【教案】 命题、定理、证明
人教版七年级数学下册 5-3-2 命题、定理、证明 教案
教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
《命题+定理与证明》教案
《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义1.2 命题的分类1.2.1 真命题与假命题1.2.2 简单命题与复合命题1.2.3 陈述句与疑问句第二章:定理与证明2.1 定理的定义2.2 定理的性质2.3 证明的类型2.3.1 直接证明2.3.2 间接证明2.3.3 综合证明第三章:几何图形的性质与判定3.1 线段的性质3.2 直线的性质3.3 三角形的性质3.4 四边形的性质3.5 圆的性质第四章:三角形的判定与性质4.1 三角形的判定条件4.2 三角形的内角和定理4.3 三角形的边长关系4.4 三角形的判定与性质的综合应用第五章:平行线的判定与性质5.1 平行线的判定条件5.2 平行线的性质5.3 平行线的判定与性质的综合应用第六章:全等三角形的判定与性质6.1 全等三角形的定义6.2 全等三角形的判定条件6.3 全等三角形的性质6.4 全等三角形的判定与性质的综合应用第七章:相似三角形的判定与性质7.1 相似三角形的定义7.2 相似三角形的判定条件7.3 相似三角形的性质7.4 相似三角形的判定与性质的综合应用第八章:比例线段的性质与判定8.1 比例线段的定义8.2 比例线段的性质8.3 比例线段的判定条件8.4 比例线段的性质与判定的综合应用第九章:圆的性质与判定9.1 圆的定义与性质9.2 圆的判定条件9.3 圆的性质与判定的综合应用9.4 圆周角定理9.5 圆的内接四边形的性质第十章:数学归纳法与不等式的证明10.1 数学归纳法的定义与步骤10.2 数学归纳法的应用实例10.3 不等式的证明方法10.3.1 直接证明法10.3.2 综合法10.3.3 反证法10.4 不等式的证明与数学归纳法的综合应用重点和难点解析重点一:命题的分类与性质学生容易混淆真命题与假命题,以及简单命题与复合命题的区别。
需要重点讲解命题的分类,并通过实例帮助学生理解。
重点二:定理与证明的方法学生可能对证明的方法和类型不够熟悉,难以选择合适的证明方法。
《命题+定理与证明》教案
《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义引入命题的概念,让学生理解命题是由题设和结论组成的陈述句。
举例说明命题的正确性和错误性。
1.2 命题的分类分类介绍简单命题和复合命题,包括并列命题、蕴含命题和条件命题。
引导学生理解命题的逻辑关系,如且、或、非等。
第二章:定理与证明2.1 定理的定义与特点解释定理的概念,强调定理是经过证明的命题。
引导学生了解定理的重要性和应用价值。
2.2 证明的方法与要求介绍直接证明、反证法、归纳法等常见的证明方法。
强调证明的逻辑严密性和步骤完整性。
第三章:几何定理与证明3.1 几何定理的分类分类介绍几何定理,如三角形的性质定理、四边形的性质定理等。
强调几何定理在几何学中的基础性作用。
3.2 几何证明的基本步骤与技巧引导学生掌握几何证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。
介绍几何证明中常用的技巧,如相似三角形的性质、平行线的性质等。
第四章:代数定理与证明4.1 代数定理的分类分类介绍代数定理,如多项式的性质定理、方程的解的定理等。
强调代数定理在代数学中的基础性作用。
4.2 代数证明的基本步骤与技巧引导学生掌握代数证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。
介绍代数证明中常用的技巧,如因式分解、恒等式的性质等。
第五章:命题、定理与证明的应用5.1 命题、定理与证明在数学中的应用通过实际问题引入命题、定理与证明的应用,让学生理解其在数学问题解决中的重要性。
引导学生运用命题、定理与证明的方法解决实际问题。
5.2 命题、定理与证明在其他学科中的应用引导学生思考命题、定理与证明在其他学科中的应用,如物理学、化学等。
鼓励学生探索命题、定理与证明在生活中的应用。
第六章:逻辑推理与命题、定理6.1 逻辑推理的基本概念引入逻辑推理的概念,让学生理解逻辑推理是推理的一种,是思维的基本形式。
解释演绎推理、归纳推理和类比推理等逻辑推理的基本类型。
《命题+定理与证明》教案
《命题、定理与证明》教案一、教学目标:1. 理解命题的概念,能够判断一个句子是否是命题。
2. 掌握定理的定义,了解定理的重要性和应用。
3. 学会如何阅读和理解证明,能够运用证明的方法解决问题。
二、教学内容:1. 命题的概念和分类。
2. 定理的定义和特点。
3. 证明的方法和技巧。
三、教学重点与难点:1. 重点:命题的概念,定理的定义,证明的方法。
2. 难点:证明的构思和推理过程。
四、教学方法:1. 采用问题驱动法,引导学生主动探索和发现。
2. 通过案例分析和讨论,培养学生的逻辑思维和推理能力。
3. 利用多媒体辅助教学,提供丰富的学习资源。
五、教学准备:1. 教材或教学资源:《命题、定理与证明》相关章节。
2. 多媒体设备:投影仪、电脑等。
3. 教学工具:黑板、粉笔、PPT等。
教案示例:一、导入(5分钟)1. 引入命题的概念,让学生思考日常生活中遇到的命题。
2. 引导学生判断一个句子是否是命题。
二、命题的分类(10分钟)1. 讲解命题的分类,包括陈述句、疑问句、命令句等。
2. 举例说明不同类型的命题。
三、定理的定义(10分钟)1. 引入定理的概念,解释定理的定义和特点。
2. 给出几个经典的数学定理,如勾股定理、Pythagorean theorem等。
四、证明的方法(15分钟)1. 介绍直接证明、反证法、归纳法等常见的证明方法。
2. 通过示例讲解每种证明方法的步骤和应用。
五、课堂练习(10分钟)1. 给出一些练习题,让学生运用所学的知识进行证明。
2. 引导学生分组讨论,互相交流解题思路。
六、总结与反思(5分钟)1. 回顾本节课所学的内容,让学生总结命题、定理和证明的概念和方法。
