2017年贵州省黔东南州中考数学一模试卷带答案解析
2017年贵州省黔东南州中考数学试卷
2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(4分)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°3.(4分)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.(4分)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱5.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.46.(4分)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.(4分)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.(4分)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°9.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.(4分)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.(4分)在实数范围内因式分解:x5﹣4x=.14.(4分)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.(4分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.(4分)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.18.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(12分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=,n=,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.(12分)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B 两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.(12分)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.(12分)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.(14分)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•黔东南州)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.【点评】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•黔东南州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3.(4分)(2017•黔东南州)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(4分)(2017•黔东南州)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.【点评】考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.5.(4分)(2017•黔东南州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2CE=2,故选A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.6.(4分)(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.7.(4分)(2017•黔东南州)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(4分)(2017•黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.解法二:连接BF.易知∠FCB=15°,∠DOC=∠OBC+∠FCB=45°+15°=60°【点评】本题考查正方形的性质、全等三角形的判定和性质、圆等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助圆解决问题,属于中考选择题中的压轴题.9.(4分)(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),要熟练掌握以下几点:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;③常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);④抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(4分)(2017•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选D.【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•黔东南州)在平面直角坐标系中有一点A(﹣2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)【点评】本题考查坐标平移规律,解题的关键是根据题意进行坐标变换即可,本题属于基础题型.12.(4分)(2017•黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.13.(4分)(2017•黔东南州)在实数范围内因式分解:x5﹣4x=x(x2+2)(x+)(x﹣).【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+2)(x+)(x﹣).【点评】本题考查了在实数范围内分解因式,注意把2写成的形式继续分解因式,分解因式一定要彻底.14.(4分)(2017•黔东南州)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,利用频率估计出所求问题的答案.15.(4分)(2017•黔东南州)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.【点评】本题考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.(4分)(2017•黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB 垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣31009).【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•ta n60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣)即(0,﹣31009),故答案为:(0,﹣31009).【点评】本题考查规律型:点的坐标,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本大题共8小题,共86分)17.(8分)(2017•黔东南州)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1+()+1﹣=3【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(8分)(2017•黔东南州)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2017•黔东南州)解不等式组,并把解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.(12分)(2017•黔东南州)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:==.所以P(两学生来自同一所班级)【点评】本题考查列表法和树状图法、频率分布表、频率分布直方图等知识,解题的关键是理解题意,学会画树状图解决问题,属于中考常考题型.21.(12分)(2017•黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO 与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣•12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.22.(12分)(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2017•黔东南州)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,再构建一次函数,利用一次函数的性质即可解决问题;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵完成该工程甲队工作m天,乙队工作n天,∴+=1,∴n=24﹣2m,∴w=3000m+1400(24﹣2m)=200m+33600,∵200>0,∴m=6时,此时费用最小,∴w的最小值为200×6+33600=34800元.【点评】本题考查一次函数的应用、分式方程组的应用等知识,解题的关键是学会设未知数,构建方程解决问题,属于中考常考题型.24.(14分)(2017•黔东南州)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x 的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用待定系数法求二次函数的解析式、二次函数的性质、锐角三角函数的定义,列出PF与x的函数关系式是解题的关键.。
2017年贵州省黔南州中考数学试卷(含答案解析)
2017年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2017年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2017•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2017•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2017•黔南州)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2017•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2017•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2017•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2017•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2017•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2017•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2017•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2017•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2017•黔南州)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2017•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2017•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2017•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2017•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。
贵州省黔南州2017年中考数学试题(含解析)
2017年贵州黔南中考数学试题(本试卷满分150分,考试时间120分钟)一、单项选择题(每小题4分,共13题,满分52分)1.计算﹣(﹣5)等于【 】A .5B .﹣5C .15 D .﹣15【答案】A 。
解析:本题考查的是实数的符号的化简。
2.下列多项式中,能用公式法分解因式的是【 】A .2x xy -B .2x +xyC .22x y -D .22x +y【答案】C 。
解析:本题考查的是多项式分解因式中公式法的应用。
3.把不等式x+24>的解表示在数轴上,正确的是【 】 A . B .C .D .【答案】B 。
解析:本题考查的是不等式的解法、用数轴表示不等式的解集。
4.如图,直线AB 对应的函数表达式是【 】A .3y=x+32-B .3y=x+32C .2y=x+33-D .2y=x+33【答案】 A 。
解析:本题考查的是待定系数法求一次函数解析式。
5.下列运算正确的是【 】A .()222a+b =a +b B .426a a =a ⋅ C .623a a =a ÷ D .2a+3b=5ab【答案】B 。
解析:本题考查的是同底数幂的乘法及除法计算、多项式中完全平方公式、多项式中合并同类项。
6.如图,已知直线AB ∥CD ,BE 平分∠ABC ,交CD 于D ,∠CDE =1500,则∠C 的度数是【 】A .1500B .1300C .1200D .1000【答案】C 。
解析:本题考查的是平行线的性质定理、角平分线的性质。
7.如图,将正方体的平面展开图重新折成正方体后,“祝”字对面的字是【 】A .中B .考C .成D .功【答案】C 。
解析:本题考查的是正方体的展开图。
8.已知抛物线2y=x x 1--与x 轴的交点为(m ,0),则代数式2m m+2011-的值为【】 A .2009 B .2017 C .2017 D .2017【答案】B 。
解析:本题考查的是二次函数点的坐标的计算。
2017年贵州省黔东南州中考数学真题+详细解析
2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【考点】AB:根与系数的关系.【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.7.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D 使得△ABC≌△DEF【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.13.在实数范围内因式分解:x5﹣4x=x(x2+3)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+)(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k 的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,=OB•tan60°==()2=3,OB=OA•tan60°=1×=,OBOB 2=OB1•tan60°=()3,…的坐标为(0,﹣),∵2017÷4=506…1,∴点B故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.(2)观察表格可知中位数在 161≤x <164内,故答案为 161≤x <164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P (两学生来自同一所班级)==.21.如图,已知直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点.(1)求证:PT 2=PA•PB ;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC :切线的性质;MO :扇形面积的计算.【分析】(1)连接OT ,只要证明△PTA ∽△PBT ,可得=,由此即可解决问题;(2)首先证明△AOT 是等边三角形,根据S 阴=S 扇形OA T ﹣S △AOT 计算即可;【解答】(1)证明:连接OT.∵PT 是⊙O 的切线,∴PT ⊥OT ,∴∠PTO=90°,∴∠PTA +∠OTA=90°,∵AB 是直径,∴∠ATB=90°,∴∠TAB +∠B=90°,∵OT=OA ,∴∠OAT=∠OTA ,∴∠PTA=∠B ,∵∠P=∠P ,∴△PTA ∽△PBT ,∴=,∴PT 2=PA•PB .(2)∵TP=TB=,∴∠P=∠B=∠PTA ,∵∠TAB=∠P +∠PTA ,∴∠TAB=2∠B ,∵∠TAB +∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 是等边三角形,∴S 阴=S 扇形OA T ﹣S △AOT =﹣•12=﹣.22.如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE ⊥AC 于点E ,作D′E′⊥AC 于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【考点】FH:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(-1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(-4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:-9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.。
中考复习【数学】2017年贵州黔东南州中考真题(解析版)
23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、 乙两个工程队.若两队合作,8 天就可以完成该项工程;若由甲队先单独做 3 天后,剩余部 分由乙队单独做需要 18 天才能完成. (1)求甲、乙两队工作效率分别是多少? (2)甲队每天工资 3000 元,乙队每天工资 1400 元,学校要求在 12 天内将学生公寓楼装修 完成,若完成该工程甲队工作 m 天,乙队工作 n 天,求学校需支付的总工资 w(元)与甲 队工作天数 m(天)的函数关系式,并求出 m 的取值范围及 w 的最小值.
