历年中考数学试卷51.江苏盐城

合集下载

历年江苏省盐城市中考数学试卷(含答案)

历年江苏省盐城市中考数学试卷(含答案)

2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(3分)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.(3分)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab26.(3分)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)请写出一个无理数.8.(3分)分解因式a2b﹣a的结果为.9.(3分)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.(3分)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.(3分)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°.15.(3分)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:+()﹣1﹣20170.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(x+2﹣),其中x=3+.20.(8分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC 与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F 恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.(12分)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.27.(14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•盐城)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)【点评】本题考查三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.3.(3分)(2017•盐城)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•盐城)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)(2017•盐城)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab2【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.【点评】本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.6.(3分)(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•盐城)请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.8.(3分)(2017•盐城)分解因式a2b﹣a的结果为a(ab﹣1).【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).【点评】本题考查了分解因式,能正确分解因式是解此题的关键.9.(3分)(2017•盐城)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•盐城)若在实数范围内有意义,则x的取值范围是x ≥3.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(3分)(2017•盐城)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.【点评】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.12.(3分)(2017•盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.(3分)(2017•盐城)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为5.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【分析】根据折叠的性质和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了折叠的性质和圆内接四边形的性质,熟练掌握折叠的直线是解题的关键.15.(3分)(2017•盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.【点评】本题考查旋转变换、轨迹.弧长公式、勾股定理等知识,解题的关键是确定旋转中心和旋转角的大小,属于中考常考题型.16.(3分)(2017•盐城)如图,曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (﹣4,4),B (2,2)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为 8 .【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x ′轴,OA 为y′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2), ∴OA ⊥OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1,6),N(3,2),∴S=S△OBM﹣S△OBN=•4•6﹣•4•2=8,△OMN故答案为8【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•盐城)计算:+()﹣1﹣20170.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2017•盐城)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=•=,当x=3+时,原式===.【点评】本题主要考查分式的化简求值,根据分式的混合运算顺序和法则将原式化简是解题的关键.20.(8分)(2017•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.【点评】此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求事件A或B的概率.21.(8分)(2017•盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.22.(10分)(2017•盐城)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.(10分)(2017•盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.24.(10分)(2017•盐城)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.【解答】解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C=9+9+18=27+9,△ABC∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.【点评】本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质,熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.(10分)(2017•盐城)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y 轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.【点评】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.26.(12分)(2017•盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩=PQ•PN═﹣(x﹣)2+,据此可得;形PQMN【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,矩形PQMN最大值为,∴当PQ=时,S矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】。

盐城中考数学试题及答案

盐城中考数学试题及答案

盐城中考数学试题及答案第一部分选择题1.已知函数y=2x+3,该函数的图像经过点(1,5),则x=____。

A. 1B. 2C. 3D. 4答案:A2.已知平行四边形ABCD中,AB=6cm,BC=8cm,角A的度数为60°,则BD的长度为____。

A. 3cmB. 5cmC. 7cmD. 9cm答案:B3.三角形ABC中,AB=AC,角B=30°,则角A的度数为____。

A. 30°B. 60°C. 90°D. 120°答案:B4.化简√(18+2√32)的值是____。

A. √2B. √3C. 2√2D. 4√2答案:D5.已知等差数列{an}的公差为2,首项为3,若a5=9,则a10的值为____。

A. 13B. 15C. 17D. 19答案:C第二部分解答题1. 计算直角三角形中,一直角的两条腿分别为5cm和12cm,斜边的长度为多少?解:根据勾股定理,斜边的长度可以通过计算得出:斜边= √(5^2 + 12^2) = √(25 + 144) = √169 = 13cm因此,斜边的长度为13cm。

2. 已知函数y=f(x)的图像上任意一点M的坐标为(x, f(x)),且点A(1,4)在图像上。

若函数经过原点O,则函数的解析式为什么?解:由已知条件可得:f(1) = 4又因为函数经过原点O,即f(0) = 0由此可知,函数经过两个点A(1,4)和O(0,0),可以确定一条直线。

设函数的解析式为y=f(x)=kx,其中k为常数。

代入点A得:4 = k * 1,解得k=4。

因此,函数的解析式为y=f(x)=4x。

3. 某饭店开业前三天的销售额分别为10万元、12万元和15万元。

若开业第四天的销售额为k万元,则四天的平均销售额是多少?解:四天的总销售额为10万元+12万元+15万元+k万元。

因为平均销售额等于总销售额除以天数,所以四天的平均销售额为:(10+12+15+k)/4 = (37+k)/4 万元。

江苏省盐城市2024年中考数学试题(含答案)

江苏省盐城市2024年中考数学试题(含答案)

2024年扬州市中考数学试题一、选择题(本题有8小题,每小题3分,共24分)1.-3的肯定值是【】A.3 B.-3 C.-3 D.1 32.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形3.今年我市参与中考的人数大约有41300人,将41300用科学记数法表示为【】A.413×102B.41.3×103C.4.13×104D.0.413×103 4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【】A.外切B.相交C.内切D.内含5.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个B.5个C.6个D.7个6.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是【】A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-27.某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【】A.10 B.9 C.8 D.48.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2024,则m的值是【】A.43 B.44 C.45 D.46二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是.10.一个锐角是38度,则它的余角是度.11.已知2a-3b2=5,则10-2a+3b2的值是.12.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.如图,P A、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,假如∠ACB=70°,那么∠P的度数是.15.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处.若ABBC=23,则tan∠DCF的值是.16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.17.已知一个圆锥的母线长为10cm,将侧面绽开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.18.如图,双曲线y=kx经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是.三、解答题(本大题共有10小题,共96分)19.(1)计算:9-(-1)2+(-2024)0;(2)因式分解:m3n-9mn.20.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的a值代入计算.21.扬州市中小学全面开展“体艺2+1”活动,某校依据学校实际,确定开设A:篮球,B:乒乓球,C:声乐,D:塑身操等四中活动项目,为了解学生最喜爱哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请依据调查结果估计该校最喜爱乒乓球的学生人数.22.一个不透亮的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出其次个乒乓球.(1)共有种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.24.为了改善生态环境,防止水土流失,某村安排在荒坡上种480棵树,由于青年志愿者的支援,每日比原安排多种13,结果提前4天完成任务,原安排每天种多少棵树?25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就马上指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).26.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分BAD;(2)若AC=25,CD=2,求⊙O的直径.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,干脆写出全部符合条件的点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y 轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①干脆写出点E的坐标:;②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.参考答案一、选择题(本题有8小题,每小题3分,共24分)1.(2024•扬州)-3的肯定值是( )A.3B.-3 C.-3 D.考点:肯定值。

最新江苏省盐城市中考数学真题试卷附解析

最新江苏省盐城市中考数学真题试卷附解析

江苏省盐城市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:① AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A . ①② B .③④ C .①②③ D . ②③④2.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90°B .AB=CDC .AD=BCD .BC=CD3.如图,AB ,CD 相交于点0,则下列条件中能得到AC ∥BD 且AC=BD 的是( )A .∠A=∠B ,∠C=∠DB .OA=BC .OC=ODD .∠A=∠B ,OA=OB4.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A . 60分B . 70分C .75分D . 80分 5.分式221m m m m -+-约分后的结果是( ) A 1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 6.20人一行外出旅游住旅社,因特妹原因,服务员安排房间时每间比原来多住 1 人,结 果比原来少用了一个房间. 若原来每间住 x 人,则x 应满足的关系式为( ) A .202011x x -=+ B .202011x x -=- C .202011x x -=- D .202011x x -=+ 90 85 80 75 70 65 60 55 分数7.如图所示,△ABC 和△A ′B ′C ′关于直线l 对称,那么下列结论中正确的有( ) ①△ABC ≌△A ′B ′C ′;②∠BAC=∠A ′B ′C ′;③l 垂直平分CC ′;④直线BC 和B ′C ′的交点不一定在l 上.A .4个B .3个C .2个D .1个8.下列计算结果为负数的是( )A .3-B .3--||C .2(3)-D .3(3)-- 9.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A . 20B .119C .120D .319二、填空题10.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”). 11.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).12. 完成下列配方过程.(1)26x x ++( )=2(3)x +;(2)2x - +916=23()4x -; (3)25x x -+ =2(___)x -(4)222x x -+ =2(__)x -.13.关于x 的方程22(23)103a x ax ---=是一元二次方程,则a 的取值范围是 . 14. 从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________15.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是 .16.如图所示,△ABC 是等腰直角三角形,AD ⊥BC ,则△ABD 可以看做是由△ACD 绕 点逆时针旋转 得到的. 17.在括号内填上适当的代数式,使等式成立. (1)()b a a a +=-;(2)322323()y x x y y x --=-;(3)216()324ab a a=;(4)39()()x x x y x y +=+ 解答题18.用四舍五入法,保留l 个有效数字,则取80600的近似值为 ,保留2个有效数 字的近似值为 .19.如果 -22 元表示亏损 22 元,那么 45 元表示 .20.若关于x 的方程39x =与4x k +=有相同的解,则代数式212kk -的值为 .三、解答题21.如图,已知直角梯形 AECD 和直角梯形A ′B ′C ′D ′中,∠A=∠A ′=∠B=∠B ′= 90°, ∠D= ∠D ′ ,AB : A ′B ′= BC : B ′C ′,求证:梯形ABCD ∽梯形A ′B ′C ′D ′.22.如图,在△ABC 中,DE ∥FG ∥BC ,DE 、FG 将△ABC 的面积三等分,若 BC = 12 cm ,求 FG 的长.23.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?24.一个台阶如图,阶梯每一层的高为 15 cm ,宽为 25 cm ,长为 60 cm.一只蚂蚁从 A 点爬到B 点最短路程是多少?25.解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.26.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示. (1)全班学生数学成绩的众数是 分.全班学生数学成绩为众数的有 人,全班学生数学成绩的中位数是 分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.1 2 3 0 1- 2- 3-27.先化简,再求值:22()a b a ba b b a ab++÷--,其中31a=,31b=.28.先化筒,再求值:2(32)(32)5(1)(21)x x x x x+-----,其中13x=-.29.在“跳蚤市场”活动中初一(1)班的销售额为n元,初一(2)班的销售额是初一(1)班的的2倍少28元,初一(3)班的销售额比初一(1)班的一半多42元,问三个班一共销售商品多少元?30.浙江省的民营企业在市场经济的运作下,迅速壮大起来.从下面一个企业提供的数据之中,我们就能感觉到中国经济迅猛发展的趋势:1997年产值110万,l999年产值200万,2001年产值500万,2002年产值900万,2003年产值1700万.请你设计一张统计表,简明地表达这一段文字的信息.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.C5.C6.A7.B8.B9.C二、填空题10.11.0.1812.(1)9;(2)32x ;(3)254,52;(4)13.23a ≠14. 32 15. △ABD ,△CBD,△ABC16.D ,90°17.(1)a b --;(2)32x y -;(3)2b ;(4)23()x y +18.8×lO 4,8.1×1O 419.盈利 45 元20.1349-三、解答题21.连结 AC 、A ′C ′.在△ABC 和△A ′B ′C ′ 中,AB BC A B B C ='''',∠B=∠B ′,∴△ABC ∽△A ′B ′C ′,∴∠1=∠5 ,∠3 =∠7. AC AB A C A B =''''.在△ADC 和△A ′D ′C ′中,∠2=90°-∠1 ,∠6=90°-∠5 ,∴∠2=∠6, 又∠D=∠D ′,∴△ADC ∽△A ′D ′C ′. ∴AD AC DC A D A C D C =-='''''',∠4=∠8,∴AB BC DC AD A B B C D C A D ===''''''''又∵∠BCD=∠B ′C ′D ′,∴梯形ABCD ∽梯形A ′B ′C ′D ′.22.∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC. 又∵23AFG ABC S S ∆∆=,∴23FG BC =,∴46FG =㎝.23.长 40 cm ,宽 20 cm24.100 cm25.解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤.系数化为1,得2x -≥.不等式的解集在数轴上表示如下:(1)95,20,92.5; (2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 27.ab ,228.95x -,-829.(3.5n+14)元30.略 12301-2-3-26.。

