原子的核结构卢瑟福模型

合集下载

第1章 原子的位形:卢瑟福模型

第1章 原子的位形:卢瑟福模型
第一章 原子的位形:卢瑟福模型
内容:
1、汤姆孙原子结构模型 2、原子的核式结构 3、卢瑟福散射理论 4、原子的组成和大小 5、卢瑟福核式结构的意义和困难
重点:原子的核式结构、卢瑟福散射理论
§1背景知识
一 电子的发现
图1汤姆逊正在进行实验
1897年,汤姆逊通 过阴极射线管的实验发 现了电子,并进一步测 出了电子的荷质比:e/m
纳米金属铜的超延展性
碳纳米管.它的密度是钢的 1/6,而强度却是钢的100倍
它具有表面效应、小尺寸效应和宏观量子隧道效应
面也称做几率,这就是d的物理意义。将卢瑟福散射公式代入并整
理得:
dn sin4 d
2
1 (
4 0
)2
(
Ze2 MV 2
)2 nNt
五、卢瑟福理论的实验验证
dn sin4 d
2
1 (
4 0
)2
(
Ze2 MV 2
)2 nNt
dn dn d d
从上式可以预言下列四种关系:
(1)在同一 粒子源和同一散射物的情况下
粒子受到散射时,它的出
( a) 侧视图 (b) 俯视图。R:放射源; 射方向与原入射方向之间的
F:散射箔; S:闪烁屏;B:金属匣
夹角叫做散射角。
实验结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。
这是我一生中从未有过的最难以置信的事件,它的难以置信好比你 对一张白纸射出一发15英寸的炮弹,结果却被顶了回来打在自己身 上-卢瑟福
困难:作用力F太小,不能发生大角散射。 解决方法:减少带正电部分的半径R,使作用力增大。
三 卢瑟福的核式模型
原子序数为Z的原子的中心,有一 个带正电荷的核(原子核),它所带的 正电量Ze ,它的体积极小但质量很 大,几乎等于整个原子的质量,正常 情况下核外有Z个电子围绕它运动。

