:距离转化法)(如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题” ⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算;7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.问题一、判断直线与椭圆的位置关系:(代数法与几何法)例、 判断直线03=+-y kx 与椭圆141622=+y x 的位置关系练:若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围问题二、弦长公式问题:例、已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它的左焦点1F 作倾斜角为3π的直线交椭圆于A ,B 两点,求弦AB 的长.练:已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积问题三、中点与中点弦问题:(注意点差法的应用)例、 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.练:求以椭圆22185x y +=内的点(2,1)A -为中点的弦所在直线方程.问题四、向量有关问题:(注意向量式的转化)例、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB + 与(3,1)a =- 共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且 (,)OM OA OB R λμλμ=+∈ ,证明22μλ+为定值.练:设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB = .(1) 求椭圆C 的离心率;(2)如果|AB|=154,求椭圆C 的方程.问题五、定值与定点问题: 例、已知椭圆C 的中心在坐标原点,焦点在x 轴上,长轴长为23,离心率为33,经过其左焦点1F 的直线l 交椭圆C 于P 、Q 两点.(I )求椭圆C 的方程;(II )在x 轴上是否存在一点M ,使得MP MQ ⋅ 恒为常数?若存在,求出M 点的坐标和这个常数;若不存在,说明理由.练:已知直线:1()l x my m =+∈R 与椭圆22:1(0)9x y C t t+=>相交于,E F 两点,与x 轴 相交于点B ,且当0m =时,8||3EF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点A 的坐标为(3,0)-,直线AE 、AF 与直线3x =分别交于M 、N 两点.试判断以MN 为直径的圆是否经过点B ? 并说明理由.问题六、最值问题:例.设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. DFB yxA OE(1)若6ED DF = ,求k 的值;(2)求四边形AEBF 面积的最大值.练:已知椭圆22221(0)x y a b a b+=>>的离心率为63,短轴的一个端点到右焦点的距离为3,直线:l y kx m =+交椭圆于不同的两点A ,B (Ⅰ)求椭圆的方程(Ⅱ)若坐标原点O 到直线l 的距离为32,求AOB ∆面积的最大值问题七、转化思想:有些题思路易成,但难以实施。

直线与圆锥曲线的位置关系问题

直线与圆锥曲线的位置关系问题

2.连结圆锥曲线上两点的线段称为圆锥曲线的弦 设直线 l:f(x,y)=0,曲线 E:F(x,y)=0,l 与 E 的两个 不同的交点 P、Q,设 P(x1,y1),Q(x2,y2),则(x1,y1),(x2,
f(x,y)=0 y2)是方程组F(x,y)=0的两组解,方程组消元后化为关于 x(或者 y)的一元二次方程 Ax2+Bx+C=0(A≠0).判别式 Δ=B2 -4AC,应有 Δ>0,所以 x1、x2 是方程 Ax2+Bx+C=0 的解.由 根与系数的关系(韦达定理)求得 x1+x2=-BA,x1x2=CA,所以 P、 Q 两 点 间 距 离 为 |PQ| = (x1-x2)2+(y1-y2)2 =
=16,
所以 xB2=4+16k2,
又 由 O→B = 2 O→A , 得
xB2