2. 鼓励学生提出问题,解答学生的疑惑。
教学反思:本节课通过问题驱动法和案例分析,引导学生理解和掌握命题、定理和证明的概念和方法。
在教学过程中,注意关注学生的学习情况,及时给予指导和帮助。
通过课堂练习和讨论,培养学生的逻辑思维和推理能力。
命题定理与证明教案
命题定理与证明教案教案标题:命题定理与证明教学目标:1. 了解命题定理的概念和基本特征;2. 学会使用命题定理进行证明;3. 培养学生的逻辑思维和证明能力。
教学内容:1. 命题和命题的基本运算;2. 命题定理的概念和分类;3. 命题定理的证明方法。
教学步骤:引入(5分钟):通过提出一个简单的问题或情境,引起学生对命题和证明的兴趣。
例如,通过一个实际生活中的例子,引导学生思考如何证明某个命题的真实性。
概念讲解(15分钟):1. 介绍命题的概念和基本运算,包括命题的合取、析取、否定和条件等;2. 解释命题定理的概念,即由已知命题推导出的新命题;3. 分类介绍命题定理,如数学中的几何定理、代数定理等。
案例分析(20分钟):选择一个简单的命题定理案例,引导学生分析命题的结构和证明方法。
例如,选择一个几何定理,让学生通过观察图形、分析已知条件和推理过程,得出结论并进行证明。
练习与讨论(15分钟):给学生提供一些命题定理的练习题,让他们运用所学的证明方法进行推理和证明。
在讨论过程中,引导学生思考证明过程中可能出现的问题和解决方法。
拓展应用(15分钟):引导学生思考命题定理在实际问题中的应用,例如在几何中的应用、数学推理中的应用等。
鼓励学生提出自己的问题,并尝试用命题定理进行证明。
总结与反思(5分钟):总结本节课所学的内容,强调命题定理在数学学科中的重要性。
鼓励学生思考如何运用所学的证明方法解决其他问题。
教学资源:1. 教材:命题逻辑相关章节的教材;2. 案例材料:选择一个简单的命题定理案例,供学生分析和证明;3. 练习题:准备一些命题定理的练习题,供学生巩固所学知识。
评估方式:1. 课堂练习:通过学生在课堂上完成的练习题,评估他们对命题定理和证明方法的掌握情况;2. 讨论参与度:评估学生在讨论过程中的积极性和思考能力;3. 个人作业:布置一道综合性的命题定理证明题作为作业,评估学生的综合运用能力。
教学延伸:1. 鼓励学生深入研究一些经典的命题定理,了解其证明方法和应用领域;2. 引导学生进行更复杂的命题定理证明,培养他们的逻辑思维和问题解决能力;3. 鼓励学生参加数学竞赛等活动,提升他们的命题定理证明水平。
命题定理与证明教案完整版
命题定理与证明教案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]《命题、定理与证明》教案教学目标知识与技能:1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法;2、了解命题、公理、定理的含义;理解证明的必要性.过程与方法:1、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识;2、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.重点找出命题的条件(题设)和结论;知道什么是公理,什么是定理.难点命题概念的理解;理解证明的必要性.教学过程【一】一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.DC B A1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等.二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了.例如,命题5可写成“如果两个角是直角,那么这两个角相等.”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题.(1)对顶角相等;(2)如果a>b,b>c,那么a=c;(3)菱形的四条边都相等;(4)全等三角形的面积相等.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题.(2)条件:如果a>b,b>c;结论:那么a=c;这是假命题.(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等.这是真命题.(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题.(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”.例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可.三、随堂练习课本P55练习第1、2题.四、总结1、什么叫命题什么叫真命题什么叫假命题2、命题都可以写成“如果.....,那么.......”的形式.3、要判断一个命题是假命题,只要举出一个反例就行了.【二】一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角相等.在本书中我们将这些真命题均作为公理.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2.这个命题是真命题吗?[答案:不正确,因为3>-5,但32<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三、随堂练习课本P58练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理.2、用逻辑推理的方法证明它们是正确的命题叫做定理。
人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案
-在实际问题中识别和应用所学的命题、定理和证明方法。