盐城市中考数学试题及答案

盐城市中考数学试题及答案

盐城市中考数学试题及答案一、选择题1. 【选择题】已知函数 f(x) = 3x - 2,那么 f(2) 的值是多少?A. -4B. -1C. 1D. 4答案:B. -1解析:将 x = 2 代入函数 f(x),得到 f(2) = 3 × 2 - 2 = 6 - 2 = 4 - 2 = -1。

2. 【选择题】已知等差数列的第一项是 a,公差是 d,若其第 n 项为 20,第 m 项为 50,且 n > m,那么 a 的值是多少?A. 10B. 12C. 15D. 18答案:B. 12解析:设第 m 项为 a_m,则有 a_m + (n-m)d = 20,设第 n 项为 a_n,则有 a_n = a + (n-1)d = 50。

联立以上两式,解得 a = 8,d = 2,所以 a 的值为 a_m = a + (m-1)d = 8 + (m-1)2 = 2m + 6。

由 n > m 知 2m + 6 < 20,解得m ≤ 7,代入选项发现只有 B. 12 满足条件。

二、填空题3. 【填空题】已知长方形的长是 8 cm,宽是 6 cm,那么其对角线的长是多少 cm?答案:10解析:根据勾股定理,对角线的长度d = √(长^2 + 宽^2) = √(8^2 + 6^2) = √(64 + 36) = √100 = 10。