4xA2


16 4+k2

1+164k2,
解得 k=±1,故直线 AB 的方程为 y=x 或 y=
-x.
解法二:A,B 两点的坐标分别记为(xA,yA), (xB,yB),
由O→B=2O→A及(1)知, O,A,B 三点共线且点 A,B 不在 y 轴上, 因此可设直线 AB 的方程为 y=kx. 将 y=kx 代入x42+y2=1 中,得(1+4k2)x2=4,
(2)运用类比的手法可以推出,已知 PQ 是双曲 线xa22-by22=1 的弦,中点 M(x0,y0),则 kPQ=ba22xy00; 已知抛物线 y2=2px(p>0)的弦 PQ 的中点 M(x0,y0), 则 kPQ=yp0. 4.圆锥曲线上的点关于某一直线的对称问题,解 决此类题的方法是利用圆锥曲线上的两点所在直
(1)求椭圆 C2 的方程; (2)设 O 为坐标原点,点 A,B 分别在椭圆 C1 和 C2 上,O→B=2O→A,求直线 AB 的方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8.5直线与圆锥曲线的位置关系
知识诠释思维发散
一、直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系主要是指直线和圆锥曲线相交、相切、相离,解题的方法是将问题转化为直线方程与圆锥曲线方程组成的方程组,进而转化为一元(一次或二次)方程解的情况去研究.
ax2+bx+c=0
(1)若a=0,直线与圆锥曲线有一个公共点,但并不相切.此时,圆锥曲线不会是椭圆.当圆锥曲线为双曲线时,直线l与双曲线的渐近线.当圆锥曲线是抛物线时,直线l与抛物线的对称轴.
(2)若a≠0,设Δ=b2-4ac,
①Δ>0时,直线与圆锥曲线相交于;
②Δ=0时,直线与圆锥曲线;
③Δ<0时,直线与圆锥曲线.
另外,还能利用数形结合的方法,迅速判断某些直线和圆锥曲线的位置关系.
二、直线与圆锥曲线相交的弦长计算
(1)当弦的两端点的坐标易求时,可直接求出交点坐标,再用两点间的距离公式求弦长.
(2)解由直线方程与圆锥曲线方程组成的方程组,得到关于x(或y)的一元二次方程,设直线
与圆锥曲线交于A(x1,y1),B(x2,y2)两点,直线斜率为k,则弦长公式为
|AB|=或
|AB|=(k≠0).
1.过点(2,4)作直线与抛物线y2=8x只有一个公共点,这样的直线有()
(A)0条.(B)1条.(C)2条.(D)3条.
2.过原点的直线l与双曲线-=1有两个交点,则直线l的斜率的取值范围是()
(A)(-,).(B)(0,)∪(,+∞).
(C)[-,].(D)(-∞,-]∪[,+∞).
3.抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为()
(A)2.(B)4.(C)6.(D)8.
4.直线y=kx-2与椭圆+=1相交于不同的两点P、Q,若PQ的中点的横坐标为2,则弦长|PQ|等于.
核心突围技能聚合
题型1直线与圆锥曲线的关系问题
例1(1)直线y=kx-k+1与椭圆+=1的公共点个数有()
(A)2个.(B)1个.(C)0.(D)不确定.
(2)过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于2,则这样的直线()
(A)有且仅有一条.(B)有且仅有两条.
(C)有无穷多条.(D)不存在.
(3)设离心率为e的双曲线C:-=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()
(A)k2-e2>1.(B)k2-e2<1.
(C)e2-k2>1.(D)e2-k2<1.
变式训练1(1)已知双曲线的方程为x2-=1,若过点P(1,1)的直线l与双曲线只有一个公共点,则直线的条数为()
(A)4.(B)3.(C)2.(D)1.
(2)直线y=kx+2与椭圆+=1至多一个交点的充要条件是()
(A)k∈[-,].
(B)k∈(-∞,-]∪[,+∞).
(C)k∈[-,].
(D)k∈(-∞,-]∪[,+∞).
题型2中点弦及对称问题
例2(1)过椭圆+=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.
(2)在抛物线y=x2上存在两个不同的点M、N关于直线y=-kx+对称,求k的取值范围.
变式训练2已知椭圆的两个焦点分别为F1(0,-2),F2(0,2),离心率为e=.
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为-,求直线l的倾斜角的取值范围.