考点:点的坐标. 三、解答题(本大题共 8 小题,共 86 分)
17.【答案】2+ 2
【解析】 试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代 数意义化简,计算即可得到结果.
试题解析:原式=1+( 3 2 )+1﹣ 3 +2 2 =2+ 2
考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
1 B.﹣1 C.- 2 D.﹣2
3 7.分式方程 x(x
1)
1
x
3
的根为(
1
)
A.﹣1 或 3 B.﹣1 C.3 D.1 或﹣3 8.如图,正方形 ABCD 中,E 为 AB 中点,FE⊥AB,AF=2AE,FC 交 BD 于 O,则∠DOC 的度数为( )
A.60° B.67.5° C.75° D.54° 9.如图,抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=﹣1,给出下列结论: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有( )
2017年贵州省黔东南州中考数学试卷
中考数学复习资料(真题)2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(4分)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°3.(4分)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.(4分)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱5.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.46.(4分)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.(4分)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.(4分)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°9.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.(4分)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.(4分)在实数范围内因式分解:x5﹣4x=.14.(4分)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.(4分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.(4分)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.18.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(12分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=,n=,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.(12分)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B 两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.(12分)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.(12分)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.(14分)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•黔东南州)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.【点评】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•黔东南州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3.(4分)(2017•黔东南州)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(4分)(2017•黔东南州)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.【点评】考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.5.(4分)(2017•黔东南州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2CE=2,故选A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.6.(4分)(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.7.(4分)(2017•黔东南州)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(4分)(2017•黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.解法二:连接BF.易知∠FCB=15°,∠DOC=∠OBC+∠FCB=45°+15°=60°【点评】本题考查正方形的性质、全等三角形的判定和性质、圆等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助圆解决问题,属于中考选择题中的压轴题.9.(4分)(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),要熟练掌握以下几点:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;③常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);④抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(4分)(2017•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选D.【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•黔东南州)在平面直角坐标系中有一点A(﹣2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)【点评】本题考查坐标平移规律,解题的关键是根据题意进行坐标变换即可,本题属于基础题型.12.(4分)(2017•黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.13.(4分)(2017•黔东南州)在实数范围内因式分解:x5﹣4x=x(x2+2)(x+)(x﹣).【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+2)(x+)(x﹣).【点评】本题考查了在实数范围内分解因式,注意把2写成的形式继续分解因式,分解因式一定要彻底.14.(4分)(2017•黔东南州)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,利用频率估计出所求问题的答案.15.(4分)(2017•黔东南州)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.【点评】本题考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.(4分)(2017•黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB 垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣31009).【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•tan60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣)即(0,﹣31009),故答案为:(0,﹣31009).【点评】本题考查规律型:点的坐标,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本大题共8小题,共86分)17.(8分)(2017•黔东南州)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1+()+1﹣=3【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(8分)(2017•黔东南州)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2017•黔东南州)解不等式组,并把解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.(12分)(2017•黔东南州)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:==.所以P(两学生来自同一所班级)【点评】本题考查列表法和树状图法、频率分布表、频率分布直方图等知识,解题的关键是理解题意,学会画树状图解决问题,属于中考常考题型.21.(12分)(2017•黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO 与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣•12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.22.(12分)(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2017•黔东南州)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,再构建一次函数,利用一次函数的性质即可解决问题;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵完成该工程甲队工作m天,乙队工作n天,∴+=1,∴n=24﹣2m,∴w=3000m+1400(24﹣2m)=200m+33600,∵200>0,∴m=6时,此时费用最小,∴w的最小值为200×6+33600=34800元.【点评】本题考查一次函数的应用、分式方程组的应用等知识,解题的关键是学会设未知数,构建方程解决问题,属于中考常考题型.24.(14分)(2017•黔东南州)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x 的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用待定系数法求二次函数的解析式、二次函数的性质、锐角三角函数的定义,列出PF与x的函数关系式是解题的关键.。
黔东南州初中考试数学试卷答案解析.doc
