《误差理论与测量平差基础》课程试卷
误差理论测量平差基础试题四及答案
误差理论测量平差基础 试题四及答案一、填空题(30分)1、丈量一个圆半径的长为3米,其中误差为±10毫米,则其圆周长的中误差为________________。
2、在平坦地区相同观测条件下测得两段观测高差及水准路线的长分别为:h 1=10.125米,s 1=3.8公里,h 2=-8.375米,s 2=4.5公里,那么h 1的精度比h 2的精度______,h 2的权比h 1的权______。
3、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。
4、控制网中,某点P 的真位置与其平差后得到的点位之距离称为P 点的___。
5、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为,多余观测个数为,一般条件方程个数为,限制条件方程个数为ABCDEL 1L 2L 3L 4L 56、测量是所称的观测条件包括、观测者、7、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为,若单位权中误差cm40=σ,往返测的平均值的权为8、已知某观测值X 、Y 的协因数阵如下,其极大值方向为,若单位权中误差为±2mm ,极小值F 为mm 。
9、在测量中会出现以下几种情况,使测量结果产生误差,判断产生的误差属于哪一类,视准轴与水准轴不平行,仪器下沉 ,估读数据不准确 ,水准尺下沉 。
二、判断题(10分)1、在水准测量中,由于水准尺下沉,则产生系统误差,符号为“+”。
答:____2、极限误差是中误差的极限值。
答:____3、在条件平差中,条件方程的个数等于多余观测数。
答:____4、改正数条件方程与误差方程之间可相互转换。
答:____5、权阵中的对角线元素,代表所对应的观测值得权。
《误差理论与测量平差基础》试卷A(答案)
《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同得观测条件系作一系列得观测,如果误差在大小与符号上都表现出偶然性。
即从单个误差瞧,该误差得大小与符号没有规律性,但就大量误差得总体而言,具有一定得统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出得条件方程或观测方程,有得就是线性形式,有得就是非线性形式。
在进行平差计算时,必须首先把非线性形式得函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型得线性化。
3、点位误差椭圆——以点位差得极大值方向为横轴X 轴方向,以位差得极值F E 、分别为椭圆得长、短半轴,这样形成得一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值得函数得中误差与观测值得中误差之间得运算规律得数学公式。
如0K KL Z +=,若观测向量得协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。
5、权——表示各观测值方差之间比例关系得数字特征,220ii P σσ=。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1、 6个2、 13个3、1/n4、 0、45、 0)()()()(432200=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1、 几何模型得必要元素与什么有关?必要元素数就就是必要观测数吗?为什么?答:⑴几何模型得必要元素与决定该模型得内在几何规律有关;(1分) ⑵必要元素数就就是必要观测数;(1分)⑶几何模型得内在规律决定了要确定该模型,所必须具备得几何要素,称为必要元素,必要元素得个数,称为必要元素数。
《误差理论与测量平差基础》考试试卷(含参考答案)
《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有个极条件和个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为个。
三、 问答题1. 写出协方差传播律的应用步骤。
2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。
8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。
2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。
3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。
4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。
(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。
误差理论与测量平差基础习题
《误差理论与测量平差基础》课程试卷《误差理论与测量平差基础》课程试卷答案武 汉 大 学2007年攻读硕士学位研究生入学考试试题考试科目:测量平差 科目代码: 844注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
