RFLP和RAPD技术
5-分子标记及相关的实验技术.
优点:多态性十分丰富,共显性。
缺点:引物设计比较困难。
4)AFLP标记
AFLP是基于限制性酶切和PCR的DNA标 记。 将样品DNA用限制内切酶进行酶切,再 对酶切片段进行有选择地扩增,检测其 多态性。
首先用两种能产生粘性末端的限制性内切酶将基
因组DNA切割成分子量大小不等的限制性片段,然 后将这些片段和与其末端互补的已知序列的接头连 接,所形成的带有接头的特异片段用作随后的PCR 反应膜板。 PCR引物5´端与酶切位点序列互补,3 ´端在酶切 位点后增加1-3个选择性碱基,使得一定比例的酶切 片段被选择地扩增,PCR产物在变性聚丙烯酰胺凝 胶电泳来分辨。
优点:多态性丰富。 缺点:引物需要标记。
5) CAPS标记
特异引物PCR与酶切相结合的一种标记。
根据RAPD标记或RFLP标记,设计特异引物进行PCR
扩增(SCAR,STS)。有时扩增片段大小无差异,此
时对扩增片段进行酶切,然后再通过琼脂糖或聚丙
烯酰胺凝胶电泳检测其多态性。
揭示的是特异PCR产物DNA序列内限制性酶切位点变 异的信息。
例1、CTAB法小量制备植物DNA
以小麦为例: CTAB缓冲液: 1.4M 山梨醇 10ml 1M Tris_Cl PH8.0 22ml 0.5M EDTA PH8.0 4.4ml CTAB 0.8ml N-LSC 1g 加水至100ml (1)取少许小麦叶片,放入1.5ml离心管中,加入液氮冷 冻,用带尖的玻璃棒研碎。 (2)加入500ul,65℃预热的缓冲液混匀,65 ℃水浴保温 20分钟。 (3)加入500ul氯仿-异戊醇(24:1),混匀。
1)DNA提取
CTAB法 根据试剂不同分为 SDS法 大量制备 根据实验目的不同分为 小量制备
分子医学实验-DNA多态性
試寫出幾種檢測DNA多態性的基因技術1〃限制性片段長度多態性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多態性,致使DNA 分子的限制酶切位元點及數目發生改變,用限制酶切割基因組時,所產生的片段數目和每個片段的長度就不同,即所謂的限制性片段長度多態性,導致限制片段長度發生改變的酶切位點,又稱為多態性位點。
最早是用Southern Blot/RFLP方法檢測,後來採用聚合酶鏈反應(PCR)與限制酶酶切相結合的方法。
現在多採用PCR-RFLP法進行研究基因的限制性片段長度多態性。
2〃單鏈構象多態性(SSCP):是一種基於單鏈DNA構象差別的點突變檢測方法。
相同長度的單鏈DNA如果順序不同,甚至單個堿基不同,就會形成不同的構象。
在電泳時泳動的速度不同。
將PCR產物經變性後,進行單鏈DNA凝膠電泳時,靶DNA中若發生單個堿基替換等改變時,就會出現泳動變位(mobility shift),多用於鑒定是否存在突變及診斷未知突變。
3〃PCR-ASO探針法(PCR-allele specific oligonucleotide, ASO):即等位基因特異性寡核苷酸探針法。
在PCR擴增DNA片段後,直接與相應的寡核苷酸探雜交,即可明確診斷是否有突變及突變是純合子還是雜合子。
其原理是:用PCR擴增後,產物進行斑點雜交或狹縫雜交,針對每種突變分別合成一對寡核苷酸片段作為探針,其中一個具有正常序列,另一個則具有突變堿基。
突變堿基及對應的正常堿基勻位於寡核苷酸片段的中央,嚴格控制雜交及洗脫條件,使只有與探針序列完全互補的等位元基因片段才顯示雜交信號,而與探針中央堿基不同的等位元基因片段不顯示雜交信號,如果正常和突變探針都可雜交,說明突變基因是雜合子,如只有突變探針可以雜交,說明突變基因為純合子,若不能與含有突變序列的寡核苷探針雜交,但能與相應的正常的寡核苷探針雜交,則表示受檢者不存在這種突變基因。
分子标记技术的种类
分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。
理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。
目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。
其特点比较见表一。
1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。
其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将 DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。
进行 RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。
目前RFLP 的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。
种质资源分析中RFLPRAPDAFLPSSR的比较研究