4. 【填空题】若正方形的边长为 5 cm,则其面积为 ____________ 平方厘米。

答案:25解析:正方形的面积等于边长的平方,所以面积为 5^2 = 25 平方厘米。

三、解答题5. 【解答题】已知函数 f(x) = x^2 + bx + c,其图像与 x 轴交于点 A 和点 B,交于 y 轴的点为 C,且 AC = BC。

求满足条件的 b 和 c 的值。

答案:b = 0,c = 0;或者说 f(x) = x^2。

解析:由题意可知,当函数 f(x) 与 x 轴交于两个不同的点时,对应的二次项系数和常数项为 0。

2024年江苏盐城市中考数学试题+答案详解

2024年江苏盐城市中考数学试题+答案详解

2024年江苏盐城市中考数学试题+答案详解(试题部分)注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷. 2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 有理数2024的相反数是( ) A. 2024B. 2024−C.12024D. 12024−2. 下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3. 下列运算正确的是( ) A. 624a a a ÷=B. 22a a −=C. 326a a a ⋅=D. ()235a a =4. 盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( ) A. 70.2410⨯B. 52410⨯C. 72.410⨯D. 62.410⨯5. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6. 小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒7. 、,设其面积为2cm S ,则S 在哪两个连续整数之间( ) A. 1和2B. 2和3C. 3和4D. 4和58. 甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 若分式11x −有意义,则x 的取值范围是_________. 10. 分解因式:x 2+2x +1=_______11. 两个相似多边形的相似比为12∶,则它们的周长的比为______. 12. 如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.13. 已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.14. 中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.15. 如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)16. 如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. 计算:()0214sin30π−−++︒ 18. 求不等式113xx +≥−的正整数解. 19. 先化简,再求值:22391a a a a a−−−÷+,其中4a =. 20. 在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站. (1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率. 21. 已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =. 若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.22. 小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求: (1)反比例函数表达式; (2)点C 坐标.23. 如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.24. 阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图. 9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25. 如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;、交于点O,可得M、N两点都在BD上,当平行四边形ABCD满足(2)①如图2,连接AC BD________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)26. 请根据以下素材,完成探究任务.27. 发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽. 提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1 分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示. 小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________; 方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长. 解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.2024年江苏盐城市中考数学试题+答案详解(答案详解)注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷. 2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 有理数2024的相反数是( ) A. 2024 B. 2024−C.12024D. 12024−【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024−, 故选:B .2. 下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车【答案】C 【解析】【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键. 【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3. 下列运算正确的是( ) A. 624a a a ÷= B. 22a a −=C. 326a a a ⋅=D. ()235a a =【答案】A 【解析】【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案. 【详解】解:A 、624a a a ÷=,正确,符合题意; B 、2a a a −=,错误,不符合题意; C 、325a a a ⋅=,错误,不符合题意; D 、()236a a =,错误,不符合题意;故选:A .4. 盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( ) A. 70.2410⨯ B. 52410⨯C. 72.410⨯D. 62.410⨯【答案】D 【解析】【分析】本题考查用科学记数法表示绝对值大于1的数,将2400000写成10n a ⨯的形式即可,其中110a ≤<,n 的值与小数点移动的位数相同.【详解】解:62400000 2.410=⨯, 故选D .5. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都【答案】C【解析】 【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6. 小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒【答案】B【解析】 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B7. 、,设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和5【答案】C【解析】【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S == 91016<<,∴<<∴34<<,即S 在3和4之 间,故选:C .8. 甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢【答案】A【解析】 【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A .二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 若分式11x −有意义,则x 的取值范围是_________. 【答案】1x ≠【解析】【分析】本题主要考查了分式有意义的条件,根据分式有意义分母不等于零,得出10x −≠,求出1x ≠即可. 【详解】解:若分式11x −有意义, 则10x −≠,∴1x ≠,故答案为:1x ≠.10. 分解因式:x 2+2x +1=_______【答案】()21x +##()21x +【解析】【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11. 两个相似多边形的相似比为12∶,则它们的周长的比为______.【答案】12∶##12【解析】【分析】本题考查了相似多边形的性质,根据相似多边形周长之比等于相似比即可求解,掌握相似多边形的性质是解题的关键.【详解】解:∵两个相似多边形的相似比为12∶,∴它们的周长的比为12∶,故答案为:12∶.12. 如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.【答案】50【解析】【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠. 【详解】解:40C ∠=︒,∴280AOB C ∠=∠=︒,OA OB =,∴OAB OBA ∠=∠,180OAB OBA AOB ∠+∠+∠=︒,∴()()11180180805022OAB AOB ∠=︒−∠=⨯︒−︒=︒, 故答案为:50.13. 已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.【答案】20π【解析】【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520S ππ=⨯⨯=故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14. 中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.【答案】15【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.设绳索长x 尺,竿长y 尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x y , 的二元一次方程组,此题得解.【详解】解:设绳索长x 尺,竿长y 尺, 根据题意得:552x y x y =+⎧⎪⎨=−⎪⎩ . 解得:2015x y =⎧⎨=⎩故答案为15.15. 如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)【答案】17【解析】【分析】本题主要考查解直角三角形的实际应用,延长AB 交直线PQ 于点H ,先用三角函数解Rt PHA △求出PH ,进而求出QH ,再证QH BH =,最后根据AB AH BH =−即可求解.【详解】解:如图,延长AB 交直线PQ 于点H ,则90∠=︒PHA ,由题意知30m AH =,在Rt PHA △中,tan AH PHA PH ∠=,即30tan 370.75PH︒=≈,解得40m PH =,∴()4026.613.4m QH PH PQ =−=−=,90∠=︒PHA ,45QHB ∠=︒,∴45QBH QHB ∠=∠=︒,∴13.4m QH BH ==,∴()3013.416.617m AB AH BH =−=−=≈,故答案为:17.16. 如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.【答案】22【解析】【分析】本题主要考查等腰直角三角形的性质,勾股定理,平行线的性质,全等三角形的性质的综合,掌握等腰直角三角形的性质,勾股定理,旋转的性质是解题的关键.根据等腰直角三角形的性质可得AB CD BD BF ,,,的值,作BG CF ⊥,根据平行线的性质可得BCG 是等腰直角三角形,可求出CG BG ,的长,在直角BFG 中,根据勾股定理可求出FG 的长度,由此即可求解.【详解】解:∵在ABC 中,90ACB ∠=︒,AC BC ==,∴45CAB CBA ∠=∠=︒,4AB ==, ∵点D 是AC 的中点,∴12AD CD AC ===∴在Rt BCD 中,BD ===∵将BCD 绕点B 旋转得到BEF ,∴BCD BEF ≌,∴BD BF ==,EF CD ==BC BE ==如图所示,过BG CF ⊥于点G ,∵CF AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且BC =,∴222CG BG BC ====,在Rt BFG 中,FG ===∴2CF CG FG =+=故答案为:2三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. 计算:()0214sin30π−−++︒【答案】3【解析】【分析】此题考查了实数的混合运算,计算绝对值、零指数幂、代入特殊角三角函数值,再进行混合运算即可.【详解】解:()0214sin30π−−++︒ 12142=−+⨯ 212=−+3=18. 求不等式113x x +≥−的正整数解. 【答案】1,2.【解析】【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥−,去括号得,133x x +≥−,移项得,331x x −≥−−,合并同类项得,24x −≥−,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19. 先化简,再求值:22391a a a a a−−−÷+,其中4a =. 【答案】23a +;27【解析】【分析】题目主要考查分式的化简求值,先计算分式的除法运算,然后计算加减法,最后代入求值即可,熟练掌握运算法则是解题关键. 【详解】解:22391a a a a a−−−÷+ )3(1(3()1)3a a a a a a −++−−=⨯ 113a a +=−+ 313a a a +−−=+ 23a =+, 当4a =时,原式22437==+. 20. 在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【答案】(1)13 (2)13【解析】【分析】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及小明和小丽选择相同基地的结果数,再利用概率公式可得出答案.【小问1详解】解:由题意得,小明选择基地A 的概率为13; 故答案为:13【小问2详解】解:列表如下:共有9种等可能的结果,其中小明和小丽选择到相同基地的结果有3种,∴小明和小丽选择相同基地的概率为3193=. 21. 已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【解析】【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌,∴AC BD =,∴AC BC BD BC −=−,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =, E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC −=−,即AB CD =;故答案为:①或③(答案不唯一)22. 小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.【答案】(1)6y x =−(2)3,42⎛⎫− ⎪⎝⎭【解析】【分析】本题考查反比例函数、锐角三角函数:(1)设反比例函数表达式为k y x=,将点A 的坐标代入表达式求出k 值即可; (2)设点C 的坐标为6,m m ⎛⎫− ⎪⎝⎭,则CE m =−,6OE m=−,根据平行线的性质得CBE AOD ∠=∠,进而根据tan tan CBE AOD ∠=∠求出m 的值即可.【小问1详解】解:由图可知点A 的坐标为()3,2−, 设反比例函数表达式为k y x=, 将()3,2−代入,得:23k =−,解得6k =−, 因此反比例函数表达式为6y x =−; 【小问2详解】解:如图,作CE y ⊥轴于点E ,AD y ⊥轴于点D ,由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫− ⎪⎝⎭,则CE m =−,6OE m=−, ∴63BE OE OB m=−=−−, 矩形直尺对边平行,∴CBE AOD ∠=∠,∴tan tan CBE AOD ∠=∠,∴CE AD BE OD =,即3623m m−=−−, 解得32m =−或6m =, 点C 在第二象限, ∴32m =−,66432m −=−=−, ∴点C 坐标为3,42⎛⎫− ⎪⎝⎭.23. 如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径. 【答案】(1)见解析 (2)256【解析】【分析】题目主要考查切线的性质,相似三角形的判定和性质及勾股定理解三角形,作出辅助线,综合运用这些知识点是解题关键.(1)连接OC ,根据题意得90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,利用等量代换确定ACD ABC ∠∠=,再由相似三角形的判定即可证明;(2)先由勾股定理确定3AD =,然后利用相似三角形的性质求解即可.【小问1详解】证明:连接OC ,如图所示:∵CD 是O 的切线,点C 在以AB 为直径的O 上,∴90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,∴ACD OCB ∠∠=,∵OC OB =,∴OBC OCB ∠∠=,∴ACD ABC ∠∠=,∵AD l ⊥,∴90ADC ∠=︒,∴ADC ACB ∠∠=,∴ABC ACD △△∽;【小问2详解】∵5AC =,4CD =,∴3AD ==,由(1)得ABC ACD △△∽, ∴AB AC AC AD =即553AB =, ∴253AB =, ∴O 的半径为2525236÷=.24. 阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【答案】(1)800;7200(2)5.56%(3)见解析【解析】【分析】题目主要考查条形统计图及扇形统计图综合问题,用样本估计总体等,结合统计图获取相关信息是解题关键.(1)根据条形统计图得出样本容量,然后用总人数乘以“每天阅读时间不少于1小时”的比例即可得出结果; (2)先求出9月份和12月份“每天阅读时间不少于1小时”的比例,然后求增长率即可;(3)根据增长率合理评价即可.【小问1详解】解:样本容量为:80320280120800+++=,该地区七年级学生“每天阅读时间不少于1小时”的人数约为:32028012080007200800++⨯=人, 故答案为:800;7200;【小问2详解】 320280120100%90%800++⨯=, 12月份“每天阅读时间不少于1小时”的比例为:15%95%−=,设9月份学生和12月份学生样本均为x ,∴95%90%5%x x x −=,∴增长率为:5%100% 5.56%90%x x⨯=; 【小问3详解】该地区出台相关激励措施有明显的作用,督促大部分学生养成良好的阅读习惯.25. 如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【答案】(1)见解析 (2)①AC BD ⊥;②见解析.【解析】【分析】题目主要考查平行四边形及菱形的判定和性质,三角形重心的性质,理解题意,熟练掌握三角形重心的性质是解题关键.(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:,AM CN AN CM ∥∥,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OB ==,然后连接AB BC CD DA 、、、即可得出点M 和N 分别为ABC ADC 、的重心,据此作图即可.【小问1详解】证明:∵ABCD Y ,∴,,,AB CD AD BC AB CD AD BC ==∥∥,∵点E 、F 、G 、H 分别是ABCD Y 各边的中点, ∴11,22AE AB CD CG AE CG ===∥, ∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴,AM CN AN CM ∥∥,∴四边形AMCN 是平行四边形;【小问2详解】①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==,然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽, ∴12BF BM BC BN ==, ∴点F 为BC 的中点,同理得:点E 为AB 的中点,点G 为DC 的中点,点H 为AD 的中点.26. 请根据以下素材,完成探究任务.【答案】任务1:17033y x=−+;任务2:22723360(10)w x x x=−++>;任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【解析】【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键. 任务1:根据题意安排x 名工人加工“雅”服装,y 名工人加工“风”服装,得出加工“正”服装的有()70x y −−人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤−−⎣⎦,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x 名工人加工“雅”服装,y 名工人加工“风”服装,∴加工“正”服装的有()70x y −−人,∵“正”服装总件数和“风”服装相等,∴()7012x y y −−⨯=, 整理得:17033y x =−+; 任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤−−⎣⎦,∴()()2247048100210w y x y x x ⎡⎤=⨯+−−⨯+−−⎣⎦,整理得:()()()21611203222402120w x x x x =−++−++−+ ∴22723360(10)w x x x =−++>任务3:由任务2得()2227233602184008w x x x =−++=−−+, ∴当18x =时,获得最大利润,1705218333y =−⨯+=, ∴18x ≠,∵开口向下,∴取17x =或19x =,当17x =时,335y =,不符合题意; 当19x =时,17513y ==,符合题意;∴7034x y −−=,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.27. 发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示. 小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.【答案】分析问题:方案1:()1n d −;2k ;()21n dk −;方案2:()21k dn −;方案3:()212k nd ⨯−;。

盐城市2001-2012年中考数学试题分类解析专题5:数量和位置变化

盐城市2001-2012年中考数学试题分类解析专题5:数量和位置变化

江苏泰州锦元数学工作室 编辑一、选择题1. (2003年江苏盐城3分)在直角坐标系中,两个圆的圆心坐标分别为(1,0)和(3,0),半径都是1,那么这两个圆的公切线有【 】A .1条B .2条C .3条D .4条2. (2005年江苏盐城3分)在一定的条件下,若物体运动的路程s (米)与时间t (秒)的关系式为2s 5t 2t =+,则当t=4秒时,该物体所经过的路程为【 】 A.28米B.48米C.68米D.88米3. (2007年江苏盐城3分)如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为【 】A .(3,2)B .(3,1)C .(2,2)D .(-2,2) 【答案】A 。

【考点】直角坐标系和坐标。

【分析】根据棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),可知坐标系如下:∴棋子“炮”的坐标为(3,2)。

故选A。

4. (2007年江苏盐城3分)如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,如图所示的图象中最符合故事情景的是【】A. B. C. D.5. (2008年江苏盐城3分)如图,A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿O — C —D — O路线作匀速运动.设运动时间为t(s),∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是【】A.B. C. D.6. (2011年江苏盐城3分)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误..的是【】A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min二、填空题=+的自变量x的取值范围是▲ .1. (2001年江苏盐城2分)函数y22. (2002年江苏盐城2分)函数y中自变量x 的取值范围是▲ 。

历年江苏省盐城市中考数学试卷(含答案)

历年江苏省盐城市中考数学试卷(含答案)

2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(3分)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.(3分)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab26.(3分)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)请写出一个无理数.8.(3分)分解因式a2b﹣a的结果为.9.(3分)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.(3分)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.(3分)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°.15.(3分)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:+()﹣1﹣20170.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(x+2﹣),其中x=3+.20.(8分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC 与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F 恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.(12分)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.27.(14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•盐城)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)【点评】本题考查三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.3.(3分)(2017•盐城)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•盐城)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)(2017•盐城)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab2【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.【点评】本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.6.(3分)(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•盐城)请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.8.(3分)(2017•盐城)分解因式a2b﹣a的结果为a(ab﹣1).【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).【点评】本题考查了分解因式,能正确分解因式是解此题的关键.9.(3分)(2017•盐城)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•盐城)若在实数范围内有意义,则x的取值范围是x ≥3.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(3分)(2017•盐城)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.【点评】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.12.(3分)(2017•盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.(3分)(2017•盐城)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为5.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【分析】根据折叠的性质和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了折叠的性质和圆内接四边形的性质,熟练掌握折叠的直线是解题的关键.15.(3分)(2017•盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.【点评】本题考查旋转变换、轨迹.弧长公式、勾股定理等知识,解题的关键是确定旋转中心和旋转角的大小,属于中考常考题型.16.(3分)(2017•盐城)如图,曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (﹣4,4),B (2,2)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为 8 .【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x ′轴,OA 为y′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2), ∴OA ⊥OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1,6),N(3,2),∴S=S△OBM﹣S△OBN=•4•6﹣•4•2=8,△OMN故答案为8【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•盐城)计算:+()﹣1﹣20170.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2017•盐城)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=•=,当x=3+时,原式===.【点评】本题主要考查分式的化简求值,根据分式的混合运算顺序和法则将原式化简是解题的关键.20.(8分)(2017•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.【点评】此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求事件A或B的概率.21.(8分)(2017•盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.22.(10分)(2017•盐城)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.(10分)(2017•盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.24.(10分)(2017•盐城)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.【解答】解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C=9+9+18=27+9,△ABC∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.【点评】本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质,熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.(10分)(2017•盐城)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y 轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.【点评】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.26.(12分)(2017•盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩=PQ•PN═﹣(x﹣)2+,据此可得;形PQMN【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,矩形PQMN最大值为,∴当PQ=时,S矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】。