可使用计算器。
一、填空题(本题共40分,共8个空格,每个空格5分)1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差1h 、2h ,其观测中误差分别为1σ、2σ。
已知1212σσ=,取单位权中误差02σσ=。
要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。
2.已知观测值向量1,13,12,1X Z Y ⎡⎤⎢⎥=⎢⎥⎣⎦的协方差阵310121013ZZD -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,12,12Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。
3.已知平差后某待定点P 的坐标的协因数和互协因数为PX Q ˆ、PY Q ˆ和PP Y X Q ˆˆ,则当PPY X Q Q ˆˆ=,0ˆˆ<PP Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值=F ϕ ⑧ 。
二、问答题(本题共45分,共3小题,每小题15分)1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L测量平差 共3页 第1页共4个方位角,1S 和2S 为边长观测值,若按条件平差法平差:(1)应列多少个条件方程;(2)试列出全部条件方程(不必线性化)。
2.在上题中,若设BAC ∠、ABC ∠和ACB ∠为 参数1X 、2X 、3X ,(1)应采用何种函数模型平差;(2)列出平差所需的全部方程(不必线性化)。
3. 对某控制网进行了两期观测。
由第一期观测值得到的法方程为111111ˆT T B PB X B PL =,由第二期观测值得到的法方程为222222ˆT T B P B X B P L =。
误差理论与测量平差基础 课程试卷
武汉大学 测绘学院2002-2003学年度第二学期期末考试 误差理论与测量平差基础 课程试卷(A 卷)出题者:黄加纳 审核人:邱卫宁班级: 学号: 姓名: 分数:一. 已知观测值向量21L 的协方差阵为⎥⎦⎤⎢⎣⎡--=3112LLD ,又知协因数5112-=Q ,试求观测值的权阵LL P 及观测值的权1L P 和2L P 。
(10分)二. 在相同观测条件下观测A 、B 两个角度,设对A ∠观测4测回的权为1,则对B ∠观测9个测回的权为多少?(10分) 三. 在图一所示测角网中,A 、B 为已知点,BC α为已知方位角,C 、D 为待定点,721,,,L L L 为同精度独立观测值。
若按条件平差法对该网进行平差:共有多少个条件方程?各类条件方程各有多 少个?试列出全部条件方程(非线性条件方程要求线性化)。
(15分) 图一四. 某平差问题有以下函数模型)(I Q =⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v 试问:(1). 以上函数模型为何种平差方法的模型?(2). 本题中,=n ,=t ,=r ,=c ,=u ,=s 。
(10分)五. 在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标值(见图二,以“km ”为单位),以及0000330001'''=BP α,000030002'''=BP α,km BP 0.201=,km S BP 0.202=,721,,,L L L 65955906'''=L 。
试列出6L 的误差方程(设5102⨯=ρ,x ˆ、图二 yˆ以dm 为单位)。
(10分)六. 有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,51~h h 为高差观测值,设各线路等长。
已知平差后算得)(482mm V V T =,试求平差后C 、Dˆh的权及中误差。
《误差理论与测量平差基础》试卷A(答案)
《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。
即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。
在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型的线性化。
3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。
如,若观测向量的协方差阵为,则按协方差传播律,应有。
5、权——表示各观测值方差之间比例关系的数字特征,。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。
实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。
误差理论与测量平差基础考试试卷
误差理论测量与测量平差基础考试试卷学年 下 学期期末考试试题 时间100分钟误差理论与测量平差基础 课程56 学时3.5学分 考试形式:闭卷 专业年级:测绘工程1401、1402、遥感1401 、测绘实验班1401 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、 简答题(每题5分,共15分)1、 何谓极限误差?设某一观测值中误差8σ''=,则观测值真误差的取值范围为多少?2、 测量平差的数学模型包含哪些?是如何定义的?3、 何谓方差-协方差传播律?和误差传播律区别在哪里?二、 填空题(每空2分,共26分)1、 间接分组平差时,要求第一组误差方程个数( )、条件分组平差对分组的条件式个数( )。