种质资源分析中RFLPRAPDAFLPSSR的比较研究种质资源分析是研究物种的遗传多样性和亲缘关系的重要手段之一、其中,RFLP (Restriction Fragment Length Polymorphism)、RAPD (Random Amplified Polymorphic DNA)、AFLP (Amplified Fragment Length Polymorphism) 和SSR (Simple Sequence Repeat) 是四种常用的分子标记技术。
以下是对这四种技术的比较研究详解:1.RFLP:RFLP技术是一种早期的分子标记技术,通过检测DNA的限制性内切酶切割产生的DNA片段的长度差异,从而分析基因座的多态性。
RFLP技术具有高度的稳定性和可重复性,适用于分析DNA序列中的比较大的多态性位点。
然而,该技术由于耗时、耗费精力和使用的放射性同位素等缺点,已逐渐被其他技术所取代。
2.RAPD:RAPD技术是一种基于随机引物扩增多态DNA片段的技术。
其原理是随机应变的引物与目标DNA中的功构象区结合,经为引物扩增产物进行电泳分离后,通过比较DNA带型的差异来分析物种间的遗传关系。
RAPD技术具有快速、简单和经济的优点,但因为扩增产物的非特异性和多态性,其结果存在一定的误差和不可重复性。
3.AFLP:AFLP技术是一种基于PCR扩增的多态性位点标记方法。
它在RAPD的基础上引入了限制性内切酶切割,因此具有较高的清晰度和可重复性。
AFLP技术在物种间遗传多样性和亲缘关系研究中广泛应用,特别适用于对有限数量的DNA样本进行分析。
4.SSR:SSR技术是一种基于PCR扩增的微卫星位点标记方法,也被称为简单重复序列标记。
它通过特异性引物扩增不同物种DNA中的高度可变区域,然后利用电泳分离进行检测。
SSR技术具有高度多态性、遗传稳定性和高度重复性等优点,被广泛应用于种质资源分析和分子育种。
dna分子标记技术概述
dna分子标记技术概述DNA分子标记技术是一种基于DNA序列的分析方法,可以用来研究生物体的遗传变异和基因表达。
它是现代分子生物学和遗传学研究的重要工具之一,被广泛应用于农业、医学、生态学等领域。
DNA分子标记技术的基本原理是利用DNA序列的差异性,通过特定的方法将其转化为可检测的标记,然后利用这些标记来分析不同生物体之间的遗传关系和基因表达差异。
常用的DNA分子标记技术包括PCR-RFLP、RAPD、AFLP、SSR、SNP等。
PCR-RFLP是一种利用PCR扩增DNA片段后,通过酶切鉴定其长度差异的方法。
RAPD是一种利用随机引物扩增DNA片段后,通过其长度和数量的差异来分析不同生物体之间的遗传关系的方法。
AFLP是一种利用限制性内切酶和连接酶对DNA片段进行特异性扩增的方法。
SSR是一种利用特定的引物扩增含有重复序列的DNA片段的方法。
SNP是一种利用单核苷酸多态性来分析不同生物体之间的遗传关系和基因表达差异的方法。
DNA分子标记技术具有高度的灵敏性、准确性和可重复性,可以用来研究不同生物体之间的遗传关系、基因表达差异、基因型鉴定等问题。
它在农业领域的应用主要包括品种鉴定、遗传多样性分析、杂交种育种等方面。
在医学领域,DNA分子标记技术可以用来研究遗传疾病的发生机制、基因诊断、药物反应等问题。
在生态学领域,DNA分子标记技术可以用来研究物种多样性、种群遗传结构、生态系统功能等问题。
总之,DNA分子标记技术是一种重要的分子生物学和遗传学研究工具,具有广泛的应用前景。
随着技术的不断发展和完善,它将在更多领域发挥重要作用,为人类的生产和生活带来更多的福利。
RFLP和RAPD技术原理和操作步骤
RFLP和RAPD技术原理和操作步骤原理:DNA分⼦⽔准上的多态性检验测定技术是施⾏基因组研讨的基础。
RFLP(Restriction Fragment Length Polymorphism,限⽌断⽚长度多态性)已被⼴泛⽤于基因组遗传图谱构建、基因定位以及有⽣命的物质⾼级演化和分类的研讨。
RFLP是依据不⼀样品种(个体)基因组的限⽌性内切酶的酶切位点碱基发⽣突变,或酶切位点之间发⽣了碱基的插进去、缺失,造成酶切断⽚体积发⽣了变动,这种变动可以经过特别指定探针杂交施⾏检验测定,因此可⽐较不⼀样品种(个体)的DNA⽔准的差别(即多态性),多个探针的⽐较可以稳固建⽴有⽣命的物质的⾼级演化和分类关系。
所⽤的探针为出处于同种或不⼀样种基因组DNA的克隆,位于染⾊体的不⼀样位点,因此可以作为⼀种分⼦标记(马克),构建分⼦图谱。
当某个性状(基因)与某个(些)分⼦标记协同离合时,表明这个性状(基因)与分⼦标记连锁。
分⼦标记与性状之间交换值的体积,即表达⽬的基因与分⼦标记之间的距离,因此可将基因定位于分⼦图谱上。
分⼦标记克隆在质粒上,可以蕃息及保留。
不⼀样限⽌性内切酶割切基因组DNA后,所切的断⽚类型不同,因为这个,限⽌性内切酶与分⼦标记组成不⼀样组合施⾏研讨。