卢瑟福原子核式结构模型

卢瑟福原子核式结构模型

卢瑟福原子核式结构模型卢瑟福的原子核式结构模型主要包括以下几个要点:1.原子核:卢瑟福认为原子核是原子的中心,其中含有几个质子和一些中子。

原子核的直径约为10^-14米,相对于整个原子而言非常小,并带有正电荷。

2.电子轨道:卢瑟福认为电子沿着特定的轨道绕着原子核运动。

他提出了类似于行星绕着太阳运动的图像,将电子轨道比作类似椭球形的轨道,不同轨道具有不同的能级。

这些电子轨道是固定的,电子不会从一个轨道跃迁到另一个轨道。

3.质子和中子:卢瑟福提出原子核中含有质子和中子。

质子带有正电荷,中子则是中性的。

质子的数目决定了原子的元素,而中子的数目可以不同,即同一元素的同位素。

4.电子云:卢瑟福的模型仍然保留了以前的“电子云”概念,即电子在不同轨道上运动,创造了一个围绕原子核的电子云。

这个电子云能够解释原子的大小和光谱线的现象。

卢瑟福的原子核式结构模型相比于以前的汤姆逊原子模型更为接近现代的原子结构理论。

他巧妙地利用了散射实验来验证他的模型。

在散射实验中,他用α粒子(即带有正电荷的氦原子核)射向了金箔,并观察到了一些氦原子核与金箔上的原子核发生散射的现象。

通过测量和分析散射角度的变化,卢瑟福发现,大部分的α粒子直接穿过金箔,而只有极少数的α粒子发生偏转或反弹。

这一观察结果无法用汤姆逊的原子模型解释,因为汤姆逊的模型认为正电荷均匀分布在整个原子中。

卢瑟福的原子核式结构模型奠定了现代原子结构理论的基础,为后续的量子力学和核物理学发展打下了重要的基础。

他的模型揭示了原子在微观层面上的真实本质,对于理解原子的性质和物质世界的组成具有重要的意义。

卢瑟福的原子核式结构模型

卢瑟福的原子核式结构模型

卢瑟福的原子核式结构模型
卢瑟福的原子核式结构模型是20世纪初物理学研究的重要成果之一。

这一模型通过实验证明了原子不是一个均质的球体,而是由一个小而重的原子核和围绕它旋转的电子构成。

此模型的提出,对于人们理解原子结构的本质具有重要意义。

卢瑟福实验的基本原理是,通过将一个α粒子(即带有两个质子和两个中子的氦原子核)轰击到一个金箔上,通过观察α粒子的散射方向来确定原子的结构。

实验结果表明,大部分的粒子通过金箔而不受到偏转,但有一部分粒子受到了较大的偏转。

这表明原子中存在着一个小而重的原子核,而电子则围绕在原子核周围。

卢瑟福模型的核心思想是,原子结构由一个小而重的原子核和围绕其运动的电子构成。

原子核包含质子和中子,质子带有正电荷,中子不带电。

电子则带有负电荷。

原子核的大小约为10^-15米,而整个原子的大小约为10^-10米。

卢瑟福模型对于人们理解化学反应、放射性衰变等现象具有重要意义。

例如,核反应是指原子核之间的反应,而非电子之间的反应。

放射性衰变也是指原子核的变化,而非电子的变化。

此外,原子核式结构模型也为原子核物理学和核能技术的发展提供了重要的理论基础。

卢瑟福的原子核式结构模型是一项重要的物理学成果,它通过实验证明了原子结构由一个小而重的原子核和围绕其运动的电子构成。

这一模型对于人们理解化学反应、放射性衰变等现象具有重要意义。

原子核式结构模型卢瑟福

原子核式结构模型卢瑟福

原子核式结构模型卢瑟福原子核式结构模型卢瑟福引言原子核式结构模型是科学家卢瑟福在1911年提出的,它为人们理解原子的内部结构提供了重要的线索。

本文将从实验原理、实验过程、实验结果和结论等方面详细介绍卢瑟福的原子核式结构模型。

一、实验原理1.1 原子核和电子在学习卢瑟福原子核式结构模型之前,我们需要先了解什么是原子核和电子。

原子核是由质子和中子组成的,质量大约为电子质量的2000倍,而电子则是带有负电荷的基本粒子。

1.2 α粒子α粒子是一种带有正电荷的粒子,由两个质子和两个中性粒子组成。

它具有高速运动能力,并能穿透物体。

1.3 散射现象散射现象指入射粒子与目标物质发生碰撞后改变方向或速度的现象。

散射角度越大,则入射粒子与目标物质之间相互作用越小。

二、实验过程2.1 实验装置卢瑟福使用了一台放射性源、一块金箔和一个探测器的实验装置。

放射性源发出α粒子,经过金箔后被探测器接收。

2.2 实验步骤卢瑟福将α粒子从放射源中释放出来,让它们穿过金箔,并在探测器上进行检测。

他还记录了散射角度和散射粒子数目等数据。

2.3 实验结果卢瑟福的实验结果表明,大多数α粒子穿过金箔而不受到任何影响。

然而,一小部分α粒子发生了强烈的偏转或反弹。

三、实验结果分析3.1 结果解释卢瑟福根据实验结果推断,原子核在原子中的体积非常小,只占整个原子体积的很小一部分。

这是因为大多数α粒子能够穿透金箔并被探测器接收。

3.2 原子核式结构模型基于他的实验结果,卢瑟福提出了原子核式结构模型。

该模型认为原子由一个带正电荷的核和围绕核运动的带负电荷的电子组成。

原子核的大小非常小,但它却包含了原子中大部分的质量。

四、结论卢瑟福的原子核式结构模型为人们理解原子内部结构提供了重要线索。

它揭示了核和电子之间相互作用的基本规律,对后来的原子理论研究产生了深远影响。

卢瑟福提出了原子结构的行星模型

卢瑟福提出了原子结构的行星模型

对教育的影响
01
02
03
改变教学方式
卢瑟福的原子结构行星模 型促使教育者改变教学方 式,开始注重实验和理论 相结合的教学方法。
激发学生学习兴趣
该模型简单易懂,有助于 激发学生对物理学的兴趣 和好奇心,促进他们的自 主学习。
提高科学素养
通过学习和理解卢瑟福的 模型,学生可以培养批判 性思维和科学素养,提高 解决实际问题的能力。
对科学发展的贡献
推动物理学发展
促进实验验证
卢瑟福的原子结构行星模型为物理学 领域带来了新的理论框架,为后续的 原子结构和性质研究奠定了基础。
卢瑟福通过实验验证了他的模型,这 为科学实验在理论验证中的重要性提 供了范例。
揭示原子结构
该模型成功揭示了原子的内部结构, 包括原子核和电子,并解释了原子辐 射和吸收能量的原因。
开创了现代物理学的新篇章
卢瑟福的原子结构行星模型是量子力学和相对论等现代物理理论发展的起点, 对整个物理学的发展产生了深远的影响。
对现代科技的影响
推动了材料科学的发展
卢瑟福的原子结构行星模型为材料科学家提供了理解和设计新材料的基础,推动 了材料科学的快速发展。
促进了计算机技术的进步
基于卢瑟福模型发展起来的量子力学和半导体技术,为计算机技术的发展提供了 关键的理论和技术支持。
模型的主要内容
原子中心有一个带正 电的原子核,其周围 围绕着带负电的电子。
电子在轨道上运动的 能量是量子化的,即 电子只能处于特定的 能级上。
电子绕着原子核运动, 类似于行星绕着太阳 运动。
模型的优缺点
01
优点
02
成功解释了α粒子散射实验的现象,揭示了原子核的 存在。
03