题型3直线或点的存在性问题
例3试问能否找到一条斜率为k(k≠0)的直线l与椭圆+y2=1交于两个不同点M、N,使M、N到点A(0,1)的距离相等?若存在,试求出k的取值范围;若不存在,请说明理由.
变式训练3如图,P为抛物线y=x2上的一点,抛物线的焦点为F,PC垂直于直线y=-,
垂足为C,已知直线AB垂直PF分别交x、y轴于A、B.
(1)求使△PCF为等边三角形的点P的坐标.
(2)是否存在点P,使P平分线段AB?若存在,求出点P,若不存在,说明理由.
1.直线与椭圆、双曲线、抛物线的位置关系
(1)对于椭圆来说,直线与椭圆有一个公共点,直线与椭圆必相切;反之,直线与椭圆相切,则直线与椭圆必有一个公共点.
(2)对于双曲线来说,当直线与双曲线有一个公共点时,除了直线与双曲线相切外,还有直线与双曲线相交,此时直线与双曲线的渐近线平行.
(3)对于抛物线来说,当直线与抛物线有一个公共点时,除了直线与抛物线相切外,还有直线与抛物线相交,此时直线与抛物线的对称轴平行或重合.
(4)联立直线方程与双曲线方程消去x(或y)后,判别式Δ>0,则直线与双曲线相交,但直线与双曲线相交不一定有Δ>0;当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点.所以Δ>0是直线与双曲线相交的充分条件,但不是必要条件.
(5)联立直线方程与抛物线方程消去x(或y)后,判别式Δ>0,则直线与抛物线相交,但直线与抛物线相交不一定有Δ>0,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个交点.所以Δ>0是直线与抛物线相交的充分条件,但不是必要条件.
2.直线与圆锥曲线相交的问题
(1)直线与圆锥曲线相交问题是解析几何中一类重要问题,注意应用根与系数间的关系、“设而不求”的技巧来解决直线与圆锥曲线的综合问题.
(2)运用“点差法”解决弦的中点问题
涉及弦的中点问题,可以利用判别式和韦达定理的方法加以解决,也可利用“点差法”的方法解决此类问题.若知道中点,则利用“点差法”的方法可得出过中点弦的直线的斜率.比较两种方法,用“点差法”的方法的计算量较少,此法在解决有关存在性问题时,要结合图形和判别式Δ加以检验.
(3)弦长公式|AB|=或|AB|=(k≠0)中,k指的是直线AB的斜率.在计算弦长时要特别注意一些特殊情况:①直线与圆锥曲线的对称轴平行或垂直的情况,一般要首先验证;②直线过圆锥曲线的焦点,在出现这些情况时可以直接计算或利用曲线的定义把弦长进行转化.
3.已知弦AB的中点,研究AB的斜率和方程
(1)AB是椭圆+=1(a>b>0)的一条弦,M(x0,y0)是AB的中点,则k AB=-,k AB·k OM=-.点差法求弦的斜率的步骤是:
①将端点坐标代入方程:+=1,+=1;
②两等式对应相减:-+-=0;
③分解因式整理:k AB==-=-.
(2)运用类比的方法可以推出:已知AB是双曲线-=1(a>0,b>0)的弦,弦AB的中点为
M(x0,y0),则k AB=;已知抛物线y2=2px(p>0)的弦AB的中点为M(x0,y0),则k AB=.
例过点(0,3)的直线l与抛物线y2=4x只有一个公共点,求直线l的方程.
【错解】设直线l的斜率为k,则l的方程为y=kx+3,将其代入y2=4x,整理得k2x2+(6k-4)x+9=0.由于Δ=(6k-4)2-4×9k2=16-48k=0,解得k=,故直线l的方程为y=x+3.
【剖析】上述解法只考虑了直线的斜率k存在的情况,而忽视了k不存在以及直线l平行抛物线对称轴时的两种情形.
【正解】当斜率k存在且k≠0时,直线l的方程为y=x+3,
当k=0时,直线l:y=3,此时l平行于对称轴,且与抛物线只有一个交点(,3),
当k不存在时,直线l与抛物线也只有一个公共点,此时l的方程为x=0.
综上,过点(0,3)且与抛物线y2=4x只有一个公共点的直线的方程为y=x+3,y=3,x=0.
基础·角度·思路
“课时训练”见《精练案》P297
参考答案
§8.5直线与圆锥曲线的位置关系
知识梳理
一、解的个数(1)平行平行或重合(2)①两个点②相切③相离
基础自测
1.C
2.A
3.B
4.6
典例剖析
例1(1)A(2)A(3)C
变式训练1(1)A(2)A
例2(1)x+2y-4=0(2)(-∞,-)∪(,+∞)
变式训练2(1)x2+=1(2)(,)∪(,)
例3存在,k∈(-1,0)∪(0,1)
变式训练3(1)(±,)(2)存在,P(±,)。

相关文档
最新文档