常⽤的限⽌性内切酶普通是HindⅢ,BamHⅠ,EcoRⅠ,EcoRV,XbaⅠ,⽽分⼦标记则有⼏个甚⾄于上千个。
分⼦标记越多,则所构建的图谱就越达到最⾼限度。
构建达到最⾼限度图谱是RFLP研讨的主重要的条⽬标之⼀。
使⽤随机引物扩增寻觅多态性DNA断⽚可作为分⼦标记。
这种办法即为RAPD(Random amplified polymorphic DNA ,随机扩增的多态性DNA)。
尽管RAPD技术诞⽣的时间很短, 但因为其独有特别的检验测定DNA多态性的形式以及迅速、简单⽅便的独特的地⽅,使这个技术已渗透于基因组研讨的多种⽅⾯。
该RAPD技术树⽴于PCR技术基础上,它是利⽤⼀系列(⼀般数百个)不⼀样的随机排列碱基顺着次序的寡聚核苷酸单链(⼀般为10聚体)为引物,对所研讨基因组DNA施⾏PCR扩增.聚丙烯酰胺或⽯花胶糖电泳离合,经EB染⾊或放射性⾃显影来检验测定扩增加产量物DNA断⽚的多态性,这些个扩增加产量物DNA断⽚的多态性反映了基因组相应地区范围的DNA多态性。
RAPD和SSR
RAPD 标记技术。
为了克服RFLP 技术上的缺点,Williams等于1990 年建立了随机扩增多态DNA (Randomamplified polymorphic DNA ,RAPD) 技术,由于其独特的检测DNA 多态性的方式使得RAPD 技术很快渗透于基因研究的各个领域。
RAPD 是建立于PCR 基础之上的分子标记技术,基本原理是利用一个随机引物(8~10 个碱基) 通过PCR 反应非定点地扩增DNA 片段,然后用凝胶电泳分离扩增片段来进行DNA 多态性研究。
对任一特定引物而言,它在基因组DNA 序列上有其特定的结合位点,一旦基因组在这些区域发生DNA 片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。
优点:与RFLP 相比,RAPD 技术简单,检测速度快,DNA 用量少,实验设备简单,不需DNA 探针,设计引物也不需要预先克隆标记或进行序列分析,不依赖于种属特异性和基因组的结构,合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,而且不需要同位素,安全性好。
缺点:当然,RAPD 技术受许多因素影响,实验的稳定性和重复性差,首先是显性遗传,不能识别杂合子位点,这使得遗传分析相对复杂 ,在基因定位、作连锁遗传图时,会因显性遮盖作用而使计算位点间遗传距离的准确性属特异性和基因组的结构,合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,而且不需要同位素,安全性好。
当然,RAPD 技术受许多因素影响,实验的稳定性和重复性差,首先是显性遗传,不能识别杂合子位点,这使得遗传分析相对复杂 ,在基因定位、作连锁遗传图时,会因显性遮盖作用而使计算位点间遗传距离的准确性下降;其次,RAPD 对反应条件相当敏感,包括模板浓度、Mg2 +浓度,所以实验的重复性差。
SSR 标记技术。
在真核生物基因组中存在许多非编码的重复序列,如重复单位长度在15~65 个核苷酸的小卫星DNA(Minisatellite DNA) ,重复单位长度在2~6 个核苷酸的微卫星DNA (Microsatellite DNA) 。
分子生物学方法鉴定微生物
分子生物学方法鉴定微生物分子生物学是分子水平上研究生物学的一门学科,可以应用于微生物的鉴定和研究。
在分子生物学中,通过分析微生物的DNA、RNA和蛋白质,可以确定微生物的物种、进化关系和功能特性。
以下将介绍一些常用的分子生物学方法来鉴定微生物。
首先,核酸提取是分子生物学研究的基础步骤。
通过核酸提取可以获得微生物样本中的DNA或RNA。
一般常用的提取方法包括酚-氯仿法、离心法、磁珠法等。
提取得到的核酸可以用于后续的PCR扩增、测序、芯片分析等。
其次,PCR扩增技术是分子生物学中最常用的方法之一、通过PCR扩增可以在微生物样本中放大特定的基因片段,并进行进一步的分析。
PCR扩增主要包括两个步骤:变性和退火,其中变性是将DNA双链解开,退火是将引物与靶序列互补结合。
通过PCR扩增可以获得大量的特定基因片段,用于进一步的测序和鉴定。
PCR扩增得到的目标基因片段可以进行多种分析方法。
其中,序列测定是一种常用的方法。
通过测定PCR扩增得到的基因片段的序列,可以确定该基因片段在数据库中的匹配度,并据此确定微生物的物种。
此外,序列测定还可以通过比对进化树的构建,研究微生物的进化关系。
此外,还可以利用PCR扩增得到的基因片段进行限制性酶切分析。
限制性酶切分析可以将PCR扩增得到的基因片段在特定的酶切位点上切割成片段,并通过凝胶电泳进行分离和检测。
通过比较不同微生物基因片段的切割模式,可以确定微生物的物种和进化关系。
除了PCR技术外,还可以利用酶切多态性(RFLP)分析来鉴定微生物。
RFLP是一种对PCR扩增得到的基因片段进行限制酶切,并通过凝胶电泳对切割产物进行分离检测的方法。