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。

这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。

二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。

同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。

这一发现,彻底改变了我们对原子的理解。

三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。

原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。

因此,原子的大部分体积是由原子核占据的。

四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。

它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。

这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。

五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。

然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。

让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。

这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。

二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。

同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。

这一发现,彻底改变了我们对原子的理解。

三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。

卢瑟福对原子模型的描述

卢瑟福对原子模型的描述

卢瑟福对原子模型的描述卢瑟福是20世纪早期最有影响力的物理学家之一,他对原子模型的描述在科学界产生了深远的影响。

在他的实验证据和理论推断的基础上,他提出了一种新的原子结构模型,称为“卢瑟福原子模型”。

卢瑟福的原子模型是在他进行金属薄膜散射实验时得出的。

他使用了一束粒子(通常是α粒子)照射到一块金属薄膜上,并观察到粒子的散射现象。

通过分析散射角度和能量损失,卢瑟福得出了以下结论:原子具有一个非常小而且带正电的核心,核心周围围绕着一些轻质的带负电子。

根据卢瑟福的实验结果,他提出了三个重要结论:1. 原子核:卢瑟福发现,大部分的α粒子通过金属薄膜时,基本上是直线运动,只有少数粒子会发生明显的散射。

他解释说,这种现象是因为α粒子与一个非常小而且带正电的原子核碰撞,这个原子核位于原子的中心。

这个核心带有正电荷,负责维持原子的稳定性。

2. 空间结构:卢瑟福的实验结果还表明,原子核的体积非常小,与整个原子相比几乎可以忽略不计。

而电子则分布在原子核周围的空间中,形成了一个电子云。

这个电子云是带有负电荷的,它们的数量与原子的正电荷相等,以保持整个原子的中性。

3. 质量与电荷:卢瑟福的实验还揭示了原子核与电子之间的质量和电荷差异。

他发现,原子核的质量远远大于电子,而且带有正电荷。

电子则质量较轻,带有负电荷。

这种正负电荷之间的平衡是维持原子稳定的重要因素。

基于这些实验证据和推断,卢瑟福提出了原子的结构模型:原子核位于原子的中心,带有正电荷,而电子则围绕着原子核运动,形成了一个电子云。

这个模型对于解释原子的稳定性和各种物理化学现象具有重要意义。

然而,卢瑟福的原子模型并不完美。

后来的实验和研究表明,电子不仅仅是围绕原子核运动的,它们还具有波粒二象性,可能存在于不同的位置。

量子力学的发展使得我们对原子结构的理解更加深入。

尽管如此,卢瑟福的原子模型仍然是现代原子理论的重要里程碑。

它为后来的科学家提供了思路和启示,推动了原子物理学和量子力学的发展。

原子的核结构卢瑟福模型

原子的核结构卢瑟福模型

原子的核结构卢瑟福模型卢瑟福模型,也被称为太阳系模型,是由英国物理学家欧内斯特·卢瑟福于1911年提出的,用以解释原子核结构的理论模型。

卢瑟福的模型对于理解原子的基本性质和物质的构成起到了重要的作用。

根据卢瑟福模型,原子由一个带正电的核和绕核运动的电子组成。

核带有正电荷,而电子带有负电荷。

电子在原子内部以不同的轨道运动,类似于行星绕着太阳运动的轨迹。

电子的轨道是稳定的,不会缩小或扩大。

卢瑟福模型的核心思想是,原子的正电荷集中在一个非常小且密集的核中,而电子位于核的周围。

而在此之前,人们普遍认为原子是一个均匀分布的正电荷球,电子以不同的方式分布在球的表面上。

卢瑟福的模型是通过所谓的金箔散射实验得到的。

在这个实验中,他们将一个α粒子束射向薄金属箔(主要是金箔),并观察被散射的粒子的轨迹。

意外的是,大部分粒子直接穿过金箔,但也有一小部分粒子发生了剧烈的偏转,甚至反向运动。

这个实验的结果无法被用传统的理论解释,因为传统的理论认为电子在原子中分布是均匀的,不会引起如此剧烈的偏转。

卢瑟福解释这个实验结果的关键是,金箔中存在着一个非常小而密集的正电荷核。

只有当α粒子的路径恰好足够接近核时,它们才会发生剧烈的偏转。

这意味着原子的大部分体积是空的,而正电荷集中在核内,类似于太阳系中的太阳与行星之间的关系。

根据卢瑟福模型,电子被吸引到核周围的力是库仑力,即正电荷和负电荷之间的电磁相互作用。

电子绕核的轨道不是任意的,而是定量的。

每个电子轨道对应于特定的能量级别,称为能级。

当电子从一个能级跃迁到另一个能级时,会吸收或释放特定频率的光子能量。

然而,卢瑟福模型也存在一些不足之处。

它无法准确描述原子内电子的运动轨迹和能级结构,特别是在涉及到更复杂的原子和分子时。

卢瑟福模型不能解释原子内部存在的亚原子粒子,如中子和质子,以及它们之间的相互作用。

因此,卢瑟福模型只是原子核结构的一个初步描述,但它对于当时对原子结构的理解是一个重大的突破。

原子核式结构模型卢瑟福

原子核式结构模型卢瑟福

原子核式结构模型卢瑟福渐变的观点卢瑟福(Ernest Rutherford)是20世纪初的一位著名的物理学家,他提出了原子的核式结构模型,这个模型极大地推动了原子结构的研究和理解。