举例:针对命题真假判断的难点,设计一些具有迷惑性的命题,让学生分析讨论,如“如果一个角的补角是直角,那么这个角是锐角”这一命题的真假。对于证明方法,通过具体例题展示反证法的步骤,解释反设的意义,并指导学生如何寻找矛盾点。在应用难点方面,给出一些综合性的问题,如“证明一个四边形是平行四边形”,引导学生结合所学定理和证明方法,逐步解决问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的判断和定理的证明这两个重点。对于难点部分,如反证法,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠纸片来验证平行线的性质。
此外,课堂上的实践活动和小组讨论环节,学生们表现得非常积极,这说明他们对于参与到课堂活动中有着很高的热情。但在这一过程中,我也注意到有些学生过于依赖同伴,自己思考得不够深入。因此,我需要在活动中更好地引导他们独立思考,培养他们自主解决问题的能力。
还有一个值得注意的问题是,在新课讲授过程中,我是否把重点和难点讲解得足够清晰。从学生的反馈来看,有些地方还需要我进一步讲解和强调。在今后的教学中,我会更加关注学生的接受程度,及时调整教学方法和节奏,确保他们能够更好地掌握核心知识。
3.成果分享:每个小组将选择一名代表来分享他都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、定理的重要性以及证明的方法。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(完整版)命题、定理、证明教案设计
13.1.1命题、定理、证明(1)(一)教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论.难点:区分命题的题设和结论。
(三)学情分析:七年级学生对语句有一定的理解和判断能力。
(四)课前预习预习教材第20页至21页,并尝试完成课本随堂练习。
(五)教学过程一、情境引入教师与学生们打招呼,说出以下四句话:(1)七(3)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(3)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(3)的同学们你们好吗? ( )(2)大家今天都能认真听课吗?()(3)七(3)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
( )问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行( )(2)画一个角等于已知角 ( )(3)对顶角相等;()(4)若a2=b2,则a=b。
( )(5)两条平行线被第三条直线所截,同旁内角互补;( )(6)若a2=4,求a的值; ( )二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题.注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角.2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线; ( )(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
命题 定理与证明教案
命题定理与证明教案教案标题:命题、定理与证明教学目标:1. 理解命题、定理及其证明的概念和意义;2. 掌握常见的命题和定理,并能够正确运用它们;3. 培养学生的逻辑思维和证明能力;4. 培养学生的合作学习和批判性思维。
教学内容:1. 命题的定义和特点;2. 定理的定义和特点;3. 证明的基本方法和步骤;4. 常见的数学命题和定理。
教学步骤:一、导入(5分钟)1. 引入命题的概念,通过简单的例子让学生理解命题的定义和特点。
二、讲解命题和定理(15分钟)1. 介绍定理的概念和特点,并与命题进行比较,强调定理的重要性和应用价值。
2. 通过实际生活中的例子,引导学生理解定理的意义和作用。
三、讲解证明的基本方法和步骤(15分钟)1. 介绍证明的基本方法,如直接证明、间接证明、反证法等,并解释其应用场景。
2. 分步骤讲解证明的基本步骤,如假设、推理、总结等。
四、引导学生进行命题和定理的证明(20分钟)1. 给出一个简单的命题或定理,引导学生进行证明,鼓励学生积极参与讨论和思考。
2. 引导学生运用已学的证明方法和步骤,逐步完成证明过程。
五、总结与拓展(5分钟)1. 总结本节课所学的内容,强调命题、定理和证明的重要性。
2. 提出一些拓展问题,激发学生的思维和求解问题的能力。
教学辅助手段:1. 教学投影仪和幻灯片,用于展示相关概念和例子;2. 板书,用于记录学生的思路和解题过程。
教学评估:1. 课堂参与度评估:观察学生的积极性和主动性;2. 个人作业评估:布置相关命题和定理的证明作业,评估学生的独立思考和解题能力;3. 小组合作评估:组织学生进行小组合作,解决复杂的命题和定理证明问题,评估学生的团队合作和批判性思维能力。
教学建议:1. 鼓励学生多思考、多讨论,培养他们的逻辑思维能力;2. 引导学生运用已学的证明方法和步骤进行证明,提醒他们注意证明的逻辑严谨性;3. 鼓励学生多参与合作学习,培养他们的团队合作和批判性思维能力;4. 提供更多的练习题和拓展问题,帮助学生巩固所学知识和拓展思维能力。
七年级命题定理证明教学设计5篇