不同微生物在特定限制酶切位点的序列差异可以通过RFLP分析来鉴定。
最后,还可以使用引物扩增反应-随机扩增的多态性DNA(RAPD)技术来鉴定微生物。
RAPD技术是一种利用随机引物扩增基因组DNA的特定区域,通过凝胶电泳分析扩增产物,根据扩增产物的差异进行微生物的鉴定。
分子标记技术
(二)小卫星DNA(Minisatellite DNA)
又称数目可变串联重复序列(Variable Number of Tandem Repeat,VNTR)是一种重复DNA小序列
多态性由于重复单位之间的不平衡交换,从而产生不同等位基因,可通过杂交检测出
二、基于PCR技术的分子标记
(一)随机扩增片段长度多态性DNA,简称RAPD技术
RAPD以PCR为基础而又不同于经典的PCR,一般采用10个核苷酸的DNA序列为引物,扩增时退火温度降至35℃左右。与其它标记相比,RAPD具有以下优点: 1)不依赖于种属的特异性和基因组的结构,合成的一套引物可用于不同生物基因组的分析。2)操作简单,可实现自动化,短期内可利用大量引物完成覆盖基因组的分析 3)不需制备探针、杂交等程序,成本较低。4)DNA用量少(10ngDNA即可完成一次分析),允许快速、简单地分离基因组DNA
(二)特异性扩增子多态性(Specific Amplificon Polymorphism,SAP)
)酶切扩增多态性序列(Cleaved Amplified Polymorphic Sequence,CAP)将RFLP探针的两端测序,合成22-mer引物进行PCR扩增,扩增产物往往无多态性,需用内切酶酶解产物,产生多态性。 2)序列特异性扩增区(Sequence-characterized Amplified Region,SCAR)和位点特异相关引物(Allele-Specific Associated Primers,ASAP),对RAPD、AFLP片段两端测序,根据DNA序列,合成24-mer双引物进行PCR扩增。SCAR、CAP可以降低了成本,操作简便,稳定性强,对仪器要求低,可实现自动化分析mplified Fragment Length Polymorphism,AFLP)
几种常用的分子标记.
RAPD标记的特点: 1.RAPD标记引物扩增产物所扩增的DNA区段是事
先未知的,具有随机性和任意性,因此随机引物PCR标 记技术可用于对任何未知基因组的研究。
2.RAPD标记的不足之处是,一般表现为显性遗传, 不能区分显性纯合和杂合的基因型,因而提供的信息 量不完整。
0.2kb 0.5kb
0.2kb 0.5kb
0.3kb
0.3kb ×
品系1 品系2
0.5kb 0.3kb 0.2kb
S451对DH962×冀棉5号F2群体扩增图
RAPD可用于对整个基因组DNA进行多态性检测,也可 用于构建基因组指纹图谱。
1.品种鉴定、系谱分析:用于识别种群、家族、 种内或 种间的遗传变异,为生物血缘关系或分类提供依据,还可以 分析混合基因组样品等。
谢谢观看
Thank you for watching
头 (c)寡核苷酸接头与限制片段连接 (d)用选择性引物进行PCR扩 增
种子生产与经营专业教学资源库
四、简单序列重复(SSR)标记
又称微卫星,是一类由几个(一般2-6个)核苷酸为 重复单位组成的长达几十个核苷酸的串联重复序列。如 (CA)n、(AT)n、(GGC)n等。
微卫星DNA的简单序列的重复次数在同一物种的不同 品种或不同个体中存在较大的差异,即微卫星座位上存在 丰富的等位基因。如在水稻中,RFLP座位的等位基因数 为2-4个,而SSR的等位基因数为2-25个。
种子生产与经营专业教学资源库
三、扩增片段长度多态性(AFLP)标记
AFLP标记,是结合RFLP和PCR的优点发明的一种 DNA指纹技术。通过对基因组DNA酶切片段的选择性扩 增来检测DNA酶切片段长度的多态性 。
现有分子标记有哪些
现有分子标记有哪些(类型,优缺点和应用)?。
现有的分子标记有:1、限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):优点:数量不受限制。
缺点:但克隆可探针较为困难、操作较繁锁、周期长、费用高。
2、数目可变串联重复多态性(Variable Number of Tandem Repeats,VNTR):优点:小卫星标记的多态信息含量较高,在17一19之间。
缺点:数量有限,而且在基因组上分布不均匀,这就极大限制其在基因定位中的应用。
VNTR 也存在实验操作繁琐、检测时间长、成本高的缺点。
3、随机引物的PCR标记①随机扩增多态性DNA(Random Amplified Polymorphism DNA,RAPD),优点:⑴简单,速度快;⑵ RAPD分析只需少量DNA样品;⑶不依赖于种属特异性和基因组结构,一套引物可用于不同生物基因组分析;⑷成本较低。