2017年黔东南州中考数学试卷答案解析2017年黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是( )A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2 0,|﹣2|=2.故选B.2.如图, ACD=120,B=20 ,则A的度数是( ) A.120 B.90 C.100 D.30【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:A=ACD﹣B=120﹣20=100,故选:C.3.下列运算结果正确的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.6ab2 (﹣2ab)=﹣3b D.a(a+b)=a2+b【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是( )A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,此几何体为柱体,∵主视图是一个三角形,此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E, A=15 ,半径为2,则弦CD的长为( )A.2 B.﹣1C. D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,CEO=90 ,根据圆周角定理得到COE=30 ,根据直角三角形的性质得到CE= OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,CE=DE,CEO=90 ,∵A=15,COE=30 ,∵OC=2,CE= OC=1,CD=2OE=2,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+ 的值为()A.2 B.﹣1 C. D.﹣2【考点】AB:根与系数的关系.【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+ = ,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+= = =﹣2.故选D.7.分式方程=1﹣的根为( )A.﹣1或3B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD中,E为AB中点,FEAB,AF=2AE,FC 交BD于O,则DOC的度数为( )A.60B.67.5C.75D.54【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明FDB= FAB=30,再证明△FAD≌△FBC,推出ADF=FCB=15,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FEAB,AE=EB,FA=FB,∵AF=2AE,AF=AB=FB,△AFB是等边三角形,∵AF=AD=AB,点A是△DBF的外接圆的圆心,FDB=FAB=30,∵四边形ABCD是正方形,AD=BC,DAB=ABC=90 ,ADB=DBC=45 ,FAD= FBC,△FAD≌△FBC,ADF= FCB=15,DOC=OBC+ OCB=60.故选A.9.如图,抛物线y=ax2+bx+c(a 0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc ③a ④4a﹣2b+c 0,其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a 0,由抛物线对称轴位置确定b 0,由抛物线与y轴交点位置得到c 0,则可作判断;③利用x=﹣1时a﹣b+c0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,△=b2﹣4ac0,所以①错误;②∵抛物线开口向上,a0,∵抛物线的对称轴在y轴的右侧,a、b同号,b 0,∵抛物线与y轴交点在x轴上方,c0,abc0,所以②正确;③∵x=﹣1时,y 0,即a﹣b+c 0,∵对称轴为直线x=﹣1,﹣=﹣1,b=2a,a﹣2a+c 0,即ac,所以③正确;④∵抛物线的对称轴为直线x=﹣1,x=﹣2和x=0时的函数值相等,即x=﹣2时,y0,4a﹣2b+c 0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为杨辉三角.根据杨辉三角请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+ +(n﹣2)+(n﹣1),(a+b)20第三项系数为1+2+3++20=190,故选D.2017年黔东南州中考数学试卷二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1) .【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件A= D使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加A=D.理由如下:∵FB=CE,BC=EF.又∵AC∥DF,ACB=DFE.在△ABC与△DEF中,,△ABC≌△DEF(AAS).故答案是: A= D.13.在实数范围内因式分解:x5﹣4x=x(x2+3)(x+ )(x ﹣) .【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+ )(x﹣).14.黔东南下司蓝每谷以盛产优质蓝莓而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中优质蓝莓出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的优质蓝莓产量约是560kg.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的优质蓝莓产量.【解答】解:由题意可得,该果农今年的优质蓝莓产量约是:800 0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,ab=﹣2;∵B点在反比例函数y2= 的图象上,k=2a2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A 的坐标为(0,1),ABO=30第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3; 按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OAtan60=1=,OB1=OB tan60 ==( )2=3,OB2=OB1 tan60 =()3,∵2017 4=506 1,点B2017的坐标为(0,﹣),故答案为:(0,﹣).2017年黔东南州中考数学试卷三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+| ﹣|+( ﹣3.14)0﹣tan60+ .【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+( )+1﹣=218.先化简,再求值:(x﹣1﹣),其中x=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式= ==x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x﹣2,即x 1,由②得:4x﹣25x+5,即x﹣7,所以﹣7在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152x155 3 0.06155 x 1587 0.14158x161m 0.28161 x 164 13 n164x 1679 0.18167 x17030.06170x173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m= 14,n= 0.26 ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在: 161x164 范围内;(3)在身高167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,m=50 0.28=14,n= =0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161x 164内,故答案为161 x164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)= = .21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PAPB;(2)若PT=TB= ,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S △AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,PT OT,PTO=90,PTA+ OTA=90 ,∵AB是直径,ATB=90,TAB+B=90 ,∵OT=OA,OAT= OTA,PTA= B,∵P= P,△PTA∽△PBT,= ,PT2=PA PB.(2)∵TP=TB= ,P= B= PTA,∵TAB= P+ PTA,TAB=2 B,∵TAB+B=90 ,TAB=60 ,B=30 ,tanB= =,AT=1,∵OA=OT, TAO=60 ,△AOT是等边三角形,S阴=S扇形OAT﹣S△AOT=﹣12=﹣.22.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角为60,根据有关部门的规定,39 时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin390.63,cos39 0.78,tan39 0.81,1.41,1.73,2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D移到D的位置时,恰好=39 ,过点D作DE AC于点E,作D E AC于点E ,根据锐角三角函数的定义求出DE、CE、CE 的长,进而可得出结论.【解答】解:假设点D移到D 的位置时,恰好=39 ,过点D 作DE AC于点E,作D E AC于点E,∵CD=12米, DCE=60,DE=CD sin60 =12 =6 米,CE=CD cos60=12=6米.∵DEAC,DE AC,DD ∥CE,四边形DEED 是矩形,DE=D E =6 米.∵D CE =39,CE= 12.8,EE=CE﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m (天)的函数关系式,并求出m的取值范围及w的最小值.【考点】FH:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+ =1,解得x=6.由此可得m的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y 天.由题意,解得,经检验是分式方程组的解,甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+ =1,解得x=6.甲工作6天,∵甲12天完成任务,6 m 12.∵乙队每天的费用小于甲队每天的费用,让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,w的最小值为121400+63000=34800元.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y 轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C (﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF ∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M 的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG AD,垂足为G.先求得点A和点B 的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明MAG=ABD,故此可证明AM AB;(3))先证明FPE=FBD.则PF:PE:EF= :2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+ ),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M 的坐标代入得:﹣9a=2,解得:a=﹣.抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG AD,垂足为G.把x=0代入y=﹣x+4得:y=4,A(0,4).将y=0代入得:0=﹣x+4,解得x=8,B(8,0).OA=4,OB=8.∵M(﹣1,2),A(0,4),MG=1,AG=2.tan MAG=tan ABO=.MAG=ABO.∵OAB+ ABO=90,MAG+OAB=90,即MAB=90 .l是⊙M的切线.(3)∵PFE+FPE=90 ,FBD+PFE=90 ,FPE=FBD.tanFPE= .PF:PE:EF=:2:1.△PEF的面积= PEEF=PF PF= PF2.