七年级命题定理证明教学设计5篇定理是经过受逻辑限制的证明为真的陈述.一般来说,在数学中,只有重要或有趣的陈述才叫定理.证明定理是数学的中心活动.一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外.下面是小编为大家整理的七年级命题定理证明教学设计5篇,希望大家能有所收获!七年级命题定理证明教学设计1学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一.自学基础:(看书20页---_页)1.对一件事情___________________的语句,叫做命题.2.命题由______和________组成.__________是已知事项,__________是由已知事项推出的事项.3.命题常可以写成__________________的形式.〝_______〞后接的部分是题设,〝________〞后面接的部分是结论.4. _________________叫真命题, _______________叫假命题.二.探究新知问题1 什么叫做命题?像这样判断一件事情的语句,叫做命题(proposition). 问题2思考命题是由几部分组成的?命题是由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.问题3 下列语句是命题吗?如果是,请将它们改写成〝如果??,那么??〞的形式.问题4 什么样的命题叫做真命题?什么样的命题叫做假命题? 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.问题请同学们举例说出一些真命题和假命题. 问题5公理定理有些命题的正确性是人们在长期实践中总结出来的, 这样的真命题叫做公理.有些命题的正确性是经过推理证实的,这样的真命题叫做定理. 问题6证明三.课堂小结四.当堂检测五.布置作业七年级命题定理证明教学设计2重点:命题.定理.证明的概念难点:命题.定理.证明的概念一.板书课题 ,揭示目标同学们,到现在为止,我们已经学习了一些简单的性质.判定.定义,这些命题都是真命题,那什么是命题呢?我们今天就来学习5.3.2命题.定理.本节课的学习目标是:(请看投影)二.学习目标1.理解命题.定理.证明的概念.2.会判断一个命题是真命题还是假命题.三.指导自学认真看课本(P_-_练习前).1结合例子理解命题的定义,会把一个命题写成〝如果??那么??〞的形式; ○2理解真命题.假命题的概念并会判断一个命题的真假.○如有疑问,可以小声问同学或举手问老师. 6分钟后,比谁能正确地做出检测题.三.先学1.教师巡视,督促学生认真紧张地自学2.学生练习:检测题 P_ 练习补充题:1.下列是命题的是() 1对顶角相等. ○2答案A是正确的.③若a=b,则a+c=b+c.④画射○线BC.⑤这条边长等于多少?2.下列命题是真命题的是() 1同角的补角相等. ○2相等的角是对顶角. ○③互补的角是邻补角.④若∠1=∠2,∠2=∠3,则∠1=∠3 分别让两位同学上堂板演,其余同学在位上做.四.更正.讨论.归纳.总结1.自由更正请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充.2.讨论.归纳评讲2(1):命题假设的对吗?为什么?怎样找一个命题的假设?引导学生回答:〝如果〞后接的部分是假设(师板书)(2)命题的题设正确吗?为什么?他没有〝如果??那么??〞的形式该怎么办呢?如何把命题写成〝如果??那么??〞的形式,引导学生回答:题设——已知事项;结论——是由已知事项推出来的事项.评补充题:1. 答案正确吗?为什么?引导学生回答:命题的条件是什么? (1)命题必须是一个完整的句子.(2)对某件事做出了判断.2. 〝同位角相等〝是真命题吗?为什么?引导学生画图说明:五.课堂作业 (见测试题)六.教学反思七年级命题定理证明教学设计3教学内容:命题教学目标:了解命题.定义的含义;对命题的概念有正确的理解.会区分命题的题设和结论.知道判断一个命题是假命题的方法.教学重点:找出命题的题设和结论. 教学难点:命题概念的理解. 教学过程:一.复习引入:我们已经学过一些图形的特性,如〝三角形的内角和等于_0°〞.〝等腰三角形的两个底角相等〞等.根据我们学过的图形特性,试判断下列句子是否正确. (1)如果两个角是对顶角,那么这两个角相等; (2) 两直线平行,同位角相等; (3) 同旁内角相等,两直线平行; (4) 平行四边形的对角线相等; (5)直角都相等.二.探究新知(一)命题.真命题和假命题学生回答后给出答案:句子(1).(2).(5)是正确的,句子(3).(4)是错误的.引出概念:可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.在数学中,许多命题是由题设(或已知条件).结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成〝如果??,那么??〞的形式.用〝如果〞开始的部分就是题设,而用〝那么〞开始的部分就是结论.例如,在命题(1)中,〝两个角是对顶角〞是题设,〝这两个角相等〞是结论.有的命题的题设与结论不十分明显,将它写成〝如果??,那么??〞的形式,也可分清它的题设与结论.例如,命题(5)可写成〝如果两个角是直角,那么这两个角相等〞.(二)例题选讲例1:把命题〝三个角都相等的三角形是等边三角形〞改写成〝如果??,那么??〞的形式,并分别指出命题的题设与结论.解:这个命题可以写成〝如果一个三角形的三个角都相等,那么这个三角形是等边三角形〞.这个命题的题设是〝一个三角形的三个角都相等〞,结论是〝这个三角形是等边三角形〞.例2:指出下列命题的题设和结论,并把它改写成〝如果??那么??〞的形式,它们是真命题还是假命题?(1)对顶角相等;(2)如果a b,b c,那么a=c;(3)两角和其中一个角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等.(三)假命题的证明要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了.在数学中,这种方法称为〝举反例〞.例如,要证明命题〝一个锐角与一个钝角的和等于一个平角〞是假命题,只需举出一个反例〝某一锐角与某一钝角的和不是_0°〞即可.三.课堂练习P65第1.2题四.总结1.命题.真命题和假命题的含义;2.区分命题题设.结论的方法;3.判断假命题的方法.五.作业P67 习题 _.1第1.2题教学后记:七年级命题定理证明教学设计4教学目标:1.了解命题.公理.定理的含义;理解证明的必要性.2.结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.