缺点:⑴RAPD标记是一个显性标记,不能鉴别杂合子和纯合子;⑵存在共迁移问题,凝胶电泳只能分开不同长度DNA片段,而不能分开那些分子量相同但碱基序列组成不同的DNA片段;⑶RAPD技术中影响因素很多,所以实验的稳定性和重复性差。
②任意引物PCR(Arbitrarily Primed Polymerase Chain Reaction,AP-PCR)优点:AP-PCR方法不需预知序列资料,而且检测的基因组样本是任意的,还能够用于检测近等基因系(或同类系)中的多态性。
在杂合体中仅可辨别长度多态性缺点:每个新的多态性都必须经纯化才能进一步使用。
③DNA扩增指纹印迹(DNA Amplification Fingerprinting,DAF)优点:提供的谱带信息比RAPD大得多,如当使用5个核昔酸的引物时,引物和模板的组合大约可扩增出10-100个DNA片段。
缺点:PCR扩增产物是在凝胶上进行分离,通过银染可产生非常复杂带型。
分子标记特点和应用
分子标记技术方法和他们特点1、限制性片段长度多态性标记分析(Re striction Fragment Length Polymorphism,RFLP)—RFLPRFLP技术的是检测DNA 在限制性内切酶酶切后形成的特定DNA 片段的大小。
因此凡是可以引起酶切位点变异的突变如点突变(新产生和去除酶切位点) 和一段DNA 的重新组织(如插入和缺失造成酶切位点间的长度发生变化) 等均可的产生RFLP技术特点:RFLP技术优点:①结果稳定,重复性好,特别是PCR-RFLP(CAPS)由于是特定引物扩增,退火温度高,因而假阳性低,可靠性更高。
②是一种共显性标记,可区分纯合体与杂合体,数据多态信息量大,不受显隐性关系、环境条件、发展阶段及组织部位影响。
③RFLP标记广泛存在于生物体内,不受组织、环境和发育阶段的影响,具有个体、种、属及各种各层次水平的特异性。
④核基因组的RFLP标记表现为孟德尔的共显性遗传,而细胞质基因组的RFLP一般表现为母性遗传。
RFLP技术缺点:①分析所需DNA量较大,分析速度慢。
②步骤较多,周期长,技术复杂,费用高。
③检测多态性水平过分依赖限制性内切酶,使多态性降低,对DNA质量要求高。
④检测中需放射性物质,限制了广泛应用。
⑤对于线粒体DNA而言,因为其进化速度快,影响种以上水平的RFLP分析的准确性。
但是种以上水平影响很小。
2.随机扩增多态性DNA技术(Random Amplified Polymorphism DNA)—RAPD以单一的随机引物(一般为10个碱基)利用PCR技术随机扩增未知序列的基因组DNA获得的DNA片段长度变异。
它是利用随机引物通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。
RAPD技术特点:RAPD优点:①无种属特异性,一套RAPD引物可以应用于任意一种生物的研究,具有广泛和通用的特点。
②适合于自动化分析。
操作技术简单,不涉及分子杂交和放射性自显影等技术,省工省力和工作进度快。
植物的遗传标记与分子标记技术
植物的遗传标记与分子标记技术植物是地球上最重要的生物资源之一,对于人类的生存和发展起着至关重要的作用。
在植物研究领域,了解植物的遗传特征和分子标记技术是至关重要的。
本文将介绍植物的遗传标记及其与分子标记技术相关的应用。
一、植物的遗传标记遗传标记是指可以通过观察植物个体或种群遗传特征来确定他们之间遗传联系的物质标记。
在植物研究中,常用的遗传标记包括形态标记、生化标记和分子标记。
1. 形态标记形态标记是通过观察植物个体的可见特征来进行遗传标记的一种方法。
例如,植物的株型、花色、果实形状等都可以作为形态标记。
形态标记的优点是易于观察和操作,但缺点是容易受环境条件的干扰,并且很多遗传信息难以通过形态标记来获取。
2. 生化标记生化标记是通过检测植物体内的化学物质来进行遗传标记的方法。
例如,植物体内的酶活性、蛋白质组成和DNA序列等都可以作为生化标记。
生化标记的优点是具有高度的灵敏度和特异性,但操作复杂,需要特殊的实验技术和设备。
二、分子标记技术分子标记技术是一种利用特定的DNA片段或DNA序列来进行遗传标记的方法。
目前常用的分子标记技术包括限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、序列特定扩增寡核苷酸引物(SSR)、单碱基多态性(SNP)等。
1. 限制性片段长度多态性(RFLP)RFLP是一种基于DNA片段长度差异的分子标记技术。
通过将DNA进行限制性酶切,然后使用凝胶电泳进行分离和检测,根据DNA 片段的不同长度来进行遗传标记。
RFLP技术可以用于植物的种质资源鉴定、亲缘关系分析等领域。
2. 随机扩增多态性DNA(RAPD)RAPD是一种基于PCR技术的分子标记方法,通过随机引物扩增DNA的特定区域,然后使用凝胶电泳进行分离和检测。
RAPD技术具有简单、快速、经济的特点,可广泛应用于植物的种质资源鉴定、遗传多样性分析等方面。