他的理论被称为“卢瑟福散射实验”,这个实验改变了人们对原子的认识,证实了原子具有一个小而致密的原子核,并具有绕核运动的电子。

卢瑟福散射实验实验设备和方法在卢瑟福散射实验中,他使用了一个金箔作为靶材料,射入了一个具有高速α粒子(带有正电荷的氦离子)的射线。

他围绕金箔放置了一个环形的探测器,用来检测和记录被散射的α粒子。

实验结果与发现卢瑟福最初预期的结果是,大部分的α粒子会以一个小角度散射,因为他假设了原子是一个均匀分布正电荷的球体。

然而,他的实验结果却出人意料地展现了一些被称为“奇迹”的现象。

他观察到,大部分的α粒子通过金箔而不会被散射,但也有少部分的α粒子却以一个大角度进行散射。

这一发现完全颠覆了当时对于原子结构的理解。

结论的推导与理解卢瑟福根据观察到的实验现象,得出了一个非常重要的结论:原子具有一个中心的原子核,并且原子核是极小而且非常致密的。

由于大部分的α粒子几乎没有被散射或者只有很小的角度散射,可以推断出原子核非常小而且带有正电荷。

而那些以大角度散射的α粒子,则说明原子核中存在着高密度的正电荷。

原子核结构的探索与完善卢瑟福的贡献在原子结构的研究中具有里程碑的意义,然而,他的模型也有一些局限性。

后续的研究者们通过继续的实验和理论推导,进一步完善和描述了原子核的结构。

以下是一些重要的研究成果:卢瑟福-博尔模型结合了卢瑟福模型和当时的量子力学理论,诺尔斯·博尔(Niels Bohr)提出了博尔模型,描述了电子绕核运动的轨道和能级。

这个模型解决了电子为什么不会坠落到原子核的问题,并成功解释了氢原子的光谱线。

费米能级和壳层结构根据泡利不相容原理和别尔定律,恩里科·费米提出了质子和中子的排布在能级的规则,即费米-狄拉克分布。

高考物理知识点之原子结构与原子核

高考物理知识点之原子结构与原子核

高考物理知识点之原子结构与原子核考试要点基本概念一、原子模型1.J .J 汤姆生模型(枣糕模型)——1897年发现电子,认识到原子有复杂结构。

2.卢瑟福的核式结构模型(行星式模型)α粒子散射实验是用α粒子轰击金箔,结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。

这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出模型:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。

由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。

3.玻尔模型(引入量子理论) (1)玻尔的三条假设(量子化)①轨道量子化:原子只能处于不连续的可能轨道中,即原子的可能轨道是不连续的②能量量子化:一个轨道对应一个能级,轨道不连续,所以能量值也是不连续的,这些不连续的能量值叫做能级。

在这些能量状态是稳定的,并不向外界辐射能量,叫定态③原子可以从一个能级跃迁到另一个能级。

原子由高能级向低能级跃迁时,放出光子,在吸收一个光子或通过其他途径获得能量时,则由低能级向高能级12E E h -=γ(量子跃迁。

原子在两个能级间跃迁时辐射或吸收光子的能量化就是不连续性,n 叫量子数。

)(2)从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热α粒子散射实验卢瑟福玻尔结构α粒子氢原子的能级图n E /eV∞ 0 1 -13.62 -3.43 4 -0.853 E 1E 2E 3的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。

原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。

(如在基态,可以吸收E ≥13.6eV 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。

原子物理学第1章原子的位型卢瑟福原子模型

原子物理学第1章原子的位型卢瑟福原子模型
• 原子物理的研究的特点:
– 微观规律 – 普遍规律 – 原子物理课与量子力学课
原子物理学
• 教材
– Fujia Yang • Modern Atomic and Nuclear Physics
• 参考书
–杨福家 • 《原子物理学》
内容简介
• 第一章 原子的位型: 卢瑟福原子模型 • 第二章 原子的量子态: 玻尔模型 • 第三章 原子的精细结构: 电子自旋 • 第四章 多电子原子:泡利原理 • 第五章 X射线 • 第六章 原子核物理概论
vf
v;
vf
vi
2v sin 2
1-3-1 库仑散射公式的推导(6)
r 0d
0
(i
cos
j
sin )d
2 cos
2
i
sin
2
j cos
2
eu
1-3-1 库仑散射公式的推导(7)
v sin 1 Z1Z2e2 cos 1 Z1Z2e2 cos
2 40 L
2 40 mvb 2
L2 2mE
Z1Z2e2
4 0 E
rm ;
rm2 arm b2 0
a Z1Z2e2 ,
4 0 E
m2v02b2 b2
2m
1 2
mv02
1-4-2 原子核大小的估计(2)
• 求解 rm2 arm b2 0
rm a
a2 2
4b2
, rm
0
rm
a 2
a 2
1 4b2 a (1 a2 2
C ( )
d ( )
d
dN Nntd
1
4
0
Z1Z2e2 4E
2