初步感受公理化方法对数学发展和人类文明的价值.教学重点:知道什么是公理,什么是定理. 教学难点:理解证明的必要性. 教学过程:一.复习引入:?上节课我们研究了要证明一个命题是假命题,只要举出一个符合该命题题设而不符合该命题结论的反例就可以了,这节课,我们将研究怎样证明一个命题是真命题.二.探究新知(一)公理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(a_ioms).我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 全等三角形的对应边.对应角分别相等. 我们将这些真命题均作为公理.(二)定理判断下列命题是否正确: (1) 当n=1时,(n2-5n+1)2=1;当n=2时,(n2-5n+1)2=1_当n=3时,(n2-5n+1)=1是否是对于任意的正整数n,(n2-5n+1) 都等于1呢?(n=5时,(n2-5n+1)2=25)(2)如果a=b,那么a2=b2.于是猜想:当a b时a2 b2这个命题正确吗?数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).(三)证明过程例如,有了〝三角形的内角和等于_0°〞这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.已知: 如图_.1.1,在Rt△ABC中,∠C=90°. 求证: ∠A+∠B=90°. 证明∵∠A+∠B+∠C=_0°(三角形的内角和等于_0°),又∠C=90°,∴ ∠A+∠B=90°.图_.1.1 此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三.课堂练习四.总结:公理.定理的含义五.作业: 教学后记:七年级命题定理证明教学设计5教学目标1.知识与技能:(1)了解命题的含义;(2)对命题的概念有正确的理解(3)会区分命题的条件和结论,并会对命题进行改写(4)知道判断一个命题是假命题的方法(5)了解公理,定理的含义2.过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感.态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点与难点1.重点: 找出命题的条件(题设)和结论,会进行改写2.难点: 命题概念的理解. 教学过程:一.复习引入我们已经学过一些图形的特性,如〝三角形的内角和等于_0度〞,〝等腰三角形两底角相等〞等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.平行四边形的对角线相等;5.直角都相等.二,自主学习,探究新知(一)命题.真命题与假命题学生思考回答后,教师给出答案:根据已有的知识可以判断出句子1.2.5是正确的,句子3.4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.强调:命题是一个表判断的句子,是一个陈述句.命题有真假之分.(二)命题的组成和改写在数学中,许多命题是由题设(或已知条件).结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成〝如果.......,那么.......〞的形式.用〝如果〞开始的部分就是题设,而用〝那么〞开始的部分就是结论.例如,在命题1中,〝两个角是对顶角〞是题设,〝这两个角相等〞就是结论.有的命题的题设与结论不十分明显,可以将它写成〝如果.........,那么...........〞的形式,就可以分清它的题设和结论了.例如,命题5可写成〝如果两个角是直角,那么这两个角相等.〞实例探究(小组间交流合作,解决问题)问题1(例1):把命题〝三个角都相等的三角形是等边三角形〞改写成〝如果.......,那么.......〞的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成〝如果一个三角形的三个角都相等,那么这个三角形是等边三角形〞.这个命题的题设是〝一个三角形的三个角都相等〞,结论是〝这个三角形是等边三角形〞.问题2:把下列命题写成〝如果.....,那么......〞的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题. (1)对顶角相等;(2)如果a b,b c, 那么a=c;设计者:重庆西藏中学聂志(3)菱形的四条边都相等; (4)全等三角形的面积相等.学生小组交流后回答,学生回答后,师生互评(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题. (2)条件:如果a b,bc;结论:那么a=c;这是假命题.(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等.这是真命题.(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题.(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为〝举反例〞.例如,要证明命题〝一个锐角与一个钝角的和等于一个平角〞是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是_0度即可.(四)公理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 全等三角形的对应边.对应角相等. 在本书中我们将这些真命题均作为公理.(五)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1.教师讲解:请大家看下面的例子: 当n=1时,(n2-5n+5)2=1; 当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2.