最新江苏省盐城市中考数学测试试题附解析

最新江苏省盐城市中考数学测试试题附解析

江苏省盐城市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若半径为3,5的两个圆相切,则它们的圆心距为( )A .2B .8C .2或8D .1或42.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209= 3.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,则∠ACB= ( )A .25°B .50°C .30°D .100° 4.把y =-x 2-4x +2化成y =a (x +m )2+n 的形式是( )A .y =-(x -2)2 -2B .y =-(x -2)2 +6C .y =-(x +2)2 -2D .y =-(x +2)2+65.方程29x =的解是( )A .9x =B .19x =,29x =-C .3x =D .13x =,23x =-6.若2a a >,则a 应满足( )A .0a <B .01a <<C .11a -<<D .1a >或0a < 7.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是( ) A .偶数B .奇数C .比5小的数D .数6 8.如图所示,在4×4的正方形网格中,∠l ,∠2,∠3的大小关系是( ) A .∠l>∠2>∠3B .∠1=∠2>∠3C .∠l<∠2=∠3D .∠l=∠2=∠39.下面结论中,错误的是( )A .一个数的平方不可能是负数B .一个数的平方一定是正数C.一个非 0有理数的偶数次方是正数D.一个负数的奇数次方还是负数10.已知矩形的周长是24 cm,相邻两边之比是1:2,那么这个矩形的面积是()A.24 cm2B.32 cm2 C.48 cm2 D.128 cm2二、填空题11.如图,ABCD 是矩形,AB= 12 厘米,BC=16 厘米,⊙O1、⊙O2分别为△ABC、△ADC 的内切圆,E、F为切点,则 EF 的长是厘米.12.已知反比例函数8yx=-的图象经过点P(a-1,4),则a=_____.-113.已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为___________cm.14.如图所示的抛物线,当x _时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小;当 x 时,y有最大值.15.已知一种卡车每辆至多能载4吨货物,现有38吨黄豆,若要一次运完这批黄豆,至少需要这种卡车辆.16.林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下:这50个同学家一天丢弃废塑料袋的众数是;17.如图,平面镜A 与B之间的夹角为 120°,光线经平面镜A 反射到平面镜B上,再反射出去.若∠1=∠2,则∠1 的度数为 .18.若4y-3x=0 ,则y yx+= .19.如图,在△ABC中,∠BAC=45,现将△ABC绕点A逆时针旋转30至△ADE的位置.则∠DAC= .20.被减式为232x xy-,差式为2243x xy y-+,则减式为.三、解答题21.根据生物学家的研究,人体的许多特征都是由基因控制的,有的人是单眼皮,有的人是双眼皮,这是由一对人体基因控制的,控制单眼皮的基因f是隐性的,控制双眼皮的基因F是显性的,这样控制眼皮的一对基因可能是ff、FF或Ff,基因ff的人是单眼皮,基因FF或Ff的人是双眼皮.在遗传时,父母分别将他们所携带的一对基因中的一个遗传给子女,而且是等可能的,例如,父母都是双眼皮而且他们的基因都是Ff,那么他们的子女只有ff、FF或Ff三种可能,具体可用下表表示:你能计算出他们的子女是双眼皮的概率吗?如果父亲的基因是Ff,母亲的基因是ff呢?22.如图,点 P 的坐标为(4,0),OP 的半径为 5,且⊙P与x 轴交于点A、B,与y轴交于点C、D,试求出点A、B、C、D 的坐标.23.如图,梯形ABCD中,DC∥AB,DE∥BC交AB于E,已知△ADE的周长为12cm,CD=5 cm.求梯形的周长.24.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.25.已知等腰三角形△ABC中,AB=AC,AC边上的中线BD将它的周长分成9 cm和8 cm两部分,求腰长.26.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1, 连结DF、BF,线段DF与BF的长相等.若正确请说明理由;若不正确,请举出反例;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.27.在某次美化校园活动中,先安排34人去拔草,l8人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?28.小明买了6个梨的总质量是0.95 kg,那么平均每个梨的质量约为多少(精确到0.01 kg)?29.若 a-1 的相反数是 2,b 的绝对值是 3,求a-b的值.30.如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.D5.D6.D7.D8.B9.B10.B二、填空题11.412.13.514.≤2,≥2,215.1016.217.30°18.37 19. 15°20.223x xy y ---三、解答题21. 概率为43. 若父亲的基因是Ff ,母亲的基因是ff 时,子女出现双眼皮的概率为21(50%). 22.∵点 P 的坐标为 (4,0),∴OP=4 ,∵⊙P 的半径为 5,∴AP=PB= 5,∴OA=AP-OP= 5- 4 = 1,OB=OP+PB=4+5 = 9,∴A(-1,0) ,B(9 ,0)连结 PC 、PD ,在 Rt △POO 中,PC=5,OP=4,∴OC= 3,同理 OD=3,∴C(0,3) ,D(0,-3)23.22 cm24.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.7 10+++⨯+⨯+=;方案2最后得分:1(7.07.83838.4)8 8++⨯+⨯=;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.25.6cm或163cm26.(1)正确,理由略,(2)DG=BE27.拔草14人,植树6人28.0.16 kg29.-4或230.如图:。

江苏省盐城市中考数学试卷及答案解析

江苏省盐城市中考数学试卷及答案解析

盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是 A .-2 B .- 12C .2D .12【答案】C 。

【考点】绝对值。

【分析】根据绝对值的定义,直接得出结果。

2.下列运算正确的是A .x 2+ x 3= x 5B .x 4·x 2= x 6 C .x 6÷x 2 = x 3D .( x 2)3 = x 8【答案】B 。

【考点】同底幂的乘法。

【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。

【考点】几何体的三视图。

【分析】根据几何体的三视图,直接得出结果。

4.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .5【答案】A 。

【考点】代数式代换。

【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离A B CD【答案】B 。

【考点】圆心距。

【分析】126464<O O <-+∴Q 两圆相交。

6.对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。

【考点】反比例函数。

【分析】根据反比例函数性质,直接得出结果。

7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是A .平均数为30B .众数为29C .中位数为31D .极差为5【答案】B 。