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型核式结构模型最早由英国物理学家卢瑟福在1911年提出。

他的实验是在散射实验的基础上进行的,通过让高能α粒子正入射到金箔上观察散射的粒子轨迹,研究原子的内部结构。

核式结构模型的基本假设是原子由一个带正电荷的中心核和围绕核运动的电子组成。

核中包含质子和中子,质子带正电荷,中子不带电荷。

电子带负电荷,具有质量,绕核轨道运动。

根据核式结构模型,核中的质子和中子集中在原子的中心,形成原子核,质子和中子的数量决定了元素的原子序数和质量数。

围绕核的是电子云,电子云具有质量很小的特点,且电子数与质子数相等,以达到整个原子中的总正电荷等于总负电荷的平衡。

核式结构模型的主要特点有以下几点:1.原子核是原子的中心,质子和中子集中在这个中心,形成一个紧密结合的核。

质子带正电荷,中子不带电荷,所以核带正电荷。

原子核是非常小而密集的,但也是非常重要的,因为其中的质子和中子决定了元素的化学性质和质量数。

2.电子围绕着原子核,形成电子云。

电子云由负电荷的电子组成,它们被正电荷的核吸引,使得整个原子中的正电荷和负电荷保持平衡。

电子云的位置和运动状态是不确定的,只有在特定距离和特定能级上才能稳定地存在。

3.不同元素的原子核中质子和中子的数量不同,决定了元素的原子序数和质量数。

原子序数是指元素中的质子数,决定了其在元素周期表中的位置。

质量数是指一种元素中质子和中子的总数,决定了元素的相对原子质量。

核式结构模型的提出对后来的原子结构研究和理解有着重要的意义。

虽然核式结构模型无法解释电子云的具体结构和能级分布,也无法解释更微观的原子核内部结构和核反应的发生机制,但它奠定了原子结构领域的基础,并为后来量子力学的发展提供了重要的思路和依据。