教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a b 时,a2 b2.这个命题是真命题吗?[答案:不正确,因为3 -5,但3 2 (-5)2]教师总结:在前面的学习过程中,我们用观察.验证.归纳.类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.例如,有了〝三角形的内角和等于_0°〞这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.设计者:重庆西藏中学聂志强调:公理不需要证明,定理需要证明,定理由公理推出,它们都是真命题,都可以作为其他命题证明的依据三,展示提升,巩固新知(学生先做,师生互评)1. 课本P65练习第1.2题.2.课本P66练习第1.2题.四.归纳小结(学生总结,补充)1.什么叫命题?什么叫真命题?什么叫假命题?2.命题都可以写成〝如果.....,那么.......〞的形式.3.要判断一个命题是假命题,只要举出一个反例就行了.4. 在长期实践中总结出来为真命题的命题叫做公理.5. 用逻辑推理的方法证明它们是正确的命题叫做定理.6.本节课你还有哪些疑惑?五.检测反馈小组间交流本节课还存在的问题,相互解决,老师巡视点拨六.作业布置训练案P_5七年级命题定理证明教学设计。
人教版七年级数学下册5.3.2命题、定理、证明教学设计
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
命题、定理、证明
5.3.2(1)命题、定理、证明一.【知识要点】1.判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
命题的分类(按正确、错误与否分)真命题(正确的命题)假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
定理用推理的方法判断为正确的命题叫做定理。
证明判断一个命题的正确性的推理过程叫做证明。
二.【经典例题】1.把命题“对顶角相等”写成“如果……,那么……”的形式为 .2.在下列命题中:①两条直线相交所成的角是对顶角;①有公共顶点的角是对顶角;①一个角的两个邻补角是对顶角;①有一边互为反向延长线,且相等的两个角是对顶角,其中正确的是.3.已知a、b.、c是同一平面内的3条直线,给出下面6个命题:a∥b, b∥c,a∥c ,a ⊥b,b⊥c,a⊥c,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。
举例如下:∵a∥b, b∥c,∴a∥c(平行于同一条直线的两条直线平行)三.【题库】【A】1.把下列命题写成“如果…那么…”的形式:不能被2整除的数是奇数:2.把命题“零没有倒数”改写成“如果……那么……”的形式:如果,那么。
【B】1.把命题“等角的余角相等”改写成“如果…,那么…”的形式是_______________________________. .【C】1.下列说法正确的是()A.延长射线OA到BB.经过两点M/N的直线有且仅有两条C.凡是大于900 的角都是钝角D.直线a经过点M,即是点M在直线a上。
【D】1.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③垂直于同一条直线的两条直线互相垂直。
《命题+定理与证明》教案
《命题、定理与证明》教案一、教学目标1. 让学生理解命题的概念,能够区分真命题和假命题。
2. 使学生掌握定理的定义,了解定理的作用和意义。
3. 培养学生运用证明的方法来判断命题的真假。
二、教学内容1. 命题的概念及分类2. 定理的定义及特征3. 证明的方法和步骤4. 运用举例判断命题的真假三、教学重点与难点1. 重点:命题的分类,定理的定义,证明的方法和步骤。
2. 难点:证明的思路和方法的运用。
四、教学方法采用讲授法、案例分析法、小组讨论法、实践操作法等相结合的方法进行教学。
五、教学过程1. 导入新课:通过举例让学生初步了解命题、定理和证明的概念。
2. 知识讲解:(1) 讲解命题的概念,区分真命题和假命题。
(2) 讲解定理的定义及其特征。
(3) 讲解证明的方法和步骤。
3. 案例分析:分析一些典型的命题和定理,让学生学会运用证明的方法判断命题的真假。
4. 课堂练习:布置一些有关命题、定理和证明的练习题,让学生巩固所学知识。
6. 课后作业:布置一些有关命题、定理和证明的作业题,让学生进一步巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。
2. 练习完成情况评价:检查学生课堂练习和课后作业的完成质量,评估学生对知识的掌握程度。
3. 小组讨论评价:评估学生在小组讨论中的表现,包括合作态度、交流能力和问题解决能力。
七、教学资源1. 教材:命题、定理与证明的相关教材或教辅资料。
2. 课件:制作课件,辅助讲解和展示案例。
3. 练习题库:准备一定量的练习题,用于课堂练习和课后作业。
4. 网络资源:利用网络资源提供更多相关案例和练习题,拓展学生视野。
八、教学进度安排1. 第一课时:介绍命题的概念和分类,区分真命题和假命题。
2. 第二课时:讲解定理的定义及其特征,介绍证明的方法和步骤。
3. 第三课时:通过案例分析,让学生学会运用证明的方法判断命题的真假。
5.3.2 命题、定理、证明(教案)