3. 序列特定扩增寡核苷酸引物(SSR)SSR是一种利用寡核苷酸引物扩增DNA序列的方法。
RFLP,RAPD,ALFP,SSR的原理及示意图
1.RFLP限制性片段长度多态性(restriction fragment length polymorphism,缩写RFLP) 技术的原理是检测DNA在限制性内切酶酶切后形成的特定DNA片段的大小。
因此凡是可以引起酶切位点变异的突变如点突变(新产生和去除酶切位点)和一段DNA的重新组织(如插入和缺失造成酶切位点间的长度发生变化)等均可导致RFLP的产生。
技术路线:缺点:RFLP分析对样品纯度要求较高,样品用量大,且RFLP多态信息含量低,多态性水平过分依赖于限制性内切酶的种类和数量,加之RFLP分析技术步骤繁琐、工作量大、成本较高,所以其应用受到了一定的限制RFLP原理图示:2.RAPD原理:RAPD技术的全称是随机扩增多态性DNA(Random Amplified Polymorphic DNA),此技术建立于PCR基础之上,使用一系列具有10个左右碱基的单链随机引物,对基因组的DNA全部进行PCR扩增,以检测多态性。
由于整个基因组存在众多反向重复序列,因此须对每一随机引物单独进行PCR。
单一引物与反向重复序列结合。
使重复序列之间的区域得以扩增。
引物结合位点DNA序列的改变以及两扩增位点之间DNA碱基的缺失、插入或置换均可导致扩增片段数目和长度的差异,经聚丙烯酰胺或琼脂糖凝胶电泳分离后通过EB染色以检测DNA片段的多态性。
原理示意图:若位点2处碱基发生改变,则技术路线:RAPD的缺点:RADP图谱中某些弱带重复性较差,而且目前该法在引物长度和序列及应用的引物数目、扩增反应条件等实验技术方面未标准化,影响了不同条件下结果的可比性;每个标记含有的信息量小;有假阳性或假阴性结果;显性标记,无法区分从一个位点扩增的DNA片段是纯合的还是杂合的,无法进行等位基因分析。
用在种以上类群间的比较时无法得到可靠的遗传距离3.AFLP原理:AFLP的全称是扩增片段长度多态性(Amplified Fragment Length Polymorphism),此技术是建立在基因组限制性片段基础上的PCR 扩增。
RAPD技术
三. RAPD技术的应用
1.RAPD在微生物分类鉴定中应用 (1). 在原核生物分类中的应用
原核生物基因组结构简单,常采用培养特性、 表型特征、生理生化特点等传统的分类鉴别 方法,但这些方法不能完全准确、可靠地鉴 别不同的型或亚型。RAPD分型、分类鉴别方 法正越来越受到广泛的关注。
Hilton 等以随机引物“1254”(含10个寡核普酸碱基)扩增鉴别了 20 种不同血清型沙门氏菌,并进一步把 RAPD 扩增片段克隆到 载体上,以地高辛杂交标记探针验证相关的 RAPD 带,证明 RAPD 这种快速的分子分型方法对沙门氏菌基因分型是完全适 用的。
五. RAPD技术的缺陷
RAPD技术重复性,结果的可靠性低
模板质量和浓度 PCR循环次数 短的引物序列 技术设备 基因组DNA的复杂性
六.解决办法
(1). 引物合成时需要满足以下两个条件:
• G+C的含量不低于40%,5’和3’端的碱基顺序非反向对称, 否则无法合成专一性的DNA片段; • 引物长度以10个碱基为宜,若引物太短(少于9个核苷酸 长度),与模板结合有困难,聚合反应则很难进行。如果 引物太长,成本增加,合成多态性DNA片段的可能性就会 降低。
1. 与 RFLP 法相比, RAPD 法所需的模板 DNA 量少,要求纯 度低,操作快,且无需知道DNA 序列的信息,而且获得基 因图谱较迅速,标记密度大。 2. 不需要对每一种微生物进行鉴定,但需要筛选和比较随 时间变化的不同样品中微生物的变化情况。 3.RAPD反应引物是随机排列的,无须专门设计,且引物较 短(一般9~20 bp)故引物合成费用低,总成本低。 4.RAPD技术可以直接对所检测的DNA多态性进行分析,省去 了许多如制备、克隆、同位素标记、Southern印迹、分子杂 交等繁杂的工作。
RFLP,EST,RAPD,AFLP,微卫星SSR,线粒体DNA标记
1.RFLP限制性片段长度多态性(restriction fragment length polymorphism,缩写RFLP) 技术的原理是检测DNA在限制性内切酶酶切后形成的特定DNA片段的大小。
因此凡是可以引起酶切位点变异的突变如点突变(新产生和去除酶切位点)和一段DNA的重新组织(如插入和缺失造成酶切位点间的长度发生变化)等均可导致RFLP的产生。
技术路线:不同个体DNA的提取PCR扩增目的片断酶切凝胶电泳分开DNA片段转膜Southern杂交数据分析缺点:RFLP分析对样品纯度要求较高,样品用量大,且RFLP多态信息含量低,多态性水平过分依赖于限制性内切酶的种类和数量,加之RFLP分析技术步骤繁琐、工作量大、成本较高,所以其应用受到了一定的限制RFLP原理图示:2.RAPD原理:RAPD技术的全称是随机扩增多态性DNA(Random Amplified Polymorphic DNA),此技术建立于PCR基础之上,使用一系列具有10个左右碱基的单链随机引物,对基因组的DNA全部进行PCR扩增,以检测多态性。