总结起来,核式结构模型是描述原子内部结构的模型,认为原子由带正电荷的中心核和围绕核运动的电子组成。

质子和中子集中在核中,电子围绕着核形成电子云。

核式结构模型的提出为后来对原子结构的研究奠定了基础,也为量子力学的发展提供了启示。

卢瑟福提出的原子结构模型

卢瑟福提出的原子结构模型

卢瑟福提出的原子结构模型卢瑟福提出的原子结构模型是他在1911年提出的,被称为“卢瑟福模型”。

这个模型描述了原子具有非均匀分布的正负电荷,并提出了电子绕着原子核运动的概念。

卢瑟福模型的提出对于理解原子结构和原子核的性质具有重要的意义,为后来的量子力学理论做出了重要的贡献。

卢瑟福的原子结构模型基于他在实验室中的金属薄膜散射实验结果。

在这个实验中,卢瑟福用以铂制成的极薄金属箔作为靶材,将一束α粒子轰击到箔上。

他观察到,大部分α粒子直接穿过了金属箔而没有发生散射,但极少数的α粒子却被散射到了不同的方向。

这个实验结果对于传统的原子模型来说是不可解释的,因此卢瑟福提出了他自己的模型来解释这个现象。

卢瑟福的原子结构模型认为原子中有一个非常小而密集的正电荷核心,所有的质量集中在核心中,并且带有正电荷。

他还假设电子围绕核心运动,类似于行星围绕太阳运动。

这个模型从经典物理学的角度来看是可以理解的,因为电子在受到核心的引力作用下会保持稳定轨道。

根据卢瑟福的模型,散射现象可以解释为α粒子与核心的碰撞和散射。

穿透箔片的α粒子表示它们没有与核心发生任何碰撞,而被散射的α粒子则表示它们与核心发生了碰撞,改变了方向。

卢瑟福的模型可以解释为什么大部分的α粒子直接穿过箔片而没有发生散射,因为核心的大小和正电荷足够小,以至于大部分的α粒子没有与核心碰撞的机会。

然而,卢瑟福的原子结构模型也存在一些问题。

根据经典物理学和电磁学的原理,由于电子带负电荷,应该会受到核心的引力吸引而坠落到核心上,形成一个不稳定的结构。

此外,模型无法解释原子光谱的发现,即原子只能吸收或发射特定频率的光线,而不能吸收或发射其他频率的光线。

这些问题最终得到了量子力学的发展来解决。

量子力学描述了微观粒子的行为,允许电子存在于不同的能级中,而不是仅限于特定的轨道。

量子力学还提出了概率波函数的概念,以解释微观粒子的运动行为。

如今,量子力学已经成为理解原子和分子结构的基础,并对现代科学和技术做出了巨大的贡献。

原子物理学第1章 原子的位形:卢瑟福模型

原子物理学第1章 原子的位形:卢瑟福模型

在汤姆逊(Thomson)发现电子之后 对于原子中正 发现电子之后,对于原子中正 在汤姆逊 发现电子之后 负电荷的分布他提出了一个在当时看来较为合理的模 即原子中带正电部分均匀分布在原子体内,电子镶嵌 型.即原子中带正电部分均匀分布在原子体内 电子镶嵌 即原子中带正电部分均匀分布在原子体内 在其中,人们称之为"葡萄干面包模型 葡萄干面包模型".为了检验汤姆 在其中,人们称之为 葡萄干面包模型 为了检验汤姆 模型是否正确,卢瑟福 逊(Thomson)模型是否正确 卢瑟福 模型是否正确 卢瑟福(Rutherford)于 于 1911年设计了 粒子散射实验 实验中观察到大多数粒 年设计了α粒子散射实验 年设计了 粒子散射实验,实验中观察到大多数粒 子穿过金箔后发生约一度的偏转.但有少数 但有少数α粒子偏转 子穿过金箔后发生约一度的偏转 但有少数 粒子偏转 角度很大,超过 度以上,甚至达到 角度很大 超过90度以上 甚至达到180度.对于 粒子发 度 对于α粒子发 超过 度以上 甚至达到 对于 生大角度散射的事实,无法用汤姆逊 无法用汤姆逊(Thomoson)模型 生大角度散射的事实 无法用汤姆逊 模型 加以解释.除非原子中正电荷集中在很小的体积内时 除非原子中正电荷集中在很小的体积内时, 加以解释 除非原子中正电荷集中在很小的体积内时, 排斥力才会大到使α粒子发生大角度散射 在此基础上, 粒子发生大角度散射,在此基础上 排斥力才会大到使 粒子发生大角度散射 在此基础上 卢瑟福(Rutherford)提出了原子的核式模型 提出了原子的核式模型. 卢瑟福 提出了原子的核式模型
α粒子:放射性元素发射出的高速带 电粒子,其速度约为光速的十分之一, 带+2e的电荷,质量约为4Mpp。 散射:一个运动粒子受到另一个粒子 的作用而改变原来的运动方向的现象。 粒子受到散射时,它的出射方向与原 ( a) 侧视图 (b) 俯视图。R:放射源; 入射方向之间的夹角叫做散射角。

卢瑟福提出的原子核式结构模型

卢瑟福提出的原子核式结构模型

卢瑟福提出的原子核式结构模型路得福提出的原子核模型又被称为“路得福球模型”,他建议原子核内部由紧凑的、正电荷很强的小电荷球,即质子构成。

该模型的构思来自对氢原子的研究:氢原子由单个质子和一个反电荷电子构成,它们之间有一种电场力与引力,质子之间也会有引力,但是比氢原子的引力小得多。

因此,可以假设,原子核也包含着质子,这些质子紧凑地围成一个球,电荷量正好相等,从而原子核得到了稳定。

在这个模型中,对原子核电荷与质点的关系有明确的定义:一个原子核中质点(质子)的数量正比于该原子核中电荷的数量,从而,原子核的电荷量就是质点的总数。

路得福球模型解释了大多数原子核的结构,特别是大量氢核的组成原理,但这也是一个完全有理想化的模型,并没有考虑到实际中可能存在的其他因素。

电场分布并不均匀,而一定存在一些电子在原子核中被磁场影响,这些因素都 undesrial 前半句路得福提出的原子核模型又被称为“路得福球模型”,他建议原子核内部由紧凑的、正电荷很强的小电荷球,即质子构成。

该模型的构思来自对氢原子的研究:氢原子由单个质子和一个反电荷电子构成,它们之间有一种电场力与引力,质子之间也会有引力,但是比氢原子的引力小得多。

因此,可以假设,原子核也包含着质子,这些质子紧凑地围成一个球,电荷量正好相等,从而原子核得到了稳定。

此外,该模型还解释了原子核的衰变及其产生的自由中子的原理:由于质子之间的库仑力依和相互作用,有时会形成真空洞,使质子能够从原子核中跃然而出,而另一个自由的中子又可以填补真空洞,使原子核的质点总数保持不变。