当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+ ),则F(x,﹣x+4).PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+ x2+ x﹣= x2﹣x+= (x﹣)2+ .当x=时,PF有最小值,PF的最小值为.P(,).△PEF的面积的最小值为=( )2= .:1.2017年地理中考试题及参考答案2.2017中考地理真题及答案3.2017中考地理试题及答案4.2017年地理中考测试题及答案5.2017中考地理试题及答案黔东南州中考数学试卷真题黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是( )A.﹣2 B.2 C.﹣D.2.如图, ACD=120,B=20 ,则A的度数是( )A.120 B.90 C.100 D.303.下列运算结果正确的是( )A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.6ab2(﹣2ab)=﹣3bD.a(a+b)=a2+b4.如图所示,所给的三视图表示的几何体是( )A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱5.如图,⊙O的直径AB垂直于弦CD,垂足为E, A=15,半径为2,则弦CD的长为()A.2B.﹣1 C. D.46.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为( )A.2 B.﹣1 C. D.﹣27.分式方程=1﹣的根为()A.﹣1或3 B.﹣1C.3 D.1或﹣38.如图,正方形ABCD中,E为AB中点,FEAB,AF=2AE,FC交BD于O,则DOC的度数为( )A.60B.67.5 C.75 D.549.如图,抛物线y=ax2+bx+c(a 0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc③a ④4a﹣2b+c0,其中正确的个数有( )A.1个B.2个C.3个D.4个10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为杨辉三角.根据杨辉三角请计算(a+b)20的展开式中第三项的系数为( )A.2017 B.2016C.191D.190黔东南州中考数学试卷二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.如图,点B、F、C、E在一条直线上,已知FB=CE,A C∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.在实数范围内因式分解:x5﹣4x=.14.黔东南下司蓝每谷以盛产优质蓝莓而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中优质蓝莓出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的优质蓝莓产量约是kg.15.如图,已知点A,B分别在反比例函数y1=﹣和y2= 的图象上,若点A是线段OB的中点,则k的值为.16.把多块大小不同的30直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1), ABO=30第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;按此规律继续下去,则点B2017的坐标为.黔东南州中考数学试卷三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+| ﹣|+( ﹣3.14)0﹣tan60 +.18.先化简,再求值:(x﹣1﹣),其中x= +1.19.解不等式组,并把解集在数轴上表示出来.20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152x155 3 0.06155 x158 70.14158 x 161m0.28161 x 164 13 n164 x16790.18167x 170 3 0.06170 x 173 10.02根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在: 范围内;(3)在身高167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O 相交于A,B两点.(1)求证:PT2=PAPB;(2)若PT=TB=,求图中阴影部分的面积.22.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角为60,根据有关部门的规定,39 时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin390.63,cos39 0.78,tan390.81,1.41,1.73, 2.24)23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m 天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF 的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.1.初三一模数学试卷分析2.中考地理历年真题带答案3.中考历史试卷真题及答案4.2017年中考数学考前模拟试卷与答案5.2018年贵州省中考物理试卷真题。
2017年贵州省黔南州中考数学模拟真题
2017年贵州省黔南州中考数学模拟试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中是无理数的是A. B. C. D.2. 下列各图中,∠1大于∠2的是3. 如图,数轴的单位长度为1,如果点A、B表示的数的绝对值相等,那么点A表示的数是A.-4 B .-2 C.0 D.404. 已知一组数据10,8,9,x,5的众数是 8,那么这组数据的方差是A. 2.8B.C.2D.55. 把多项式x3—2x2+x分解因式,正确的是A.(x-1) 2B.x (x-1) 2C.x( x2-2x+1)D.x (x+1) 26. 化简分式的结果是A.2B.C.D.-27. 下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3;③|-5|的算术平方根是5;④点P(1,-2)在第四象限,其中正确的个数是A. 0B.1C.2D.38. 用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为A. 2πcmB. 1.5cmC. πcmD. 1cm9. 如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为A.30°B.45°C.60°D.75°10. 如图,点A、B、C、D的坐标分别是(1,7 )、(1,1)、(4,1)、(6,1),以C、D、E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0)B.(6,3)C.(6,5)D.(4,2)11. A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是A.a>0B.a<0C.b=0D.ab<012. 如图1所示,将一张半径为1的圆形纸片对折两次后,折痕的交点为O;如图2所示,再次折叠圆形纸片,使一段劣弧恰好经过点O,折痕为AB,则线段AB的长度为A. B. C. 1 D. 213. 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线相交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为A.2B.4C. 4D.814. 如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有A.4种B.5种C.6种D.7种15. 如图所示,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是A. -4C. -2第Ⅱ卷(非选择题共75分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔在试卷上作答.2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.得分评卷人二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)16. =____________.17. 地球绕太阳公转速度约110000000米/时,用科学记数法可表示为米/时.18. =_____________.19. 一个正方形和两个等边三角形的位置如图所示,若∠3 = 50°,则∠1+∠2 =_______度.20. 如图,⊙O是四边形ABCD的内切圆, E、F、G、H是切点,点P是优弧EFH上异于E、H的点.若∠A=50°,则∠EPH= 度.21. 如图所示,四边形ABCO是等腰梯形,OA∥BC,∠COA=60°,点O为平面直角坐标系的原点,点A的坐标为(4,0),B、C在第一象限,则直线AB的函数表达式为_____________.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)得分评卷人22(1)(本小题满分3分)解不等式组:得分评卷人22(2) (本小题满分4分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球多少个?得分评卷人23(1) (本小题满分3分)如图,与关于O点中心对称,点E、F在线段上,且 .求证: .得分评卷人23(2) (本小题满分4分)如图2,菱形ABCD的边长为1,∠D=120°.求对角线AC的长 .得分评卷人24. (本小题满分8分)儿童节期间,文具商店搞促销活动.同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?得分评卷人25. (本小题满分8分)吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整.(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?得分评卷人26. (本小题满分9分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数在第一象限内的图象经过点D、E,且tan∠BOA= .(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.得分评卷人27. (本小题满分9分)如图,在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在轴和轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA(1)求A、B两点的坐标.(2)求当为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.得分评卷人28. (本小题满分9分)如图,抛物线m:y=- (x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M(3, ),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D.(1)抛物线n的解析式;(2)设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接FE,如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,AB为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.2017年贵州省黔南州中考数学模拟试题答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案 D D B A B A C D C B B B C C A二、填空题16.17. 1.1×10818.19. 10020. 6521.三、解答题22(1) 解:解不等式可得:, 1分解不等式可得:, 2分∴不等式组的解集为:, 3分(2) 解: 设白球有x个,根据题意得, 1分4∶(4+x)= 1∶4, 3分解得x=12.答:白球有12个. 4分23(1) ∵ 与关于O点中心对称,∴ , 1分又∵AF=CE,∴AO-AF=CO-CE,即OF=OE.