5.3.2 命题、定理、证明(第2课时) 教学目标一、基本目标【知识与技能】1.理解命题的概念,能区分命题的题设和结论,并把命题写成“如果……那么……”的形式.2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.【过程与方法】通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语言正确画出几何图形的能力.【情感态度与价值观】初步培养学生用几何语言叙述的能力.二、重难点目标【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P20~P22的内容,完成下面练习.【3 min反馈】(一)命题1.判断一件事情的语句叫做命题.命题由题设和结论两部分组成.2.如果题设成立,那么结论一定成立,这样的命题叫做真命题.题设成立,不能保证结论一定成立,这样的命题叫做假命题.(二)定理与证明3.经过推理证实的真命题叫做定理.在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.4.证明命题的步骤:(1)画出命题的图形.先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.(2)结合图形写出已知、求证.把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.(3)经过分析,找出由已知推得求证的途径,写出推理的过程.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.【互动探索】(引发学生思考)这两个命题的题设和结论分别是什么?改写时,应注意什么问题。
【解答】(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是相等的角,那么它们的余角相等.【互动总结】(学生总结,老师点评)把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【例2】证明命题“三角形的三内角和为180°”是真命题.【互动探索】(引发学生思考)证明命题是真命题的步骤是什么?【解答】已知:∠A、∠B、∠ACB为△ABC的三个内角.求证:∠A+∠B+∠ACB=180°.证明:作射线BD,过点C作CE∥BA,如图.∵CE∥BA,∴∠1=∠A,∠2=∠B.∵∠ACB+∠1+∠2=180°,∴∠A+∠B+∠ACB=180°.∴命题“三角形的三内角和为180°”是真命题.【互动总结】(学生总结,老师点评)添加辅助线,将三角形的内角和进行转化是证明的关键.活动2巩固练习(学生独学)1.下列语句中,不是命题的是(D)A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线2.下列命题中,是真命题的是(D)A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=03.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.解:(1)两条平行直线被第三条直线所截形成的内错角,这两个角不是对顶角,但是它们相等.(2)当a=5,b=0时,ab=0,但a+b≠0.4.命题“若n是自然数,则代数式(3n+1)(3n+2)的值是3的倍数”.(1)写出命题的题设和结论;(2)是真命题还是假命题?并说明理由.解:(1)命题的题设是n是自然数,结论是代数式(3n+1)(3n+2)的值是3的倍数.(2)是假命题.理由:∵(3n+1)(3n+2)=9n2+6n+3n+2=9n2+9n+3-1=3(3n2+3n+1)-1,又n为自然数,∴3(3n2+3n+1)-1不为3的倍数.∴是假命题.活动3拓展延伸(学生对学)【例3】求证:两条直线平行,一组内错角的平分线互相平行.【互动探索】按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.【解答】已知:如图,已知AB ∥CD ,直线AB 、CD 被直线MN 所截,交点分别为P 、Q ,PG 平分∠BPQ ,QH 平分∠CQP .求证:PG ∥HQ.证明:∵AB ∥CD ,∴∠BPQ =∠CQP (两直线平行,内错角相等).∵PG 平分∠BPQ ,QH 平分∠CQP ,∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP , ∴∠GPQ =∠HQP ,∴PG ∥HQ (内错角相等,两直线平行).【互动总结】(学生总结,老师点评)证明与图形有关的命题时,正确分清命题的题设和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.环节3 课堂小结,当堂达标(学生总结,老师点评)命题⎩⎪⎨⎪⎧ 概念结构真、假命题证明与举反例练习设计请完成本课时对应练习!。
人教版七年级数学下册教案 5-3-2 命题、定理、证明
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等题设(条件)考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
命题定理证明教案
命题定理证明教案教案主要流程:1. 概念介绍:命题定理是数理逻辑中的基本定理之一,用于证明一个命题的真值。
2. 发散-聚焦:通过一些实例让学生对命题定理有一个初步的了解,如通过真值表证明“P∨¬P”为真命题。
3. 教师讲解:介绍命题定理的定义和证明方法,包括两部分:前提和结论。
4. 学生实践:引导学生选择一个命题进行证明,要求学生按照证明的基本步骤来进行,包括命题的前提、利用可用的命题定理进行变换和推导、结论的得出等。
5. 学生讨论:让学生互相交流并讨论自己的证明过程和策略,以及不同命题之间的联系和区别。
6. 学生总结:学生根据自己的学习经验和感悟,总结命题定理的证明步骤和技巧,并分享给全班。
7. 教师评价:教师对学生的证明过程进行评价和指导,根据学生的掌握情况进行巩固和拓展。
8. 拓展练习:教师出示一些更复杂的命题给学生进行证明,以提高学生的综合运用能力。
9. 结束反思:学生对本课的学习进行总结和反思,对未来学习的方向和目标进行规划。
教案详细内容:一、概念介绍命题定理是指在数理逻辑中,如果一个命题在所有情况下均为真,那么这个命题就是可证明的。
命题定理是逻辑推理的基础,通过证明一个命题的真值,可以确定该命题的真假。
二、发散-聚焦教师通过一些实例引导学生对命题定理有一个初步的了解。
例如,通过真值表证明“P∨¬P”为真命题。
学生可以从真值表中观察到,在所有情况下,命题的真值都是真的。
三、教师讲解1. 定义:命题定理是指在所有情况下命题的真值均为真。