初中毕业升学考试(江苏盐城卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(江苏盐城卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(江苏盐城卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣5的相反数是()A.﹣5 B.5 C .﹣ D.【答案】B.【解析】试题分析:﹣5的相反数是5.故选B.考点:相反数.【题文】计算的结果是()A. B.﹣ C. D.﹣【答案】A.【解析】试题分析:=.故选A.考点:幂的乘方与积的乘方.【题文】我国2016年第一季度GDP总值经初步核算大约为159000亿元,数据159000用科学记数法表示为()A.1.59×104 B.1.59×105 C.1.59×104 D.15.9×104【答案】B.【解析】试题分析:159000=1.59×105,故选B.考点:科学记数法—表示较大的数.【题文】下列实数中,是无理数的为()A.﹣4 B.0.101001 C. D.【答案】D.【解析】试题分析:解:A.﹣4是整数,是有理数,故本选项不符合题意;B.0.101001是小数,属于分数,故本选项不符合题意;是无理数,故本选项符合题意;C.是小数,属于分数,故本选项不符合题意;D.是无理数,正确;故选D.考点:无理数.【题文】下列调查中,最适宜采用普查方式的是()A. 对我国初中学生视力状况的调查B. 对量子科学通信卫星上某种零部件的调查C. 对一批节能灯管使用寿命的调查D. 对“最强大脑”节目收视率的调查【答案】B【解析】试题分析:A.对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;B.对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;C.对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;D.对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选B.考点:全面调查与抽样调查.【题文】如图,已知a、b、c、d四lA.0个 B.1个 C.2个 D.3个【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF 相似的三角形有2个.故选C.考点:相似三角形的判定;平行四边形的性质.【题文】若a、b、c为△ABC的三边长,且满足,则c的值可以为()A.5 B.6 C.7 D.8【答案】A.【解析】试题分析:∵,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.考点:三角形三边关系;非负数的性质:绝对值;非负数的性质:算术平方根.【题文】分解因式:=.【答案】a(a﹣b).【解析】试题分析:=a(a﹣b).故答案为:a(a﹣b).考点:因式分解-提公因式法.【题文】当x=时,分式的值为0.【答案】1.【解析】试题分析:当x﹣1=0时,x=1,此时分式的值为0.故答案为:1.考点:分式的值为零的条件.【题文】如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为.【答案】.【解析】试题分析:∵圆被等分成6份,其中红色部分占2份,∴落在阴影区域的概率==,故答案为:.考点:几何概率.【题文】如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为.【答案】8.【解析】试题分析:连接BE、AE,如右图所示,∵六边形ABCDEF是正六边形,∴∠BAF=∠AFE=120°,FA=FE,∴∠FAE=∠FEA=30°,∴∠BAE=90°,∴BE是正六边形ABCDEF的外接圆的直径,∵正六边形ABCDEF内接于半径为4的圆,∴BE=8,即则B、E两点间的距离为8,故答案为:8.考点:正多边形和圆;推理填空题.【题文】如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.【答案】5.【解析】试题分析:主视图如图所示,∵由6个棱长均为1的正方体组成的几何体,∴主视图的面积为5×12=5,故答案为:5.考点:简单组合体的三视图.【题文】已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.【答案】8π.【解析】试题分析:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.故答案为:8π.考点:圆锥的计算.【题文】方程的正根为.【答案】x=2.【解析】试题分析:去分母得,整理得,解得,,经检验,都是分式方程的解,所以原方程的正根为x=2.故答案为:x=2.考点:分式方程的解.【题文】李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需分钟.【答案】40.【解析】试题分析:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,依题意得:,由①+②,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为:40.考点:二元一次方程组的应用.【题文】已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC 面积的所有可能值为.【答案】8或24.【解析】试题分析:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为:8或24.考点:解直角三角形;分类讨论.【题文】如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【答案】.【解析】试题分析:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF •sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴,解得:y=0.25,∴AE=1.75,∴EH=AE ﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.考点:菱形的性质;翻折变换(折叠问题).【题文】计算:(1);(2).【答案】(1)﹣1;(2).【解析】试题分析:(1)根据负整数指数幂的意义和绝对值的意义计算;(2)利用平方差公式和二次根式的乘法法则运算.试题解析:(1)原式=2﹣3=﹣1;(2)原式==.考点:二次根式的混合运算.【题文】先化简,再求的值,其中x=3.【答案】,1.【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式===当x=3时,原式=1.考点:分式的化简求值.【题文】甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?【答案】(1)甲成绩的中位数是90,乙成绩的中位数是93;(2)甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.【解析】试题分析:(1)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数就是这组数据的中位数进行分析;(2)数学综合素质成绩=数与代数成绩×+空间与图形成绩×+统计与概率成绩×+综合与实践成绩×,依此分别进行计算即可求解.试题解析:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90;乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93.答:甲成绩的中位数是90,乙成绩的中位数是93;(2)6+3+2+2=10.甲90×+93×+89×+90×=27+27.9+17.8+18=90.7(分);乙94×+92×+94×+86×=28.2+27.6+18.8+17.2=91.8(分);答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.考点:中位数;加权平均数.【题文】一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字.(1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.【答案】(1);(2).【解析】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率==;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率==.考点:列表法与树状图法;概率公式.【题文】如图,已知△ABC中,∠ABC=90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC.(2)判断四边形ABCD的形状,并说明理由.【答案】(1)作图见解析;(2)四边形ABCD是矩形.【解析】试题分析:(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;③连接DA、DC即可求解;(2)利用直角三角形斜边与其边上中线的关系进而得出AO=CO=BO=DO,进而得出答案.试题解析:(1)①如图所示:②如图所示:③如图所示:(2)四边形ABCD是矩形,理由:∵Rt△ABC中,∠ABC=90°,BO是AC边上的中线,∴BO=AC,∵BO=DO ,AO=CO,∴AO=CO=BO=DO,∴四边形ABCD是矩形.考点:作图—基本作图;矩形的判定.【题文】我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?【答案】(1)240;(2)15.【解析】试题分析:(1)直接将点A坐标代入即可;(2)观察图象可知:三段函数都有y≥15的点,而且AB段是恒温阶段,y=20,所以计算AD和BC两段当y=15时对应的x值,相减就是结论.试题解析:(1)把B(12,20)代入中得:k=12×20=240;(2)设AD的解析式为:y=mx+n.把(0,10)、(2,20)代入y=mx+n中得:,解得:,∴AD的解析式为:y=5x+10.当y=15时,15=5x+10,x=1,15=,x==16,∴16﹣1=15.答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15小时.考点:反比例函数的应用;分段函数.【题文】如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”.(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.【答案】(1)7;(2)y=﹣2x+2或y=﹣2x﹣2.【解析】试题分析:(1)根据平行一次函数的定义可知:k=﹣2,再利用待定系数法求出b的值即可;(2)根据位似比为1:2可知:函数y=kx+b与两坐标的交点坐标,再利用待定系数法求出函数y=kx+b的表达式.试题解析:(1)由已知得:k=﹣2,把点(3,1)和k=﹣2代入y=kx+b中得:1=﹣2×3+b,∴b=7;(2)根据位似比为1:2得:函数y=kx+b的图象有两种情况:①不经过第三象限时,过(1,0)和(0,2),这时表达示为:y=﹣2x+2;②不经过第一象限时,过(﹣1,0)和(0,﹣2),这时表达示为:y=﹣2x﹣2;考点:位似变换;两条直线相交或平行问题;分类讨论.【题文】如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.(1)求∠ABE的大小及的长度;(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为,求BG的长.【答案】(1)45°,;(2)4.【解析】试题分析:(1)连接AE,如图1,根据圆的切线的性质可得AE⊥BC,解Rt△AEB可求出∠ABE,进而得到∠DAB,然后运用圆弧长公式就可求出的长度;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==AB,根据等腰三角形的性质可得BE=EG,只需运用勾股定理求出BE,就可求出BG的长.试题解析:(1)连接AE,如图1,∵AD为半径的圆与BC相切于点E,∴AE⊥BC,AE=AD=2.在Rt△AEB中,sin∠ABE===,∴∠ABE=45°.∵AD∥BC,∴∠DAB+∠ABE=180°,∴∠DAB=135°,∴的长度为=;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==,∴AG=AB.∵AE⊥BG,∴BE=EG.∵BE===2,∴EG=2,∴BG=4.考点:切线的性质;弧长的计算;动点型;最值问题.【题文】某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设各有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入.(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.【答案】(1)在规定时间内可通过4680名人员,安检所需要的总费用为53400元;(2)每个入口处,有4个通道安放门式安检仪,而其余1个通道均为手持安检仪,安检所需要的总费用最少..【解析】试题分析:(1)依题意直接列式计算即可;(2)设设每个入口处,有n个通道安放门式安检仪,而其余(5﹣n)个通道均为手持安检仪(0≤n≤5的整数),根据题意列出不等式求出安检方案,用总费用函数关系式确定出安检所需要的总费用最少的方案.试题解析:(1)根据题意,得(10×2+2×3)×6×30=4680(名)安检所需要的总费用为:(2×3000+2×2×200+3×500+3×1×200)×6=53400(元).答:在规定时间内可通过4680名人员,安检所需要的总费用为53400元.(2)设每个入口处,有n个通道安放门式安检仪,而其余(5﹣n)个通道均为手持安检仪(0≤n≤5的整数),根据题意得,[10n+2(5﹣n)]×6×30≥7000,解不等式得,n≥3.5,∵0≤n≤5的整数,∴n=4或n=5;安检所需要的总费用:w=[3000n+2n×200+500(5﹣n)+(5﹣n)×1×200]×6=16200n+21000当n越小,安检所需要的总费用越少,∴n=4时,安检所需要的总费用最少,为85800.即:每个入口处,有4个通道安放门式安检仪,而其余1个通道均为手持安检仪,安检所需要的总费用最少.考点:一元一次不等式组的应用;最值问题;方案型.【题文】如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内以点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.【答案】(1)b=﹣2,c=3;(2)M(,);(3)①证明见解析;②PA+PC+PG的最小值为,此时点P的坐标(﹣,).【解析】试题分析:(1)把A(﹣3,0),B(0,3)代入抛物线即可解决问题.(2)首先求出A、C、D坐标,根据BE=2ED,求出点E坐标,求出直线CE,利用方程组求交点坐标M.(3)①欲证明PG=QR,只要证明△QAR≌△GAP即可.②当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,由sin∠ACM==求出AM,CM,利用等边三角形性质求出AP、PM 、PC,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵抛物线过A、B两点,∴,解得:,∴b=﹣2,c=3.(2),对于抛物线,令y=0,则,解得x=﹣3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(﹣1,0),∵BE=2ED,∴点E坐标(,1),设直线CE为y=kx+b,把E 、C代入得到:,解得:,∴直线CE为,由,解得或,∴点M坐标(,).(3)①∵△AGQ,△APR是等边三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60°,∴∠QAR=∠GAP,在△QAR 和△GAP中,∵AQ=AG,∠QAR=∠GAP,AR=AP,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵PA+PB+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC 于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,),在RT△QCN中,QN=,CN=7,∠QNC=90°,∴QC==,∵sin∠ACM==,∴AM=,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=,∴AP=,PM=RM=,∴MC==,∴PC=CM﹣PM=,∵,∴CK=,PK=,∴OK=CK﹣CO=,∴点P坐标(﹣,),∴PA+PC+PG的最小值为,此时点P的坐标(﹣,).考点:二次函数综合题;旋转的性质;最值问题;压轴题.。

2022年江苏省盐城市中考数学经典试题附解析

2022年江苏省盐城市中考数学经典试题附解析

PB A O 2022年江苏省盐城市中考数学经典试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C .43D .83 2.△ABC的三边长分别为 6、8、10,并且以A 、B 、C 三点分别为圆心,作两两相切的圆,那么这三个圆的半径分别为( ) A .3、4、5 B .2、4、6 C .6、8、10 D .4、6、8 3.如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m 4.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23-C . 23±D .32±5.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .%10B .%15C .%20D .%256.下列命题中,是真命题的是 ( )A .一组对角相等,一组对边相等的四边形是平行四边形B .若a b =,则a b =C .一组对边相等,另一组对边平行的四边形是平行四边形D .夹在两条平行线之间的平行线段相等7. 下列长度的三条线段不能..组成三角形的是( ) A .1,2,3B .2,3,4C .3,4,5D .4,5,6 8. 如图所示,将△ABC 沿着XY 方向平移一定的距离就得到△MNL ,则下列结论中正确的是( )①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNLA .1个B .2个C .3个D .4个 9.在下图中,与图形变换相同的是( )10.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°11.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1-1、图1-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=,类似地,图1-2所示的算筹图我们可以表述为( )A .2114327x y x y ⎧⎨⎩+=+= B .2114322x y x y ⎧⎨⎩+=+= C .3219423x y x y ⎧⎨⎩+=+= D .264327x y x y ⎧⎨⎩+=+=二、填空题12.为了解某地初中三年级男生的身高情况,从该地的一所中学选取容量为60的样本(60名学生的身高,单位:厘米),分组情况如下:则a = 、m = .13.已知□ABCD 的两条对角线相交于直角坐标系的原点.点A ,B 的坐标分别为(-1,-5),(-1,2).则C ,D 的坐标分别为 .14.在平面直角坐标系中,点P(-l ,2)到y 轴的距离是 .15.已知AD 是△ABC 的对称轴,AC=8 cm ,DC=4 cm ,则△ABC 的周长为 cm . 16.有下列再句:①作射线DC=4cm ;②延长线段AB 到点 C ,使AC =12BC ;③反向延长射线 OP 到点 M ,使OM=OP ;④如果∠1 与∠2互为余角,∠2与∠B 互为余角,那么∠1=∠B ;⑤由两个直角组成的图形叫做平角;⑥几个角的和为90°,则这几个角互余.其中正确的有 (填序号).17.若x=1 是方程2155(1)0.30.33x x a ax -+-=-的解,那么式子21a a ++的值是 .三、解答题18.如图,在某建筑物 AC 上,挂着宣传条幅BC,小明站在点 F处,看条帽顶端 B,测得仰角为 30°;再往条幅方向前行 20m 到达点E处,看条幅顶点 B,测得仰角为 60°,求宣传条幅 BC 的长. (小明的身高忽略不计,结果精确到0.1 m)19.在如图所示的矩形ABCD 中,AB=3,BC=4,P 是 BC 边上与点B、C不重合的任意一点,设 PA=x,D 到PA 的距离为 y,求:(1)y 关于x 的函数解析式,并写出自变量x 的取值范围;(2)画出函数的图象.20.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图.请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其它信息,例如该中学没有获得满分的同学等等.请再写出两条信息.21.阅读下列题目的计算过程: 23211x x x ---+ =32(1)(1)(1)(1)(1)x x x x x x ---+-+- ① =32(1)x x --- ②=32x 2x --+ ③=1x -- ④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: .(2)错误的原因是 .(3)本题目的正确结论是 .22.分析如图(1)、(2)、(4)中阴影部分的分布规律,按此规律在如图(3)中画出其中的阴影部分.23. 请你先将分式2211x x x x x ---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.24.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.25.化简求值: )3)(3()5()4(222-+-+-+x x x x ,其中x=-2.26.任意给一个非零数,按图中的程序计算下去,试写出输出的结果.27.如图所示,表示出阴影部分的面积.2(2)(2)224a x b x ab ax bx x --=--+28.为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一 段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?29.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:30.计算:(1) (-53)×(-9999 );(2)11 (37)()(3)88-⨯---⨯;(3)3711 (1)1 48127--⨯【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.C5.C6.D7.A8.B9.B10.C11.A二、填空题12.0.45,613.C(1,5), D(1,-2)14.115.2416.③,④17.3三、解答题18.∵∠BFC=30°,∠BEC=60°,∠BCF=90°,∴∠EBF=∠EBC=30°,∴BE= EF=20 , 在 Rt △BCE 中,060BC BE Sin =⋅32017.3=≈(m) 答:宣传条幅 BC 的长约为 1.3m. 19.(1)过:D 作 DE ⊥AP ,垂足为 E ,连结 DP ,1122ADP S AB AD AP DE ∆=⋅=⋅, ∴113422xy ⨯⨯=,12y x=.∵AB<AP<AC,∴35x << (2)画图略. 注意x 的取值范围,它的图象是一段曲线.20.⑴32人;⑵ 43.75%;⑶该中学参赛同学的成绩均不低于60分.成绩在80-90分数的人数最多.21.(1) ②;(2)错用了解分式方程的去分母法则. (3)11x -- 22.如图:23.22x-(代入0,1x≠-的数都可以)24.略25.6x+16=4.26.输出的数等于输入的数27.2(2)(2)224a xb x ab ax bx x--=--+28.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好29.表中依次填:20,50;40,40,630.(1)529947 (2)5 (3) 19 21。