∵∠FOD=∠EOB,∴△FOD≌△EOB. 2分∴FD=BE. 3分(2) 连接BD与AC交于点O, 1分∵四边形ABCD是菱形,∴AB=AD,AC=2AO,∠ADB= ∠ADC,AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形, 2分∴AO=AD×sin∠ADB= , 3分∴AC=2AO= . 4分24.解:设书包的标价为x元,文具盒的标价为y元,根据题意得, 1分5分解得: 7分答:书包48元,文具盒18元. 8分25.解:(1)50÷10%=500(人),故一共调查了500人. 1分(2)药物戒烟:500×15%=75(人);警示戒烟:500﹣200﹣50﹣75=175(人);175÷500=35%;完整的统计图如图所示: 5分(3)10000×35%=3500(人); 6分(4)3500×(1+20%)2=5040(人). 8分26.解:(1)∵在Rt△BOA中,点E(4,n)在直角边AB上,∴OA=4, 1分∴AB=OA×tan∠BOA=2. 2分(2)∵点D为OB的中点,点B(4,2),∴点D(2,1), 3分又∵点D在的图象上,∴k=2,∴ , 4分又∵点E在图象上,∴4n=2,∴n= . 5分(3)设点F(a,2),∴2a=2,∴CF=a=1 , 6分连结FG,设OG=t,则OG=FG=t ,CG=2-t, 7分在Rt△CGF中,GF2=CF2+CG2 , 8分∴t2=(2-t)2+12 ,解得t = ,∴OG=t= . 9分27. (1) x2-7x+12=0,解得:x1=3, x2=4, 1分∵OA∴OA=3,OB=4则A(0,3),B(4,0) 3分(2)AB= , 4分由题意得:AP=t,BQ=2t,则AQ=5-2t,可分两种情况求解:①当∠APQ=∠AOB时,△APQ∽△AOB如图1,,解得:,可得 5分②当∠AQP=∠AOB时,△APQ∽△ABO如图2,,解得:,可得 6分(3)使以A、P、Q、M为顶点的四边形是平行四边形的点M有,, . 9分28.解:⑴∵抛物线m:y=顶点为M(3, ),∴y= , 1分令y=0,解得, =8,∴A(-2,0),B(8,0),∵由题意可知M、D关于点B(8,0)对称,∴D(13,— ),∵抛物线m绕点B旋转180°,得到新的抛物线n,∴抛物线n的解析式为:y= , 2分(2)令 =0,解得:x1=8,x2=18,∴E(18,0),又∵D(13,— ),∴可求得直线DE的解析式为:y= , 3分过E作EH⊥FP交直线FP于点H,∵P在直线 DE上则P点坐标为(x, ), 4分∴PF=x,EH= ,∴S△PEF== PF•EH=- = = (13∴S△PEF 有最大值 . 5分⑶ 设直线CM交x轴于点N,过点G作GK⊥CM于点K,∵M(3, ),C(0,4),可求得直线DE的解析式为:y= ,当y=0时解得x= ,∴ON= , 6分∴NC= = ,∵G(3,0),∴OG=3,∴NG=OG+O N=3+ = , 7分∵∠GNC=∠CNO,∠GCK=∠CON=90°,∴△NGK∽△NCO, 8分∴ ,即,∴GK=5,∵AB=8-(-2)=10,∴GK= AB,∴⊙G与直线CM相切. 9分。
2017年贵州省中考数学试卷含答案(Word版)
2017年贵州省中考数学试卷含答案(Word版)2017年初中毕业生学业(升学)统一考试试卷数学注意事项:1.答题前,请在答题卡规定的位置填写自己的姓名和准考证号。
2.卷Ⅰ需要使用2B铅笔,卷Ⅱ需要使用0.5毫米黑色签字笔作答。
请将答案书写在答题卡规定的位置,字体工整,笔迹清楚。
3.所有题目必须在答题卡上作答。
在试卷上答题无效。
4.本试题共6页,满分150分,考试用时120分钟。
5.考试结束后,请将试卷和答题卡一并交回。
卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分。
在每小题的四个选项中,只有一个选项正确,请将你认为正确的选项填涂在相应的答题卡上)1.下列各数中,无理数为()A。
0.2.B。
√3.C。
1.5.D。
22.2017年毕节市参加中考的学生约为人,将用科学记数法表示为()A。
1.15×10^4.B。
1.15×10^5.C。
11.5×10^4.D。
1.15×10^63.下列计算正确的是()A。
a×a=a。
B。
(a+b)=a+b。
C。
a÷a=1.D。
(a)=a^2+3a+64.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A。
3个。
B。
4个。
C。
5个。
D。
6个5.对一组数据:-2,1,2,1,下列说法不正确的是()A。
平均数是1.B。
众数是1.C。
中位数是1.D。
极差是46.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A。
55°。
B。
125°。
C。
135°。
D。
140°7.关于x的一元一次不等式的解集为{x|3<x<7},则m的值为()A。
14.B。
7.C。
-2.D。
28.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放回鱼塘。
2017中考数学一模模拟试题(含答案)
2017中考数学一模模拟试题(含答案) A级基础题1.要使分式1x-1有意义,则x的取值范围应满足( )A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为( )A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为( )A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.参考答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-4 2=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x= -14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.精心整理,仅供学习参考。
贵州省黔东南苗族侗族自治州中考数学一模试卷
贵州省黔东南苗族侗族自治州中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·恩施) 下列计算正确的是().A .B .C .D .2. (2分)如图,在平面直角坐标系中,经过中心对称变换得到,那么对称中心的坐标为().A .B .C .D .3. (2分)如图,所示的几何体的正视图是()A .B .C .D .4. (2分)(2017·张家界) 正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额37500000000元.将数据37500000000用科学记数法表示为()A . 0.375×1011B . 3.75×1011C . 3.75×1010D . 375×1085. (2分)一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是A . 60°B . 90°C . 120°D . 180°6. (2分)抛物线y=2x2 , y=﹣2x2 , y=x2共有的性质是()A . 开口向下B . 对称轴是y轴C . 都有最低点D . y的值随x的增大而减小7. (2分)下列计算正确的是()A .B .C .D .8. (2分) (2017九上·滦县期末) 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A . 甲B . 乙C . 丙D . 丁9. (2分)已知等腰三角形的一边长为6,一个内角为60°,则它的周长是()A . 12B . 51C . 18D . 2010. (2分)(2017·德州) 下列函数中,对于任意实数x1 , x2 ,当x1>x2时,满足y1<y2的是()A . y=﹣3x+2B . y=2x+1C . y=2x2+1D . y=﹣11. (2分)用直尺和圆规作一个角等于已知角的示意图如右,则说明∠A′O′B′=∠AOB的依据是()A . SSSB . SASC . ASAD . AAS12. (2分)如图,在Rt△ABC ,∠BAC=90°,AD⊥BC , AB=10,BD=6,则BC的值为()A .B . 2C .D .二、填空题 (共6题;共6分)13. (1分) (2016八上·扬州期末) 已知a、b、c是△ABC的三边长且c=5,a、b满足关系式,则△ABC的形状为________三角形.14. (1分)(2017·禹州模拟) 不等式组的解集为________.15. (1分) (2018七下·邵阳期中) 将多项式xy2-16x因式分解;其结果是________.16. (1分)若分式方程 =a无解,则a的值为________17. (1分)如图,在等腰梯形OABC中,∠AOC=60度,腰AB=4,上底BC=2,点O为坐标原点,A在x轴的正半轴上,则点A的坐标是________.18. (1分) (2017九上·灌云期末) 如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是________.三、解答题 (共7题;共80分)19. (10分)(2020·沙湾模拟) 已知和是关于x的一元二次方程的两个不同的实数根.(1)求k的取值范围;(2)如果且k为整数,求k的值.20. (10分)(2012·沈阳) 小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)21. (15分)(2017·镇江) 如图1,Rt△ACB 中,∠C=90°,点D在AC上,∠CBD=∠A,过A、D两点的圆的圆心O在AB上.(1)利用直尺和圆规在图1中画出⊙O(不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);(2)判断BD所在直线与(1)中所作的⊙O的位置关系,并证明你的结论;(3)设⊙O交AB于点E,连接DE,过点E作EF⊥BC,F为垂足,若点D是线段AC的黄金分割点(即 = ),如图2,试说明四边形DEFC是正方形).22. (5分)如图:两座建筑物AB、CD相距60米,从点A测得D点的俯角为30°,从A点下降10米到E点,在E点测得C点的俯角为43°求两座建筑物的高度.(精确到0.1)(参考数据:≈1.73,cos43°≈0.73,sin43°≈0.68,tan43°≈0.93)23. (15分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24.(1)若利润为21万元,求n的值.(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?24. (15分) (2017八上·衡阳期末) 如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD 于E ,BF⊥CD交CD的延长线于F ,CH⊥AB于H点,交AE于G .(1)试说明AH=BH(2)求证:BD=CG .(3)探索AE与EF、BF之间的数量关系25. (10分)(2013·成都) 在平面直角坐标系中,已知抛物线y= x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共80分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、。
贵州省黔东南州2017年中考数学真题试题(含解析) (1)