路得福球模型的这种解释,极大地为原子核衰变和中子的产生提供了理论基础和技术上的指导。

路得福球模型对20世纪初重要的原子核模型提出了重大贡献,并奠定了今天原子核物理研究。

卢瑟福原子核式结构

卢瑟福原子核式结构

卢瑟福原子核式结构
卢瑟福原子核式结构是一个描述原子核内部结构的模型,由新西兰
物理学家欧内斯特·卢瑟福于1911年提出。

该模型的核心观点是原子核是由一个紧密结构的、带正电的核心(核子)和外围带负电的电子云
组成,并且电子云围绕着核心旋转。

卢瑟福原子核式结构理论的提出,是建立在实验结果基础之上的。


过一系列的α 射线散射实验,卢瑟福发现了几个规律:
1.大部分α 射线直接穿过了金属箔并且几乎没有被改变方向;
2.一小部分α射线发生了散射,但散射角度非常小;
3.只有极少一部分α射线散射角度很大,甚至180°,这被称为反散射。

基于这些实验结果,卢瑟福提出了核式结构模型,具体来说,以下是
卢瑟福原子核式结构的主要组成部分:
1.核心
核心是一个非常小、密集、带正电的物体,由质子和中子组成,相对
于整个原子的体积可以忽略不计。

核心的带正电性质决定了它会吸引
电子云。

2.电子云
电子云是一个带负电的云状区域,由电子组成,其外层电子呈现大致球形的排列。

它稳定地位于核心周围,并且不停地围绕核心移动。

3.空间和能量
核子和电子之间相互作用的力是电磁力。

在原子内部,这些力会作用在非常小的距离上,因此它们的作用不仅涉及到空间因素,同时也与灵敏的能量平衡密切相关。

通过卢瑟福原子核式结构理论,我们可以更好地解释电子在原子内部的运动状态,以及中子和质子在原子核内部的组成。

该理论对于我们更好地理解物质的本质和性质都具有重要的启示作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章原子得核结构与卢瑟福模型
1、1原子得质量与大小
1.原子得质量
自然界中一百多种元素得原子,其质量各不相同、将其中最丰富得12C原子得质量定为12个单位,记为12u,u为原子质量单位、
A就是原子量,代表一摩尔原子以千克为单位得质量数、就是阿伏伽德罗常数-- 一摩尔物质中得原子数目、
2、原子得大小
将原子瞧作就是球体,其体积为, 一摩尔原子占体积为:
就是原子质量密度、
原子得半径为:
例如Li(锂)原子A=7,=0、7,rLi=0、16nm;
Pb(铅)原子A=207, =11、34,r Pb=0、19nm;
3.原子得组成
1897年汤姆逊从放电管中得阴极射线发现了带负电得电子,并测得了e/m比、1910年密立根用油滴实验发现了电子得电量值为e=1、602×10-19(c) 从而电子质量就是:
1、2 原子核式结构模型
1.汤姆逊原子模型
1903年英国科学家汤姆逊提出“葡萄干蛋糕"式原子模型或称为“西瓜”模型、
2。