由于整个基因组存在众多反向重复序列,因此须对每一随机引物单独进行PCR。
单一引物与反向重复序列结合。
使重复序列之间的区域得以扩增。
引物结合位点DNA序列的改变以及两扩增位点之间DNA碱基的缺失、插入或置换均可导致扩增片段数目和长度的差异,经聚丙烯酰胺或琼脂糖凝胶电泳分离后通过EB染色以检测DNA片段的多态性。
原理示意图:若位点2处碱基发生改变,则技术路线:选择随机引物DNA的提取PCR反应凝胶电泳图谱分析RAPD的缺点:RADP图谱中某些弱带重复性较差,而且目前该法在引物长度和序列及应用的引物数目、扩增反应条件等实验技术方面未标准化,影响了不同条件下结果的可比性;每个标记含有的信息量小;有假阳性或假阴性结果;显性标记,无法区分从一个位点扩增的DNA片段是纯合的还是杂合的,无法进行等位基因分析。
RAPD分子标记技术-文档资料
标 记 方 法
微卫星DNA(Microsatellite DNA),又称SSR(Simple sequence repeat)
扩 ISSR(Inter simple sequence repeat) 增 方 AP-PCR(Arbitrary primer PCR) 法 它主要有SCAR(Sequence characterized amplified region)
DNA
Only when primer binding sites are close and
oriented in opposite direction so the primers point toward each other will amplification take place
RAPD
of 3 using the same
template and primer,
but varying
Magnesium,
polymerase and
primer
concentrations
Normal concentrations are shown in yellow text. M = A size standard
Primers point away from each other, so amplification won’t happen
Template DNA
RAPD
Primers point in the same direction, so amplification won’t happen
Template DNA
简介:RAPD是由Williams和Welsh(1990)同时发展起来的
一项新的建立于PCR实验基础上的检测基因组DNA多态性的遗传标 记技术。
分子遗传标记的概念
分子遗传标记的概念
分子遗传标记是指在基因组中存在的具有多态性的DNA序列,它们可以用来区分不同个体、种群或品系之间的遗传差异。
常见的分子遗传标记包括限制性片段长度多态性(RFLP)、随机扩增多态性(RAPD)、微卫星(SSR)和单核苷酸多态性(SNP)等。
RFLP是一种早期的分子遗传标记技术,它通过酶切DNA分子并检测不同长度的DNA片段来鉴别基因型。
RAPD是一种PCR技术,它利用随机引物扩增DNA片段来产生多态性,但它的稳定性和可重复性较差。
SSR是一种基于DNA序列中微卫星位点多态性的标记技术,由于其高度多态性和稳定性,已成为许多动植物物种遗传多样性研究和育种工作中广泛应用的标记类型。
SNP是一种单个核苷酸变异,它在基因组中广泛存在,是目前最为常用的分子标记类型之一,其高度自动化和高通量的特点使其在基因组学、遗传学和生物技术等领域得到了广泛的应用。
总的来说,分子遗传标记是现代生物技术研究中不可或缺的工具,它们可以用来研究物种间的遗传关系、基因型分析、种质资源鉴定和育种等方面。
随着技术的不断发展,新的分子遗传标记类型也在不断涌现,这些技术的发展和应用将不断推动生物学和农业科技的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RFLP和RAPD技術
一、RFLP技術
DNA的多態性檢測技術是進行基因組研究的基礎。
RFLP(Restriction Fragment Length Polymorphism,限制片段長度多態性)已被廣泛用於基因組遺傳
圖譜構建、基因定位以及生物進化和分類的研究。
RFLP是根據不同品種(個體)基因組的限制性內切酶的酶切位元點堿基發生突變,或酶切位元點之間發生了堿基的插入、缺失,導致酶切片段大小發生了變化,這種變化可以通過特定探針雜交進行檢測,從而可比較不同品種(個體)的DNA水平的差異(即多態性),多個探針的比較可以確立生物的進化和分類關係。
所用的探針爲來源於同種或不同種基因組DNA的選殖,位於染色體的不同位點,從而可以作爲一種分子標記(Mark),構建分子圖譜。