2. 证明方法:命题定理的证明主要包括两个步骤:前提和结论。
- 前提:命题的前提是通过一系列命题定理和逻辑推理得到的中间结论,可以在证明中使用。
- 结论:通过前提和一系列逻辑推理和推导,得出命题的结论,即命题的真值。
- 证明过程:命题的证明过程可以通过一系列逻辑推理和推导的步骤来完成,例如假设、推论、推导或者归谬等。
四、学生实践教师引导学生选择一个命题进行证明。
命题 定理 证明教案
命题定理证明教案标题:命题定理证明教案教案目标:1. 理解命题、定理和证明的概念及其在数学中的重要性。
2. 学会运用逻辑思维和数学推理方法,独立完成命题的证明过程。
3. 培养学生的数学思维能力、逻辑思维能力和问题解决能力。
教学准备:1. 教师准备:教材、教具、黑板、彩色粉笔、多媒体设备等。
2. 学生准备:课本、笔记本、铅笔、尺子等。
教学过程:一、导入(5分钟)1. 教师通过提问引导学生思考:你们对命题、定理和证明有什么了解?它们在数学中的作用是什么?2. 学生回答并教师进行点评和补充说明。
二、概念讲解(10分钟)1. 教师向学生介绍命题的概念:命题是陈述性的句子,其真假可以被判断。
2. 教师向学生介绍定理的概念:定理是经过证明后被接受的命题,它在数学中具有重要的意义。
3. 教师向学生介绍证明的概念:证明是通过逻辑推理和数学方法,以严密的推理过程来验证命题的真实性。
三、案例分析(15分钟)1. 教师给出一个具体的数学命题,并与学生一起分析该命题的证明过程。
2. 教师引导学生思考如何从已知条件出发,运用已学的数学知识和推理方法,逐步推导出结论。
3. 学生积极参与,提出自己的思考和解决方案。
四、小组讨论(10分钟)1. 学生分成小组,每个小组选取一个命题进行讨论和证明。
2. 小组成员共同合作,提出自己的证明思路和方法,进行讨论和交流。
3. 教师巡回指导,解答学生的问题,引导学生进行有效的讨论。
五、展示与总结(10分钟)1. 各小组派代表上台,展示他们的证明过程和结果。
2. 教师对每个小组的证明进行点评和总结,指出优点和不足之处。
3. 教师对整个教学内容进行总结,强调命题、定理和证明在数学中的重要性和应用。
六、作业布置(5分钟)1. 要求学生根据课堂学习的内容,选择一个自己感兴趣的命题进行证明。
2. 布置作业后,教师对学生的提问进行答疑,解决学生的困惑。
教学反思:通过本节课的教学,学生对命题、定理和证明的概念有了更深入的理解,能够运用逻辑思维和数学推理方法进行证明。
初中命题定理证明教案
教案:初中命题定理证明教学目标:1. 理解命题定理的概念和意义;2. 学会使用命题定理进行证明;3. 培养逻辑思维能力和证明能力。
教学重点:1. 命题定理的概念和意义;2. 命题定理的证明方法。
教学难点:1. 理解命题定理的证明过程;2. 灵活运用命题定理进行证明。
教学准备:1. 教材或教学资源;2. 黑板或投影仪。
教学过程:一、导入(5分钟)1. 引入话题:介绍数学中的证明和定理;2. 提问:什么是命题?什么是定理?它们之间有什么关系?二、新课讲解(15分钟)1. 讲解命题定理的概念和意义;2. 通过示例介绍命题定理的证明方法;3. 引导学生理解命题定理的证明过程。
三、课堂练习(15分钟)1. 提供几个简单的命题定理,让学生尝试证明;2. 引导学生运用命题定理解决实际问题。
四、巩固练习(15分钟)1. 提供一些练习题,让学生独立完成;2. 引导学生运用命题定理进行证明。
五、课堂小结(5分钟)1. 回顾本节课所学内容;2. 强调命题定理的概念和证明方法。
教学延伸:1. 进一步学习其他类型的定理和证明方法;2. 参加数学竞赛或研究数学问题。
教学反思:本节课通过引入命题定理的概念和意义,让学生了解数学中的证明过程。
通过课堂练习和巩固练习,学生能够学会运用命题定理进行证明。
在教学过程中,要注意引导学生理解命题定理的证明过程,培养他们的逻辑思维能力和证明能力。
同时,也要注重学生的个别差异,给予不同的学生不同的指导和帮助,提高他们的学习效果。
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题、定理、证明
教学目的:1、知识与技能:了解命题的概念,并能区分命题的题设和结论.
2、经历判断命题真假的过程,对命题的真假有一个初步的了解.
3、初步培养学生不同几何语言相互转化的能力.
重点:命题的概念和区分命题的题设与结论.
难点:区分命题的题设和结论.
教学过程
一、创设情境复习导入
教师出示下列问题:
1.平行线的判定方法有哪些?
2.平行线的性质有哪些.
学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础.(注意:平行线的判定方法三种,另外还有平行公理的推论) 二、尝试活动探索新知
教师给出下列语句,
①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.
学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某件事作出判断的.
教师给出命题的定义.
判断一件事情的语句,叫做命题.
(3)命题的组成.
①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
②命题的形成,可以写成“如果……,那么……”的形式。
真命题与假命题:
教师出示问题:
如果两个角相等,那么它们是对顶角.
如果a>>c那么
如果两个角互补,那么它们是邻补角.
三、尝试反馈理解新知
明确命题有正确与错误之分:
命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据.
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?
2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.
四、总结拓展:教师引导学生完成本节课的小结,强调重要的知识点.
五、布置作业:习题5.3第11题.。