盐城中考数学试题及答案最新

盐城中考数学试题及答案最新

盐城中考数学试题及答案最新一、选择题1. 设直线 l1 的斜率为 k,直线 l2 与直线 l1 垂直,l2 的斜率为A) kB) -kC) 1/kD) -1/k2. 已知三角形 ABC,AD 是 AB 边上的高,若 BD = 6,CD = 8,且BC = 10,则 AD 的长为A) 4B) 6C) 8D) 103. 若 a + b = 7,且 a^2 + b^2 = 37,则 a * b 的值为A) 9B) 12C) 15D) 284. 已知函数 f(x) = ax^2 + bx + c,其中 a, b, c 为常数,且 a > 0。

若函数图像的顶点坐标为 (2, 3),则 a + b + c 的值为A) 0B) 3C) 5D) 75. 一架飞机从盐城起飞,经过 a 小时后抵达上海,再经过 b 小时后回到盐城。

已知飞机的平均飞行速度为 600 公里/小时,上海与盐城之间的距离为 1200 公里。

则 a + b 的值为A) 2B) 3C) 4D) 5二、非选择题1. 计算:(1 + 2 + ... + 100)^2 的值。

2. 已知直角三角形 ABC,B 是直角,AB = 3,BC = 4,求三角形ABC 的斜边 AC 的长。

3. 一个圆的半径为 2 厘米,求该圆的面积。

4. 某校初中部有 400 名学生,其中男生占总人数的 40%,女生人数占男生人数的 2 倍。

请问女生人数是多少?5. 在数轴上,有一个点 P,其坐标满足 -3 < x ≤ 5,求点 P 的坐标。

三、解答题1. 已知函数 f(x) = 2x + 5,求当 x = 3 时,f(x) 的值。

2. 某校学生参加体育锻炼,男生锻炼时间为每天 1 小时,女生锻炼时间为每天 45 分钟,已知男生人数是女生人数的 3 倍,某班级共有 60 名学生,求男生和女生的总锻炼时间。

3. 已知集合 A = {2, 4, 6, 8, 10},B = {4, 8, 12},求A ∩ B 的元素个数。

江苏中考数学历年真题分类 整式计算及因式分解

江苏中考数学历年真题分类    整式计算及因式分解

江苏中考数学历年真题分类整式计算及因式分解一、单选题1.(2021·徐州)下列计算正确的是()A.(a3)3=a9B.a3·a4=a12C.a2+a3=a5D.a6÷a2=a3【答案】A【解析】【解答】A. (a3)3=a9,符合题意;B. a3·a4=a7≠a12,不符合题意;C. a2+a3≠a5,不符合题意;D. a6÷a2=a4≠a3,不符合题意故答案为:A【分析】根据幂的乘方、同底数幂的乘法及除法、合并同类项分别进行计算,然后判断即可. 2.(2021·南通)下列计算正确的是()A.a3+a3=a6B.a3⋅a3=a6C.(a2)3=a5D.(ab)3=ab3【答案】B【解析】【解答】解:A. a3+a3=2a3,选项计算错误,不符合题意;B. a3⋅a3=a6,选项计算正确,符合题意;C. (a2)3=a6,选项计算错误,不符合题意;D. (ab)3=a3b3,选项计算错误,不符合题意;故答案为:B.【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方分别进行计算,然后判断即可. 3.(2021·常州)计算(m2)3的结果是()A.m5B.m6C.m8D.m9【答案】B【解析】【解答】解:(m2)3= m6,故答案为:B.【分析】直接根据幂的乘方法则进行计算.4.(2021·盐城)计算:a2⋅a的结果是()A.a3B.a2C.a D.2a2【答案】A【解析】【解答】a2⋅a=a2+1=a3故答案为:A【分析】同底数幂相乘,底数不变,指数相加,据此计算即可.5.(2021·无锡)下列运算正确的是()A.a2+a=a3B.(a2)3=a5C.a8÷a2=a4D.a2⋅a3=a5【答案】D【解析】【解答】解:A. a2+a,不是同类项,不能合并,故该选选错误,B. (a2)3=a6,故该选项错误,C. a8÷a2=a6,故该选项错误,D. a2⋅a3=a5,故该选项正确,故答案为:D.【分析】根据合并同类项、幂的乘方、同底数幂的除法、同底数幂的乘法分别计算,然后判断即可. 6.(2021·镇江)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为()A.1840B.1921C.1949D.2021【答案】D【解析】【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故答案为:D.【分析】输入1921,根据程序计算,如果结果小于1000,就返回继续计算,直到结果大于1000,就和100相加,输出结果,结束程序.7.(2021·镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B3【答案】B【解析】【解答】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故答案为:B.【分析】把每行和每列的三个数分别求和,根据其和为789列等式求解,结合n为整数,分别进行验证,即可解答.8.(2021·淮安)计算(x5)2的结果是()A.x3B.x7C.x10D.x25【答案】C【解析】【解答】解:(x5)2=x5×2=x10.故答案为:C.【分析】幂的乘方法则是底数不变,指数相乘,据此计算即可.9.(2021·宿迁)下列运算正确的是()A.2a−a=2B.(a2)3=a6C.a2·a3=a6D.(ab)2=ab2【答案】B【解析】【解答】解:A、2a−a=a,故该选项错误;B、(a2)3=a6,故该选项正确;C、a2·a3=a5,故该选项错误;D、(ab)2=a2b2,故该选项错误;故答案为:B.【分析】根据合并同类项:合并同类项后,所得项的系数为合并前各项系数的和,字母连同它的指数不变;幂的乘方:底数不变,指数相乘;同底数幂相乘:底数不变,指数相加;积的乘方:把积的每一个因式分别乘方,再把所得的积相乘可分别求解,即可得结果.10.(2021·南京)计算(a2)3⋅a−3的结果是()A.a2B.a3C.a5D.a9【答案】B【解析】【解答】解:原式= a6·a−3=a3;故答案为:B.【分析】利用幂的乘方,底数不变,指数相乘,先算乘方运算,再利用同底数幂相乘的法则进行计算.11.(2021·连云港)下列运算正确的是()A.3a+2b=5ab B.5a2−2b2=3C.7a+a=7a2D.(x−1)2=x2+1−2x【答案】D【解析】【解答】解:A,3a与2b不是同类项,不能合并,故答案为:错误,不符合题意;B,5a2与2b2不是同类项,不能合并得到常数值,故答案为:错误,不符合题意;C,合并同类项后7a+a=8a≠7a2,故答案为:错误,不符合题意;D,完全平方公式:(x−1)2=x2−2x+1=x2+1−2x,故答案为:正确,符合题意;故答案为:D.【分析】根据合并同类项及完全平方公式分别进行计算,然后判断即可.12.下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a−b)2=a2−b2D.(ab)2=a2b2【答案】D【解析】【解答】解:A、a2+2a2=3a2,故A错误;B、a6÷a3=a3,故B错误;C、(a−b)2=a2−2ab+b2,故C错误;D、(ab)2=a2b2,故D正确;故答案为:D.【分析】由合并同类项、同底数幂除法,完全平方公式、积的乘方,分别进行判断,即可得到答案. 13.下列计算正确的是()A.a3+a3=a6B.(a3)2=a6C.a6÷a2=a3D.(ab)3=ab3【答案】B【解析】【解答】解:a3+a3=2a3,因此选项A不正确;(a3)2=a3×2=a6,因此选项B正确;a6÷a2=a6−2=a4,因此选项C不正确;(ab)3=a3b3,因此选项D不正确;故答案为:B.【分析】根据合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算法则进行计算即可. 14.下列运算正确的是()A.2a−a=2B.a3⋅a2=a6C.a3÷a=a2D.(2a2)3=6a5【答案】C【解析】【解答】A. 2a−a=a,故错误;B. a3⋅a2=a5,故错误;C. a3÷a=a2,正确;D. (2a2)3=8a6,故错误;故答案为:C.【分析】根据整式的加减与幂的运算法则即可判断.15.(2020·扬州)下列各式中,计算结果为m6的是()A.m2⋅m3B.m3+m3C.m12÷m2D.(m2)3【答案】D【解析】【解答】A. m2⋅m3=m5,不符合题意B. m3+m3=2m3,不符合题意C. m12÷m2=m10,不符合题意D. (m2)3=m6,符合题意故答案为:D【分析】根据同底数幂的乘方和除法运算法则,合并同类项法则,幂的乘方运算法则即可求解. 16.(2020·苏州)下列运算正确的是()A.a2⋅a3=a6B.a3÷a=a3C.(a2)3=a5D.(a2b)2=a4b2【答案】D【解析】【解答】解:A、a2⋅a3=a5,此选项错误;B、a3÷a=a2,此选项错误;C、(a2)3=a6,此选项错误;D、(a2b)2=a4b2,此选项正确;故答案为:D.【分析】根据幂的运算法则逐一计算可得.17.(2020·南京)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【答案】B【解析】【解答】解:(a3)2÷a2=a6÷a2=a4.故答案为:B.【分析】先计算幂的乘方,再计算同底数幂的除法,从而可得答案.18.(2020·连云港)下列计算正确的是().A.2x+3y=5xy B.(x+1)(x−2)=x2−x−2C.a2⋅a3=a6D.(a−2)2=a2−4【答案】B【解析】【解答】解:A、2x与3y不是同类项不能合并运算,故错误;B、多项式乘以多项式,运算正确;C、同底数幂相乘,底数不变,指数相加,a2⋅a3=a5,故错误;D、完全平方公式,(a−2)2=a2−4a+4,故错误故答案为:B【分析】根据合并同类项、多项式乘以多项式,同底数幂相乘,及完全平方公式进行运算判断即可. 19.(2020·淮安)计算t3÷t2的结果是()A.t2B.t C.t3D.t5【答案】B【解析】【解答】解:原式=t3−2=t.故答案为:B.【分析】根据同底数幂的除法法则,底数不变,指数相减计算即可.20.(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【答案】D【解析】【解答】解:设两个连续奇数中的较小一个奇数为x,则另一个奇数为x+2由这两个奇数得到的“幸福数”为(x+2)2−x2=2(2x+2)=4(x+1)观察四个选项可知,只有选项D中的520能够整除4即520÷4=130故答案为:D.【分析】设两个连续奇数中的较小一个奇数为x,则另一个奇数为x+2,先得出由这两个奇数得到的“幸福数”为4(x+1),再看四个选项中,能够整除4的即为答案.21.(2020·常州)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【答案】B【解析】【解答】解:m6÷m2=m6−2=m4.故答案为:B.【分析】直接利用同底数幂除法的运算法则:底数不变,指数相减解答即可.22.(2019·泰州)若2a−3b=−1,则代数式4a2−6ab+3b的值为()A.-1B.1C.2D.3【答案】B【解析】【解答】解:4a2−6ab+3b=2a(2a−3b)+3b=−2a+3b=−(2a−3b)=1故答案为:B.【分析】先将原式转化为2a(2a-3b)+3b,再整体代入,可得到代数式-(2a-3b),然后再代入可求值。