2、 水准测量定权的公式i i c P s =,其中i s 代表( ),C 代表( )。
3、 设有两条边长观测值及其中误差分别为:11S 1000.234m,3mm σ==,22S 1200.456m,3mm σ==,则1S 比2S 的精度( ),原因是( )。
4、 观测向量[]T 123L L L L =的方差阵为LL 322D 232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,202σ=。
则LL Q = ( ),对应的2L P =( )。
5、 如下图所示水准网,条件平差时,条件方程式为( ),评定P 点高程平差值精度时的平差值函数式为( )。
间接平差时,选P 点高程平差值为参数,则误差方程式为( )和( ),评定P 点高程平差值精度时的未知数函数式为( )。
三、 计算题(每题15分,共30分)1、(15分)下图所示为某隧道横截面,通过弓高弦长法测定圆弧的半径。
已知测得s S 3.6m,24mm σ==,H H 0.3m,4mm σ==,试求半径的测量精度R σ。
(已知弓高弦长法求半径的公式为2H S R 28H=+)2、(15分)误差椭圆描述的是待定点和已知点的精度关系,相对误差椭圆是表示待定 点之间相对位置的精度分布。
平差试卷及答案
中南大学考试试卷一-- 学年 学期期末考试试题 时间110分钟误差理论与测量平差基础 课程 学时学分 考试形式:卷专业年级: 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、设有一五边形导线环,等精度观测了各内角,共观测了八组结果,而计算出该导线环的八组闭合差(即真误差)为-16″、+18″、+22″、-13″、-14″、+16″、 -10″、-12″,试求该导线环之中误差及各角观测中误差。
(本题10分)二、(1)有了误差椭圆为何还要讨论误差曲线?两者有什么关系?(2)已知某平面控制网中有一待定点P ,以其坐标为参数,经间接平差得法方程为:1.2870.4110.53400.411 1.7620.3940x y x y δδδδ++=+-=单位权中误差0ˆ 1.0σ''=,,x y δδ以dm 为单位,试求: 1) 该点误差椭圆参数;2) 该点坐标中误差ˆˆ,x y σσ以及点位中误差ˆp σ; 3) 060ϕ=的位差值。
(本题共20分)三、试证明间接平差中平差值ˆL 与改正数V 的相关性。
(本题10分)四、下图水准网中,P1、P2为待定点,A 、B 、C 、为已知水准点,已测得水准网中各段高差见下表:且12.000,12.500,14.000A B C H m H m H m ===。
试任选一种平差方法,求:(1)P1、P2点高程平差值;(2)平差后P1、P2点间高差协因数。
(本题共25分)五、下图一平面控制网,试按四种平差方法分别说明:(1)参数的个数?函数模型的个数?(2)函数模型的类型?各种类型的个数?并对不同类型的形式举例说明。
(3)各种平差方法精度评定时有何异同?(本题共25分)六、产生秩亏的原因是什么?水准网、测角网、边角网以及GPS网的秩亏数各是多少?简述秩亏自由网平差的过程。
(本题10分)试卷一参考答案一、解:导线环中误差为:ˆσ=ˆ43.92σ=;测角中误差为:19.64σ==二、解:由法方程可以得到参数的协因数阵为:1ˆˆ0.83950.19580.19580.6132BBXX Q N --⎛⎫== ⎪-⎝⎭从而得:0.452291()0.95249521()0.5002052ˆ0.97596ˆ0.70725EE XX YY FF XX YY K Q Q Q K Q Q Q K E F σσ===++==+-=====由tan EE XXE XY Q Q Q ϕ-=得: 001500221406Eϕ''=或 tan FF XXF XYQ Q Q ϕ-=得:0F 24001ϕ'=或06001'则:ˆ0ˆ0ˆ0ˆ0.91624ˆ0.78307ˆ 1.20518x y p σσσσσσ======将060ϕ=代入 22220(cos sin sin 2)XX yyXY Q Q Q ϕσσϕϕϕ=++中得: 0.71dm ϕσ= 三、证明:基本关系式为:1ˆˆˆT BB L l L x N B Plv Bx l LL V -=+==-=+由协因数传播律得:111ˆˆ11ˆˆ11ˆˆˆˆ1ˆ1111ˆˆˆˆ0T xx BB BB BB T T T xL BB BB Lx vx xx Lx BB BB T T VL xL BB LVT T T T T T VV xx xL Lx BB BB BB BB Q N B PQPBN N Q N B PQ N B Q Q BQ Q BN BN Q BQ Q BN B Q Q Q BQ B BQ Q B Q BN B BN B BN B Q Q BN B------------======-=-==-=-==--+=--+=-所以 ˆ0LV VV LV Q Q Q =+= 即:平差值与各改正数是不相关的。
误差理论和测量平差试卷及答案6套
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