2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90° C.100°D.30°3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.46.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60° B.67.5°C.75° D.54°9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.在实数范围内因式分解:x5﹣4x= .14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C 垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.18.先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.解不等式组,并把解集在数轴上表示出来.20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m 0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90° C.100°D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【考点】AB:根与系数的关系.【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.7.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60° B.67.5°C.75° D.54°【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D 使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.13.在实数范围内因式分解:x5﹣4x= x(x2+3)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+)(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560 kg.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8 .【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C 垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•tan60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣),故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m 0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m= 14 ,n= 0.26 ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164 范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在 161≤x<164内,故答案为 161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)==.21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣•12=﹣.22.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:si n39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【考点】FH:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m 的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.。
2017年贵州省黔东南州中考数学真题试卷
2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(4分)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°3.(4分)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.(4分)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱5.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.46.(4分)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.(4分)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.(4分)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°9.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.(4分)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.(4分)在实数范围内因式分解:x5﹣4x=.14.(4分)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.(4分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.(4分)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.18.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(12分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=,n=,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.(12分)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B 两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.(12分)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.(12分)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.(14分)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•黔东南州)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.【点评】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•黔东南州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3.(4分)(2017•黔东南州)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(4分)(2017•黔东南州)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.【点评】考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.5.(4分)(2017•黔东南州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2CE=2,故选A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.6.(4分)(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.7.(4分)(2017•黔东南州)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(4分)(2017•黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.解法二:连接BF.易知∠FCB=15°,∠DOC=∠OBC+∠FCB=45°+15°=60°【点评】本题考查正方形的性质、全等三角形的判定和性质、圆等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助圆解决问题,属于中考选择题中的压轴题.9.(4分)(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),要熟练掌握以下几点:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;③常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);④抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(4分)(2017•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选D.【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•黔东南州)在平面直角坐标系中有一点A(﹣2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)【点评】本题考查坐标平移规律,解题的关键是根据题意进行坐标变换即可,本题属于基础题型.12.(4分)(2017•黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.13.(4分)(2017•黔东南州)在实数范围内因式分解:x5﹣4x=x(x2+2)(x+)(x﹣).【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+2)(x+)(x﹣).【点评】本题考查了在实数范围内分解因式,注意把2写成的形式继续分解因式,分解因式一定要彻底.14.(4分)(2017•黔东南州)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,利用频率估计出所求问题的答案.15.(4分)(2017•黔东南州)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.【点评】本题考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.(4分)(2017•黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB 垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣31009).【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•ta n60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣)即(0,﹣31009),故答案为:(0,﹣31009).【点评】本题考查规律型:点的坐标,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本大题共8小题,共86分)17.(8分)(2017•黔东南州)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1+()+1﹣=3【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(8分)(2017•黔东南州)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2017•黔东南州)解不等式组,并把解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.(12分)(2017•黔东南州)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:==.所以P(两学生来自同一所班级)【点评】本题考查列表法和树状图法、频率分布表、频率分布直方图等知识,解题的关键是理解题意,学会画树状图解决问题,属于中考常考题型.21.(12分)(2017•黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO 与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣•12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.22.(12分)(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2017•黔东南州)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,再构建一次函数,利用一次函数的性质即可解决问题;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵完成该工程甲队工作m天,乙队工作n天,∴+=1,∴n=24﹣2m,∴w=3000m+1400(24﹣2m)=200m+33600,∵200>0,∴m=6时,此时费用最小,∴w的最小值为200×6+33600=34800元.