最新江苏省盐城市中考数学十年真题汇编试卷附解析

最新江苏省盐城市中考数学十年真题汇编试卷附解析

江苏省盐城市中考数学十年真题汇编试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( ) A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠2.若01=++-y x x ,则20052006y x +的值为( ) A .0 B .1 C .-1 D . 23.国家统计局统计资料显示,2008年第一季度我国国内生产总值为 61491亿元. 用科学记数法表示为(保留 3个有效数字) ( )A .126.1410⨯B .126.1510⨯C .136.1410⨯D .86149110⨯ 4.一个锐角的补角与这个角的余角的差是( )A .锐角B .直角C .钝角D .平角 5.小慧测得一根木棒的长度为2.8米,这根木棒的实际长度的范围( )A .大于2米,小于3米B .大于2.7米,小于2.9米C .大于2.75米,小于2.84米D .大于或等于2.75米,小于2.85米二、填空题6.图中1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)分别写出1l 与2l 的函数解析式:1l : ,2l : ;(2)当销售量 件时,该公司开始盈利(销售收入大于销售成本).7.○中填入最小的正整数,△中填入最小的非负数,□中填人大于-5,而小于 4 的整数的个数,并将计算结果填在下边的横线上.( ○+△)×□= .8.多项式2344212xy x y x --+的次数是 ,一次项系数是 .将该多项式按x 的升幂排列是 .9.若(1)35a a x -+=-是关于x 的一元一次方程,则a = ,x = .10.在下列横线上填写正确的理由.(1)若∠A+∠B=90°,∠A+∠C=90°,则∠B=∠C ,理由是 . (2)若∠A+∠B=180°,∠C+∠D=180°,且∠A=∠C ,则∠B=∠D ,理由是 .(3)若∠l+∠2=180°,∠2+∠3=180°,∠1+∠4=90°,∠3+∠5=90°,则 ①∠l=∠3,理由是 ; ②∠4=∠5,理由是 .(4)如图,已知∠AOC 和∠B0D 都是直角,则∠AOD=∠BOC ,理由是 .11.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 .12.-6 的倒数是 ,相反数是 ,绝对值是 .13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了 步路(假设2步为l m),却踩伤了花草.14.如图,已知正方形ABCD 的边长为2.如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′点处,那么tan BAD ∠′等于__________.15.已知□ABCD 的周长为60 cm ,对角线AC ,BD 相交于点O),△AOB 的周长比△DCA 的周长长5 cm ,则AB= cm ,BC= cm .16.如图,A 、B 是双曲线xk y =的一个分支上的两点,且点B(a ,b)在点A 的右侧,则b 的取值范围是 .17. 如图,已知⊙O 的半径为 4,点C 在⊙O 上,∠ACB=45°,求弦AB 的长.18.如图,在⊙O中,AB∥CD,则 = .BD (只需填一组相等的量即可).19.我们可以用下面的方法测出月球与地球的距离:在月圆时,把一个五分的硬币 (直径约为2.4 cm),放在离眼睛0约 2.6 m 的AB 处 (如图),正好把月亮遮住,已知月球的直径约为 3500 km,那么月球与地球的距离约为 km.(保留两个有效数字).20.如图,△P1O A1、△P2 A1 A2是等腰直角三角形,点P1、P2在函数4yx=(x>0)的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是.21.已知115a b a b+=+,则b aa b+= .三、解答题22.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母相同时,他就可以获得一次指定..一位到会者为大家表演节目的机会.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;若小亮参加一次游戏,则他能获得这种指定 (2)机会的概率是多少?23.已知二次函数y=-x2+mx+n,当x=2时,y=4,当x=-1时,y=-2,求当x=1时,y的值.当x=1时,y的值为4.24.已知:四边形ABCD 中,AB=CD ,E ,F ,G 分别是AD ,BC ,AC 的中点. 求证:∠GEF=∠GFE .25. 在如图的方格纸中,画出图中的△ABC 向右平移5格后的△A ′B ′C ′,然后再画出将△A ′B ′C ′向上平移2格后的△A ″B ″C ″.26.解方程:2(5)(5)(1)24x x x +---=.27.已知n 为正整数,求212(2)2(2)n n +-+⋅-的值.28.如图,可以看成是什么“基本图案”经过怎样的旋转得到的?29.如图所示,把△ACB沿着AB翻转,点C与点D重合,请用符号表示图中所有的全等三角形.30.计算:(1)(-4)×5×(-0. 25 );(2)(-4)×8×(-2.5)×O. 1×(-0.125)×1O;(3)3137 ()(3)(4) 8888-⨯--⨯-;(4)71199(36)72⨯-;(5)111()(24) 346+-⨯-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.D二、填空题6.(1)y=100x ,y=50x+200;(2)47.88.4,-2,2312244x x x y -+- 9.-1,410.(4)同角的余角相等(1)同角的余角相等 (2)等角的补角相等 (3)①同角的补角相等②等角的余角相等11.0.7112.16-,6,613.414.215.35 2,25216.0<b<2 17.18.⌒AC =⌒BD19.3. 8×lO520.()0,2421.3三、解答题22.(1)可列表如下:(2)由上表可知,小亮能获得这种指定机会的概率是6 23.24.EG=12DC=12AB=GF25.略.26.x=2527.28.略29.△ACE≌△ADE,△BCE≌△BDE,△ACB≌△ADB 30.(1)5 (2)-10 (3)3 (4)135992(5)-10。