2a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
误差理论与测量平差基础期末考试试卷样题
误差理论与测量平差基础期末考试试卷样题一、填空题(15分)1、误差的来源主要分为、、。
2、中误差是衡量精度的主要指标之一,中误差越,精度越。
极限误差是指。
3、在平坦地区相同观测条件下测得两段观测高差及水准路线的长分别为:h 1=10.125米,s1=3.8公里,h2=-8.375米,s2=4.5公里,那么h1的精度比h2的精度______,h2的权比h1的权______。
4、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。
5、在条件平差中,条件方程的个数等于。
6、平面控制网按间接平差法平差时通常选择________________为未知参数,高程控制网按间接平差法平差时通常选择________________为未知参数。
7、点位方差与坐标系,总是等于。
二、 水准测量中若要求每公里观测高差中误差不超过10mm ,水准路线全长高差 中误差不超过20mm,则该水准路线长度不应超过多少公里?(5分)三、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(5分)四、观测向量L L L T=()12的权阵为P L =--()3114,若有函数X L L =+12,则函数X 与观测向量L 的互协因数阵Q XL 等于什么? (5分)五、对某长度进行同精度独立观测,已知一次观测中误差为2mm ,设4次观测值平均值的权为2。
试求:(1)单位权中误差0σ;(2)一次观测值的权;(3)若使平均值的权等于8,应观测多少次? (9分)六、用某全站仪测角,由观测大量得一测回测角中误差为2秒,今用试制的同一类新型仪器测角10测回,得一测回中误差为1.8秒,问新仪器是否比原仪器精度有所提高?(α=0.05)(8分)(|N0.05|=1.645,|N0.025|=1.960,|t0.05(24)|=1.699 , |t0.025(24)|=2.045χ2(9)0.05=16.919, χ2(9)0.95=3.325, χ2(9)0.025=19.023, χ2(9)0.975=2.700F(15,21)0.025=2.53 )七、附有限制条件的间接平差与概括平差之间的关系(8分)八、已知间接平差的模型为l X B V -=∧,采用最小二乘法平差,已知观测值的中误差为ll Q ,参数V X 与∧是否相关,试证明之(8分)九、如图为一控制网,1、2为已知点,4—5的边长已知,若采用测角网的形式观测,共观测了15个角度。
[精品]误差理论与测量平差基础试题(可编辑修改word版)
⎨ D =1 2 ⎩ C) 1 + = , D) 1 + = 黑龙江工程学院期末考试卷⎧ v 1 = x 1 - 5 p 1 = 1 5 、 已知误差方程为: ⎪ v = x + 6 2 2p 2 = 2 ,法方程为: 2003-2004学年 第 一 学期 考试科目:测 量 平 差(三)⎪ v 3= - x 1 + x 2 - 7 p 3 = 1 一、选择题(每小题3分,共18分)A) ⎡ 2 -1⎤⎡ x 1 ⎤ + ⎡-2⎤ = ⎡0⎤ , B) ⎡ 2-1⎤⎡ x 1 ⎤ + ⎡2⎤ = ⎡0⎤1、用钢尺量得两段距离的长度: L = 1000m ± 5cm , L = 100m ± 5cm ,选出正⎢-1 3 ⎥⎢x ⎥ ⎢-5⎥ ⎢0⎥ ⎢-1 3 ⎥⎢x ⎥ ⎢5⎥ ⎢0⎥12⎣ ⎦⎣ 2 ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ 2 ⎦ ⎣ ⎦ ⎣ ⎦ 确答案:A) 由于1= 2 ,故两个边长的观测精度相同。
⎡2 0⎤⎡ x ⎤ ⎡-2⎤ ⎡0⎤ ⎢0 3⎥⎢x ⎥ ⎢-5⎥ ⎢0⎥ ⎡2 0⎤⎡ x ⎤ ⎡2⎤ ⎡0⎤ ⎢0 3⎥⎢x ⎥ ⎢5⎥ ⎢0⎥ 答:⎣ ⎦⎣ 2 ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ 2 ⎦ ⎣ ⎦ ⎣ ⎦ B) 由于L 1 > L 2 ,故L 2的精度比L 1的精度高。
C) 由于1 / L 1 < 2 / L 2 ,故L 1 的精度比L 2 的精度高。
6 、已知条件方程为:⎧ v 1 + v 2 + v 3 - 2.7 = 0 D) 由于它们的中误差相同,所以它们的精度相同。
⎨-v + 0.6v + 0.8v - 0.7v + 1.6 = 0答:⎩12S 1 S 2权 : p = p = p = 1, p= 2 (秒2/cm2),p = 0.5(秒2 /cm 2 ),解算其法方程得:2、已知观测向量 L = (L 1 L 2 ) ⎛ 3 的协方差阵为 L -1⎫ ⎪ ,若有观测值函数 123S 1S 2T⎝-1 2 ⎭K = 0.8 -0.5 ,据此可求出v 2 为:Y 1=2L 1,Y 2=L 1+L 2,则y y 等于?A)0.8秒B)-0.5厘米C)0.5秒D)0.9秒答:二、填空题(每空2分,共10分)(A)1/4 (B)2 (C)1/2(D)4答:3 -11、n 个独立观测值的方差阵是个阵,而n 个相关观测值的方差阵是个3、观测向量L = ( L L )T的权阵为P = ( ),若有函数 X = L + L ,则阵。