當某個性狀(基因)與某個(些)分子標記協同分離時,表明這個性狀(基因)與分子標記連鎖。
分子標記與性狀之間交換值的大小,即表示目標基因與分子標記之間的距離,從而可將基因定位于分子圖譜上。
分子標記選殖在質粒上,可以繁殖及保存。
不同限制性內切酶切割基因組DNA後,所切的片段類型不一樣,因此,限制性內切酶與分子標記組成不同組合進行研究。
常用的限制性內切酶一般是HindⅢ,BamHⅠ,EcoRⅠ,EcoRV,XbaⅠ,而分子標記則有幾個甚至上千個。
分子標記越多,則所構建的圖譜就越飽和。
構建飽和圖譜是RFLP研究的主要目標之一。
運用隨機引子對擴增尋找多態性DNA片段可作爲分子標記。
這種方法即爲RAPD(Random amplified polymorphic DNA ,隨機擴增的多態性DNA)。
儘管RAPD技術誕生的時間很短, 但由於其獨特的檢測DNA多態性的方式以及快速、簡便的特點,使這個技術已滲透于基因組研究的各個方面。
該RAPD技術建立於PCR技術基礎上,它是利用一系列(通常數百個)不同的隨機排列堿基順序的寡聚核苷酸單鏈(通常爲10聚體)爲引子,對所研究基因組DNA進行PCR擴增.聚丙烯酰胺或瓊脂糖電泳分離,經EB染色或放射性自顯影來檢測擴增産物DNA片段的多態性,這些擴增産物DNA片段的多態性反映了基因組相應區域的DNA多態性。
RAPD所用的一系列引子DNA序列各不相同,但對於任一特異的引子,它同基因組DNA序列有其特異的結合位點.這些特異的結合位元點在基因組某些區
域內的分佈如符合PCR擴增反應的條件,即引子在模板的兩條鏈上有互補位置,
且引子3'端相距在一定的長度範圍之內,就可擴增出DNA片段.因此如果基因組在這些區域發生DNA片段插入、缺失或堿基突變就可能導致這些特定結合位元點分佈發生相應的變化,而使PCR産物增加、缺少或發生分子量的改變。
通過對PCR産物檢測即可檢出基因組DNA的多態性。
分析時可用的引子數很大,雖然對每一個引子而言其檢測基因組DNA多態性的區域是有限的,但是利用一系列引
子則可以使檢測區域幾乎覆蓋整個基因組。
因此RAPD可以對整個基因組DNA
進行多態性檢測。
另外,RAPD片段選殖後可作爲RFLP的分子標記進行作圖分析。
本實驗將學習RFLP的內切酶切剪、電泳以及RAPD技術。
RFLP技術
一、材料
基因組DNA(大於50kb,分別來自不同的材料)。
二、設備
電泳儀及電泳槽,照相用塑膠盆5只,玻璃或塑膠板(比膠塊略大) 4塊,吸水紙若干,尼龍膜(依膠大小而定),濾紙,eppendorf管(0.5ml)若干。
三、試劑:
1、限制性內切酶(BamHⅠ, EcoRⅠ, HindⅢ, XbaⅠ)及10×酶切緩衝液。
2、10×TBE電泳緩衝液:500mmol/L KCl, 100mmol/L Tris·Cl, 在25℃下, pH9.0,
1.0%Triton X-100。
3、MgCl2 :25mmol/L。
4、4種dNTP混合物:每種2.5mmol/L。
5、Taq DNA聚合酶5U/μl。
6、其他試劑:ddH2O,Agarose 0.8%。
四. 操作步驟
1. 基因組DNA PCR反應
2. 在50μl反應體系中,進行酶切反應:
5μg基因組DNA
5μl 10×酶切緩衝液
20單位(U)限制酶(任意一種)
加ddH2 O, 至50μl
3. 輕微振蕩, 離心,37℃反應過夜。
4. 取5μl反應液,0.8%瓊脂糖電泳觀察酶切是否徹底,這時不應有大於30kb的明顯亮帶出現。
[注意] 未酶切的DNA要防止發生降解, 酶切反應一定要徹底。
二、RAPD技術
一、材料
不同來源的DNA(50ng/ul)。
二、設備
PCR核酸擴增儀,PCR管,電泳裝置。
三、試劑
1、隨機引子(10mer) (5umol/L):購買成品。
2、Taq酶:購買成品。
3、10xPCR 緩衝液。
4、MgCl2 :25mmol/L。
5、dNTP:每種2.5mmol/L。
四、操作步驟:
1. 在25ul反應體系中,加入
模板DNA 1ul (50ng)
隨機引子1ul (約5pmol)
10xPCR Buffer 2.5ul
MgCl2 2ul
dNTP 2ul
Taq酶1單位(U)
加ddH2O 至25ul 混勻稍離心
2. 在加熱至90℃以上的PCR儀中預變性94℃ 2分鐘, 然後迴圈: 94℃ 1分
鐘,36℃ 1分鐘,72℃ 1分鐘,共35 cycles。
3. 反應結束後, 72℃ 10分鐘,4℃保存。
4. 取PCR産物15ul加3ul上樣緩衝液(6x)於2% 瓊脂糖膠上電泳, 穩壓
50-100V(電壓低帶型整齊,解析度高)。
5. 電泳結束,觀察、拍照。
[注意] 1、電泳時一般RAPD帶有5-15條, 大小0.1-2.0kb。
2、特異性的DNA帶可以選殖作爲一個新的分子標記應用。
問題
1. DNA限制酶切剪反應不徹底會有何結果? DNA發生降解有何影響?
2. 隨機引子擴增,爲什麽會産生DNA雙鏈産物?。