α粒子散射实验
实验装置与模拟实验
● R:放射源 F:散射箔 ● S :闪烁屏 B :圆形金属匣 ● A:代刻度圆盘 C:光滑套轴 ● T :抽空B得管 M :显微镜
( a ) 侧视图 ( b ) 俯视图
结果
● 大多数散射角很小,约1/8000散射大于90°; ● 极个别得散射角等于180°、 汤姆逊模型得困难
近似1:粒子散射受电子得影响忽略不计,只须考虑原子中带正电而质量大得部分对粒子得影响、
近似2:只受库仑力得作用、 当r >R时,粒子受得库仑斥力为: 当r <R 时,粒子受得库仑斥力为: 当r=R 时,粒子受得库仑斥力最大:
卢瑟福等人用质量为4、0034 u得高速α粒子(带+2e电量)撞击原子, 探测原子结构、按照“西瓜”模型,原子只对掠过边界(R)得α粒子有较大得偏转、
例如, EK =5、0 M eV , Z(金)=79 ,θ max<10-3弧度≈0、057o 、要发生大于90o 得散射,需要与原子核多次碰撞,其几率为10-3500!但实验测得大角度散射得
几率为1/8000 ,为此,卢瑟福提出了原子核型结构模型、 )
MeV (10
3)
MeV (nm 1.0MeV fm 44.12v 21/2v 2425
2
02m ax 2
02K K E Z E Z m R Ze p p R
R Ze t F p -⨯=⋅⨯==∆==∆=∆πεθπε
3、原子核式结构模型—卢瑟福模型
原子序数为Z得原子得中心,有一个带正电荷得核(原子核),它带正电量Ze,它得体积极小但质量很大,几乎等于整个原子得质量,正常情况下核外有Z个电子围绕它运动、
4、核库仑散射角公式
动能为EK得α粒子从无穷远以瞄准距离b射向原子核;在核库仑力作用下,偏离入射方向飞向无穷远,出射与入射方向夹角θ称散射角、这个过程称为库仑散射、
假设:
(1)将卢瑟福散射瞧作就是α粒子与原子核两个点电荷在库仑力作用下得两体碰撞、忽略原子中得电子得影响、
(2)在原子核质量M>>m(α粒子质量)时,可视为核不动,于就是问题化为单质点m在有心库仑斥力作用下得运动问题、
首先,我们关心从无限远来得α粒子(初态)经库仑力作用后又飞向无穷远得运动状
态(末态)、由机械能守恒因而始末二态动量守恒、对任意位置有:
称库仑散射公式、
上式给出了b与q得对应关系、b小, θ大;b大,θ小、要得到大角散射,正电荷必须集中在很小得范围内,α粒子必须在离正电荷很近处通过、
5、卢瑟福散射公式及实验验证
(1)卢瑟福散射公式得推导:由库仑散射公式可得
可见那些瞄准距离在b到b—db之间得α粒子,经散射必定向θ到θ+dθ之间得角度出射:
将dθ用空心圆锥体得立体角dΩ来代替
公式得物理意义:被每个原子散射到θ~q+dθ之间得空心立体角dW内得α粒子,必定打在b~b+db之间得dσ这个环形带上、
所以ds代表a粒子被每个原子核散射到θ~θ+dθ之间那么一个立体角dΩ内得几率得大小,称为原子核得有效散射截面,又称为散射几率、现在得问题就是粒子入射到这样一个环中得几率就是多大呢?
设靶得面积为A,厚度为t,并设靶很薄,以致靶中得原子对射来得粒子前后互不遮蔽,从而α粒子打到这样一个环上得几率为:
也即α粒子被一个原子核散射到θ~θ+dq之间得空心立体角dW内得几率、实验情况就是N个α粒子打在厚度为t得薄箔上,若单位体积内有n个原子核,那么体积At内共有nAt 个原子核对入射α粒子产生散射,也即有nAt个环、假定各个核对α粒子得散射就是独立事件,α粒子打到这样得环上得散射角都就是θ~θ+dθ,α粒子散射在内得总几率应为
设靶得面积为A,厚度为t,并设靶很薄,以致靶中得原子对射来得粒子前后互不遮蔽,从而a粒子打到这样一个环上得几率为
也即α粒子被一个原子核散射到θ~θ+dθ之间得空心立体角dW内得几率、实验情况就是N个α粒子打在厚度为t 得薄箔上,若单位体积内有n个原子核,那么体积At内共有nAt 个原子核对入射α粒子产生散射,也即有nAt个环、假定各个核对a粒子得散射就是独立事件,α粒子打到这样得环上得散射角都就是q~θ+dθ,α粒子散射在内得总几率应为
另一方面,设有N个a粒子入射到靶上,在θ~θ+dθ方向上测量到得散射α粒子数为dN,所以α粒子被散射到dW内得总几率又可表示为dN/N,从而有
该式称卢瑟福散射公式
说明:实际测量就是在一个有限小窗口(ds ‘)张得立体角dΩ'=ds‘/r2内测量散射
得粒子数dN ’、由于散射公式只与θ有关,在同一个θ位置上有dN‘/dΩ’ =dN/dΩ,所以上公式可用于小窗口探测、
(2)卢瑟福散射公式得实验验证
●对同一放射源(EK同),同一靶体(Z,t同)
●对同一放射源,同一靶材但厚度t不同,在θ方向接收得
●不同放射源( EK不同),同一靶体,在θ方向测得
●对同一放射源;不同靶材(Z不同)但nt同,在方θ向测得
盖革与马斯顿按上述结论作了一系列实验,结果与理论符合很好,从而确立了原子核型结构模型、
6。

原子核半径得估算
能量守恒定律
角动量守恒定律
由上两式及库仑散射公式可得
rm=3×10-14m(金)
rm=1、2 ×10-14 m(铜)
10-14 m~10—15 m
7、原子得大小核式结构—原子由原子核及核外电子组成原子得半径- 10—10 m(0、1nm)
(1)原子核半径-10-14 ~10—15 m2
(2)电子半径-10-18 m原子质量得数量级:10-27kg—-10—25kg
8、α粒子散射实验得意义及卢瑟福模型得困难
(1)意义:
1)通过实验解决了原子中正、负电荷得排布问题,建立了一个与实验相符得原子结构模型,使人们认识到原子中得正电荷集中在核上,提出了以核为中心得概念,从而将原子分为核外与核内两部分,并且认识到高密度得原子核得存在,在原子物理学中起了重要作用、2)α粒子散射实验为人类开辟了一条研究微观粒子结构得新途径,以散射为手段来探测,获得微观粒子内部信息得方法,为近代物理实验奠定了基础,对近代物理有着巨大得影
响、
3) 粒子散射实验还为材料分析提供了一种手段、
(2)困难
1)原子稳定性问题
2)原子线状光谱问题
根据经典电磁理论,电子绕核作匀速圆周运动,作加速运动得电子将不断向外辐射电磁波,原子不断地向外辐射能量,能量逐渐减小,电子绕核旋转得频率也逐渐改变,发射光谱应就是连续谱;由于原子总能量减小,电子将逐渐得接近原子核而后相遇,原子不稳定、。

相关文档
最新文档