【点评】本题考查一次函数的应用、分式方程组的应用等知识,解题的关键是学会设未知数,构建方程解决问题,属于中考常考题型.24.(14分)(2017•黔东南州)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x 的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用待定系数法求二次函数的解析式、二次函数的性质、锐角三角函数的定义,列出PF与x的函数关系式是解题的关键.2017年湖北省黄石市中考数学试卷一、选择题1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)三、解答题17.(7分)计算:(﹣2)3++10+|﹣3+|.18.(7分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.20.(8分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.22.(8分)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?23.(8分)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)24.(9分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.25.(10分)如图,直线l:y=kx+b(k<0)与函数y=(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE.设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.。
贵州省黔东南苗族侗族自治州数学中考一模试卷
贵州省黔东南苗族侗族自治州数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·日照) 计算:()﹣1+tan30°•sin60°=()A . ﹣B . 2C .D .2. (2分)中央财政投入433亿元用于就业,433亿用科学记数法表示应为()A . 43.3×108B . 4.33×109C . 4.33×1010D . 0.433×10113. (2分)(2017·大祥模拟) 如图中几何体的主视图是()A .B .C .D .4. (2分)数据1、2、5、4、5、3、3、的中位数是()A . 2B . 5C . 3D . 45. (2分) (2019七下·凤县期末) 小明用一枚均匀的硬币试验,前7次掷得的结果都是反面向上,如果将第8次掷得反面向上的概率记为P,则()A .B .C .D . 无法确定6. (2分)结合函数y=-2x的图象回答,当x<-1时,y的取值范围()A . y<2B . y>2C . y≥D . y≤7. (2分) (2020九上·温州期末) 如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A . 5πB . 12.5πC . 20πD . 25π8. (2分) (2019九上·宝安期末) 如图,这是某市政道路的交通指示牌.BD的距离为3m ,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A . 3B . 3C . 3 ﹣3D . 3 ﹣39. (2分)(2019·河北模拟) 欧几里得的《原本)记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= ,则该方程的一个正根是()A . AC的长B . AD的长C . BC的长D . CD的长10. (2分)如图,在Rt△ABC中,∠ABC=90°,tan ∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC 与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A . (b+2a,2b)B . (-b-2c,2b)C . (-b-c,-2a-2c)D . (a-c,-2a-2c)二、填空题 (共6题;共13分)11. (1分)(2017·港南模拟) 分解因式:4x2﹣16=________.12. (1分) (2020八下·新疆月考) 已知x,y为实数,且,则x-y=________.13. (5分) (2019八下·辉期末) 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数及方差如下表所示,如果要选出一个成绩好且状态稳定的组去参赛,那么应选的组是________.甲乙丙丁平均数7887方差1 1.21 1.814. (2分)如图,点P关于OA,OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若CD=18cm,则△PMN的周长为________cm.15. (2分)(2017·盘锦模拟) 如图,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积S=________.16. (2分)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为________cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).三、解答题 (共8题;共42分)17. (2分)(2016·嘉善模拟) 计算下列各题(1)计算: +2﹣1+|﹣ |(2)化简:(a﹣3)2+3a(a+2)18. (2分) (2016八下·红安期中) 已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)19. (15分) (2020七下·密山期末) 某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数/分人数/人707809011008(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.20. (2分) (2016七下·普宁期末) 已知∠MAN.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作∠MAN的平分线AE;②在AE上任取一点F,作AF的垂直平分线分别与AM、AN交于P、Q;(2)在(1)的条件下,线段AP与AQ有什么数量关系,请直接写出结论.21. (2分) (2017九上·东莞月考) 已知在平面直角坐标系中,抛物线与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.22. (2分)(2017·合肥模拟) 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为3,sin∠ADE= ,求AE的值.23. (15分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包和水性笔x支(x≥4).(1)用含x的式子分别表示两种优惠方法购买所需的费用;(2)求购买多少支水笔时,用两种优惠方法购买所需的费用一样多;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.24. (2分) (2016九上·盐城期末) 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为y .①求y关于x的函数关系式.②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共42分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年贵州省黔东南州中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.(4分)如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A.70°B.45°C.110° D.135°3.(4分)下列计算中正确的是()A.2a﹣a=2 B.﹣1﹣2=1 C.(﹣a2)3=a6D.﹣a﹣2=﹣4.(4分)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A.8.6分钟 B.9分钟C.12分钟D.16分钟5.(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF6.(4分)若关于x的方程kx2+(k+1)x+1=0有两个相等的实数根,则此方程的解为()A.1 B.﹣1 C.2 D.﹣27.(4分)若关于x的不等式组的解集为﹣1<x<1,则(a+b)2017的值是()A.1 B.C.﹣1 D.﹣8.(4分)如图所示,M是弧AB的中点,过点M的弦MN交AB于点C,设⊙O 的半径为4cm,MN=4cm,则∠ACM的度数是()A.45°B.50°C.55°D.60°9.(4分)如图所示,在矩形ABCD中,AB=10,BC=6,点E、F在DC边上,连接AF、BE交于点P,若EF=DC,则图中阴影部分的面积为()A.50 B.45 C.40 D.3510.(4分)如图,已知二次函数y=ax2+bx+c的图象如图所示,则下列四个结论:①a+b+c<0;②a+c=b;③b=﹣2a;④4ac﹣b2<0,其中正确的结论有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)函数y=中,自变量x的取值范围是.12.(4分)分解因式:x3﹣x=.13.(4分)已知样本x1、x2、x3、x4的平均数是2,则x1+3、x2+3、x3+3、x4+3的平均数是.14.(4分)如图所示,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于A、B两点,则关于x的不等式kx+b<的解集为.15.(4分)已知x1,x2是方程x2﹣2017x+2=0的两个实数根,则x12﹣2018x1﹣x2=.16.(4分)在平面直角坐标系中,四边形OABC为矩形,点A的坐标为(4,0),点B的坐标为(4,3),动点M,N分别从O、B同时出发,以每秒1个单位长度的速度运动,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点M作MP⊥OA,交AC于P,连接NP.下列说法①当点M运动了2秒时,点P 的坐标为(2,);②当点M运动秒时,△NPC是等腰三角形;③当点N运动了2秒时,△NPC的面积将达到最大值.其中正确的有.三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣|1﹣|﹣()﹣1+(π﹣3)0﹣2cos45°.18.(8分)解方程:+=19.(10分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=.20.(12分)近年来“低头族”现象日趋严重,初中生的视力状况受到了全社会的广泛关注.某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,并利用所得的数据绘制了如图的频数分布直方图,根据图中提供的信息解答下列问题:(1)本次调查共抽测了多少名学生?(2)如果视力在4.9~5.1(含4.9和5.1)均属正常,那么全市约有多少名初中生的视力正常?(3)若从视力在4.9~5.1的3个男生,2个女生中随机抽取2人了解其平时用手机情况,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.21.(12分)为缓解“停车难”的问题,某单位拟造地下停车库,建筑设计师提供了该地下停车库的设计示意图如图所示,已知该坡道的水平距离AB的长为9m,坡面AD与AB的夹角∠BAD=18°,石柱BC=0.5m,按规定,地下停车库坡道上方BC处要张贴限高标志,以便告知停车人车辆能否安全驶入.请你帮设计师计算一下CE的高度,以便张贴限高标志,结果精确到0.1m.(参考数值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.(12分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ABD∽△OBC;(2)若AB=2,BC=,求AD的长.23.(12分)某商场以180元/件的价格购进200件衬衫,当标价400元/件时无人购买,商场决定降价销售,连续降价两次后商场将这批衬衫以每件256元的价格全部售出,并且两次降价的百分率相同.(1)求该种衬衫每次降价的百分率.(2)商场为了使降价销售的总利润不少于22880元,则第一次降价后至少要售出多少件该种衬衫?24.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)(1)求这条抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在说明理由;(3)(1)中抛物线在第二象限的图象是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC面积的最大值;若不存在,请说明理由.2017年贵州省黔东南州中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.(4分)如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A.70°B.45°C.110° D.135°【解答】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠4=180°,∵∠3=70°,∴∠4=110°.故选:C.3.(4分)下列计算中正确的是()A.2a﹣a=2 B.﹣1﹣2=1 C.(﹣a2)3=a6D.﹣a﹣2=﹣【解答】解:(A)原式=a,故A错误;(B)原式=﹣3,故B错误;(C)原式=﹣a6,故C错误;故选(D)4.(4分)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A.8.6分钟 B.9分钟C.12分钟D.16分钟【解答】解:他从学校回到家需要的时间是=12分钟.故选C.5.(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF,∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选B.6.(4分)若关于x的方程kx2+(k+1)x+1=0有两个相等的实数根,则此方程的解为()A.1 B.﹣1 C.2 D.﹣2【解答】解:根据题意得k≠0且△=(k+1)2﹣4k=0,解得k=1,方程变形为x2+2x+1=0,解得x1=x2=﹣1.故选B.7.(4分)若关于x的不等式组的解集为﹣1<x<1,则(a+b)2017的值是()A.1 B.C.﹣1 D.﹣【解答】解:解不等式x﹣a>2,得:x>a+2,解不等式b﹣2x>0,得:x<b,∵不等式组的解集为:﹣1<x<1,∴a+2=﹣1,b=1,解得:a=﹣3,b=2,则(a+b)2017=(﹣3+2)2017=﹣1.故选:C.8.(4分)如图所示,M是弧AB的中点,过点M的弦MN交AB于点C,设⊙O 的半径为4cm,MN=4cm,则∠ACM的度数是()A.45°B.50°C.55°D.60°【解答】解:连接OM,过点O作OD⊥MN于点D,∵点M是弧AB的中点,∴OM⊥AB,∵MN=4cm,由垂径定理,得MD=MN=2.在Rt△ODM中,OM=4,MD=2,∴OD=2,∵M为弧AB中点,OM过点O,∴AB⊥OM,∴∠MPC=90°,∵cos∠OMD===,∴∠OMD=30°,∵OM⊥AB,∴∠ACM=60°.故选D.9.(4分)如图所示,在矩形ABCD中,AB=10,BC=6,点E、F在DC边上,连接AF、BE交于点P,若EF=DC,则图中阴影部分的面积为()A.50 B.45 C.40 D.35【解答】解:过作PN⊥AB于N,交EF于Q,∵△EFP∽△BAP,相似比是EF:AB=1:2,∴PN:PQ=AB:EF=2:1,又∵NQ=BC=6,∴PN=4,PQ=2,=×10×4=20,∴S△ABP=×5×2=5,S矩形ABCD=6×10=60,∴S△EFP∴S=60﹣20﹣5=35.阴影故选D.10.(4分)如图,已知二次函数y=ax2+bx+c的图象如图所示,则下列四个结论:①a+b+c<0;②a+c=b;③b=﹣2a;④4ac﹣b2<0,其中正确的结论有()A.4个 B.3个 C.2个 D.1个【解答】解:∵开口向上,∴a>0,又∵对称轴为x=,∴﹣=,∴a=﹣2b,故③错误;∵图象与x轴一个交点为(,0),∴a+b+c<0,∴①正确;∵图象与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故④正确;∵对称轴为x=,图象与x轴一个交点为(,0),∴图象与x轴的另一个交点为(﹣1,0),∴当x=﹣1时,y=0,∴a﹣b+c=0,即a+c=b,故②正确;所以其中正确的有①②④.故选B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)函数y=中,自变量x的取值范围是x≥0且x≠1.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.12.(4分)分解因式:x3﹣x=x(x+1)(x﹣1).【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.(4分)已知样本x1、x2、x3、x4的平均数是2,则x1+3、x2+3、x3+3、x4+3的平均数是5.【解答】解:x1+3、x2+3、x3+3、x4+3的平均数是(x1+3+x2+3+x3+3+x4+3)=(x1+x2+x3+x4+12)=2+3=5.故填5.14.(4分)如图所示,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于A、B两点,则关于x的不等式kx+b<的解集为﹣1<x<0或x>3.∴不等式kx+b<的解集是﹣1<x<0或x>3.故答案为:﹣1<x<0或x>3.15.(4分)已知x1,x2是方程x2﹣2017x+2=0的两个实数根,则x12﹣2018x1﹣x2=﹣2019.【解答】解:∵x1,x2是方程x2﹣2017x+2=0的两个实数根,∴x 12﹣2017x1=﹣2,x1+x2=2017,∴x12﹣2018x1﹣x2=(x12﹣2017x1)﹣(x1+x2)=﹣2﹣2017=﹣2019.故答案为:﹣2019.16.(4分)在平面直角坐标系中,四边形OABC为矩形,点A的坐标为(4,0),点B的坐标为(4,3),动点M,N分别从O、B同时出发,以每秒1个单位长度的速度运动,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点M作MP⊥OA,交AC于P,连接NP.下列说法①当点M运动了2秒时,点P 的坐标为(2,);②当点M运动秒时,△NPC是等腰三角形;③当点N运动了2秒时,△NPC的面积将达到最大值.其中正确的有①②③.【解答】解:A(4,0),C(0,3),∴直线AC的解析式为y=﹣x+3,当t=2时,OM=2,∴x=2时,y=﹣+3=,∴点P的坐标为(2,),故①正确,当t=时,OM=,∵CN=4﹣=,∴PE⊥CN,CE=OM=,∴CE=EN=,∴PC=PN,∴△PCN是等腰三角形,故②正确,=(4﹣t)×[3﹣(4﹣t)]=﹣(t﹣2)2+,易知S△PCN∵﹣<0,∴t=2时,△PCN的面积最大,故③正确,故答案为①②③三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣|1﹣|﹣()﹣1+(π﹣3)0﹣2cos45°.【解答】解:原式=﹣(﹣1)﹣2+1﹣2×=1﹣1﹣=﹣.18.(8分)解方程:+=【解答】解:原方程可化为:,方程的两边同乘(x﹣2)(x+2),得(x﹣2)2﹣16=(x+2)2解得x=﹣2,检验:把x=﹣2代入(x+2)(x﹣2)=0∴原方程无解.19.(10分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=.=a2+2ab+b2﹣2ab﹣2a﹣a2=b2﹣2a,当a=,b=时,原式=()2﹣2×=2.20.(12分)近年来“低头族”现象日趋严重,初中生的视力状况受到了全社会的广泛关注.某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,并利用所得的数据绘制了如图的频数分布直方图,根据图中提供的信息解答下列问题:(1)本次调查共抽测了多少名学生?(2)如果视力在4.9~5.1(含4.9和5.1)均属正常,那么全市约有多少名初中生的视力正常?(3)若从视力在4.9~5.1的3个男生,2个女生中随机抽取2人了解其平时用手机情况,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【解答】解:(1)20+40+90+60+30=240名;(2)30000×=7500名,所以,全市有7500初中生的视力正常.(3)画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=.21.(12分)为缓解“停车难”的问题,某单位拟造地下停车库,建筑设计师提供坡面AD与AB的夹角∠BAD=18°,石柱BC=0.5m,按规定,地下停车库坡道上方BC处要张贴限高标志,以便告知停车人车辆能否安全驶入.请你帮设计师计算一下CE的高度,以便张贴限高标志,结果精确到0.1m.(参考数值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:∵∠ABC=90°,∠BAD=18°,∴∠ADB=72°,在Rt△ABD中,BD=BD×tan∠BAD=9×0.32=2.88,∴CD=BD﹣BC=2.38,在Rt△CDE中,CE=CD×sin∠ADB≈2.3,答:CE的高度约为2.3m.22.(12分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ABD∽△OBC;(2)若AB=2,BC=,求AD的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=∠90°,∵BC是⊙O的切线,∴∠OBC=∠90°,∵AD∥CO,∵∠ADB=∠OBC,∠A=∠COB,∴△ABD∽△OCB;(2)由(1)知,△ABD∽△OCB,∴=,即AD=,∵AB=2,BC=,∴OB=1,∴OC==,∴AD==.23.(12分)某商场以180元/件的价格购进200件衬衫,当标价400元/件时无人购买,商场决定降价销售,连续降价两次后商场将这批衬衫以每件256元的价格全部售出,并且两次降价的百分率相同.(1)求该种衬衫每次降价的百分率.(2)商场为了使降价销售的总利润不少于22880元,则第一次降价后至少要售出多少件该种衬衫?【解答】解:(1)设该种衬衫每次降价的百分率为x,根据题意可得:400(1﹣x)2=256解得,x1=0.2,x2=1.8(舍去),答:该种衬衫每次降价的百分率是20%;(2)设第一次降价后要售出y件,则降价销售的总利润不少于22880元,400(1﹣20%)y+400(1﹣20%)2(200﹣y)﹣180×200≥22880,解得,y≥120,答:商场为了使降价销售的总利润不少于22800元,第一次降价后至少要售出120件该种衬衫.24.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)(1)求这条抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,若存在,求出点P的坐标及△PBC面积的最大值;若不存在,请说明理由.【解答】解:(1)抛物线的解析式为y=﹣(x﹣1)(x+3),即y=﹣x2﹣2x+3;(2)存在.当x=0时,y=﹣x2﹣2x+3=3,则C(0,3),抛物线的对称轴为直线x=﹣1,连接BC交直线x=﹣1于Q,如图,∵点A与点B关于直线x=﹣1对称,∴QA=QB,∴QA+QC=QB+QC=BC,∴此时QA+QC的值最小,∴此时△QAC的周长最小,设直线BC的解析式为y=kx+b,把B(﹣3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=x+3,当x=﹣1时,y=x+3=2,∴满足条件的Q点的坐标为(﹣1,2);(3)存在.过PD∥y轴交BC于P,如图,设P(x,﹣x2﹣2x+3)(﹣3<x<0),则D(x,x+3),∴PD=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,∴S=S△PBD+S△PCD=•3•PD=﹣x2﹣x=﹣(x+)2+,△PBC此时P 点坐标为(﹣,).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。