2023年江苏盐城中考数学真题及答案

2023年江苏盐城中考数学真题及答案

2023年江苏盐城中考数学真题及答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列数中,属于负数的是()A.2023 B.2023- C.12023 D.02.在平面直角坐标系中,点2(1)A ,在()A .第一象限 B.第二象限 C.第三象限 D.第四象限3.下列图形中,属于中心对称图形的是()A. B.C. D.4.下列每组数分别表示3根小木棒的长度(单位:cm),其中能搭成一个三角形的是()A.5,7,12B.7,7,15C.6,9,16D.6,8,125.2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为()A.51.0510⨯ B.410.510⨯ C.60.10510⨯ D.61.0510⨯6.由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是()A. B.C . D.7.小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为()A.45︒B.60︒C.75︒D.105︒8.如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分)9.在英文句子“Happy Teachers'Day !”中,字母“a ”出现的频数为__________.10.因式分解:2x xy -=__________________.11.在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm.12.如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.13.我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.14.如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m.(计算结果保留整数, 1.7≈)15.如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.16.如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17.计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭.18.解不等式4233x x --<,并把它的解集在数轴上表示出来.19.先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20.随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.21.如图,AB AE =,BC ED =,B E ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)22.盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表:年份201720182019202020212022人工驯养麋鹿头数3473353136663861_________3917(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.23.课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小.小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>,∴2121x x +>-.老师:分式的大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”)24.如图,在ABC 中,O 是AC 上(异于点A ,C )的一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.(1)判断BC 与O 的位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.25.某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.26.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c=++与x 轴的另一交点为点B .若14OB OA =,求b 的值.【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.27.综合与实践【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F .【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当4AB =,8AD =,3BF =时,求证:点A ',B ',C 在同一条直线上.【深入探究】(3)如图4,当AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?请说明理由.(4)在(3)的情形下,设AC 与BD ,EF 分别交于点O ,P ,试探究三条线段AP ,B D ',EF 之间满足的等量关系,并说明理由.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】C二、填空题(本大题共8小题,每小题3分,共24分)【9题答案】【答案】3【10题答案】【答案】()x x y【11题答案】【答案】5【12题答案】【答案】5 9【13题答案】【答案】7人【14题答案】【答案】15【15题答案】【16题答案】【答案】6三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)【17题答案】【答案】3【18题答案】【答案】1x <,数轴见详解【19题答案】【答案】226a ab +,4-【20题答案】【答案】(1)12(2)16【21题答案】【答案】(1)见解析(2)见解析【22题答案】【答案】(1)14.4︒,1585(2)3980(3)见解析【23题答案】【答案】(1)M N>(2)<【24题答案】【答案】(1)见解析(2)O 的半径长为154.【25题答案】【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【26题答案】【答案】(1)①;(2)5b =或3-;(3)1n =或1n =-14n =【27题答案】【答案】(1)菱形;(2)证明见解答;(3)BC =,证明见解析;2()AP B D '=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江苏省盐城市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的倒数为()A .﹣2 B.﹣C.D.22.如图四个图形中,是中心对称图形的为()A .B.C.D.3.下列运算正确的是()A .a3•b3=(ab)3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a54.在如图四个几何体中,主视图与俯视图都是圆的为()A. B. C. D.5.下列事件中,是必然事件的为()A. 3天内会下雨B.打开电视机,正在播放广告C. 367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩6.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A. 85°B. 75°C. 60°D. 45°7.若一个等腰三角形的两边长分别是2和5,则它的周长为()A. 12 B. 9 C. 12或9 D. 9或78.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.二、填空题(本大题共有10小题,每小题3分,共30分.)9.若二次根式有意义,则x的取值范围是.10.因式分解:a2﹣2a=.11.火星与地球的距离约为56 000 000千米,这个数据用科学记数法表示为千米.12.一组数据8,7,8,6,6,8的众数是.13.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.14.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为.15.若2m﹣n2=4,则代数式10+4m﹣2n2的值为.16.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.17.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为.18.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB 的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤)19.(1)计算:|﹣1|﹣()0+2cos60°(2)解不等式:3(x﹣)<x+4.20.先化简,再求值:(1+)÷,其中a=4.21.2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?22.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.23.如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.24.如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x 和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.25.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.26.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.27.知识迁移我们知道,函数y=a(x﹣m)2+n(a≠0,m>0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数y=+n(k≠0,m>0,n>0)的图象是由反比例函数y=的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数y=+1的图象可由函数y=的图象向右平移个单位,再向上平移个单位得到,其对称中心坐标为.灵活应用如图,在平面直角坐标系xOy中,请根据所给的y=的图象画出函数y=﹣2的图象,并根据该图象指出,当x在什么范围内变化时,y≥﹣1?实际应用某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y1=;若在x=t (t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为y2=,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?28.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PA T相似时,求所有满足条件的t的值.参考答案一、选择题(本大题共有8小题)1.D解析:12是一个分数,颠倒分子与分母得2.故选D.点评:本题考查了倒数的概念,解题的关键是掌握倒数的概念.2.C解析:根据中心对称图形的定义可知,A,B,D选项中的图形无论绕哪一个点旋转180°后,得到的图形都不能与原图形重合,故不是中心对称图形;只有C选项是中心对称图形,故选择C.点评:本题考查了中心对称图形的概念,解题的关键是利用中心对称图形的概念求解.3.A解析:A是积的乘方的逆用,由(ab)3=a3·b3,反过来就是a3·b3=(ab)3,结果正确;选项B 中是同底数幂相乘,底数不变,指数相加,应为a5,结果错误;选项C是同底数幂相除,底数不变,指数相减,应为a3,结果错误;选项D是幂的乘方,底数不变,指数相乘,应为a6,结果错误;故选择A .点评:本题考查了本题考查了幂的运算性质,解题的关键是熟悉性质并能正确应用.4.D;解析:选项A中主视图是矩形,俯视图是圆;选项B中主视图是等腰梯形,俯视图同心圆,选项C的主视图是等腰三角形,俯视图是圆和圆心;选项D的三视图都是圆;故选择D . 点评:本题考查了三视图的概念,解题的关键是正确理解主视图(正视图)与俯视图的概念.5.C解析:A选项是随机事件,B选项是随机事件,C选项是必然事件,也是确定事件,D选项是随机事件,故选择C.点评:本题考查了必然事件的概念,解题的关键是利用必然事件的概念求解.6.B解析:∵∠1+∠3+∠E=180°,∴∠3=180°-60°-45°=75°;又∵AD∥BC,∴∠2=∠3=75°,故选择B .点评:本题考查了平行线的性质和三角形内角和定理,解题的关键是熟练运用平行线的性质.7.A.解析:由题目已知可知,该三角形的三边长可能是2,2,5,也可能是5,5,2;又因为三角形三边之间必须满足“三角形两边之和大于第三边”,所以2,2,5这种情况不成立,所以该三角形的周长只可能是5+5+2=12.故选A.点评:本题考查了等腰三角形的概念以及三角形三边之间的关系,解题的关键是根据条件正确对三角形中腰与底进行分类讨论,并注意三角形三边之间的关系. 8.B解析:动点P 运动过程中:①当动点P 在AD 上时,S 由0到2逐渐增加;②当动点P 在DE 上时,此时S =2保持不变;③当动点P 在EF 上时,S 由2到1逐渐减少;④当动点P 在FG 上时,此时S =1保持不变;⑤当动点P 在GB 上时,S 由1到0逐渐减少.故选择B . 点评:本题考查了函数图像,解题的关键是理解题目情境,得出图像的变化规律. 二、填空题(本大题共有10小题) 9.x ≥1x -1≥0,x ≥1.故答案为x ≥1 .点评:本题考查了二次根式的概念,解题的关键是正确理解二次根式有意义的条件. 10.a (a -2)解析:由题意得,公因式为a ,从而另一个因式为a -2,故答案为a (a -2) .点评:本题考查了利用用提公因式法进行因式分解,解题的关键是找出公因式. 11.5.6×107解析:56 000 000=5.6×10 000 000=5.6×107;故答案为5.6×107.点评:本题考查了科学记数法,解题的关键是掌握科学记数法的表示方法. 12.8解析:∵8在这组数据中出现了3次,是出现次数最多的,∴众数是8,故答案为8. 点评:本题考查了众数的求法,解题的关键是正确掌握众数的概念. 13.BC =DC (或∠BAC =∠DAC )解析:∵AD =AB ,AC =AC ,∴当AB =DC 时,△ABC ≌△ADC (SSS );或当∠BAC =∠DAC 时,△ABC ≌△ADC (SAS ).故答案为BC =DC (或∠BAC =∠DAC )(答案不唯一) . 点评:本题考查了全等三角形的判定,解题的关键是灵活应用全等三角形的判定定理“SAS”、“SSS”来判定. 14.5解析:由三角形的中位线的性质,得DE =12AC ,EF =12AB ,DF =12BC ,∴△DEF 的周长为DE + EF + DF =12AC +12AB +12BC =12(AC +AB +BC )=12×10=5,故答案为5.点评:本题考查了三角形中位线的性质,解题的关键是正确理解三角形中位线的性质.15.18解析:10+4m -2n 2=10+2(2m -n 2)=10+2×4=18,故答案为18. 点评:本题考查了求代数式的值,解题的关键是整体代入. 16.3<r <5解析:连接BD ,在矩形ABCD 中,AD =3,CD =AB =4,在Rt △ABD 中,BD =AD 2+AB 2=32+42=5,∴AD <CD <BD ,∴点A 一定在圆内,r >3;点B 一定在圆外,r <5;故答案为3<r <5.点评:本题考查了点与圆的位置关系、矩形的性质及勾股定理,解决本题的关键是用数量关系来确定点与圆的位置关系..17.2π3ABC D解析:连接AE ,∵矩形ABCD 中,∠ADC =90°,∴sin ∠AED =AD AE =24=12,∴∠AED =30°,∵AB ∥CD ,∴∠BAE =∠AED =30°,∴⌒BE 的长度=30⋅π⋅4180=2π3,故答案为2π3.18.12n +1解析:连接D 1E 1,由图①,由三角形中位线定理,得AB =2D 1E 1,D 1E 1∥AB ,∴△OD 1E 1∽△OAB ,∴OB OE 1=AB D 1E 1=2,∴S 1=23S △ABE 1==23×12S △ABC =23×12×1=13;由图②,CD 1CB =CE 1CA=23,∠C =∠C ,∴△CD 1E 1∽△CBA ,∴AB D 1E 1=AC E 1C =32,∠CD 1E 1=∠CBA ,∴D 1E 1∥AB ,∴△OD 1E 1∽△OAB ,∴OB OE 1=AB D 1E 1=32,∴S 2=35S △ABE 1==35×13S △ABC =35×13×1=15;类似地,由图③,求得S 3=17;∴S n =12n +1,故答案为12n +1.点评:本题考查了归纳探究能力,解题的关键是计算三角形的面积,利用合情推理得出图形的变化规律.三、解答题(本大题共有10小题)19.(1)解析:先求|-1|、0和cos60°化简后,再进行加减运算即可. 解:原式=1-1+2×12=1.点评:本题考查了实数的计算,解题的关键是理解绝对值、零指数幂和锐角三角函数的意义. (2)解析:按照去括号、移项、合并同类项、系数化为1的步骤解题即可获解. 解:原不等式可化为3x ―2<x +4,∴3x ―x <4+2,∴2x <6,∴x <3.点评:本题考查了一元一次不等式的解法,解题的关键掌握解一元一次不等式的一般步骤. 20.解析:先将括号里面的分式进行加法运算,然后将除法转换成乘法,再化简. 解:原式=a 2-1+1a 2-1×3(a +1)a =a 2(a +1)(a -1)×3(a +1)a =3a a -1.当a =4时,原式=3×44-1=4.点评:本题考查了分式的混合运算,解题的关键是正确掌握分式的运算顺序和运算法则. 21. 解析:(1)数据总数=频数÷频率;(2)图上数据之和即为调查总数;(3)扇形的圆心角=扇形部分所占百分比×360°;(3)利用样本估计总体的方法,用数据总数×所占百分比即可. 解:(1)∵30÷15%=200;∴在这次抽样调查中,一共调查了200名学生.故答案为200; (2)∵200-30-90-20=60,或200×30%=60;∴把图①中的条形统计图补充完整,如下图所示:图①(3)∵20200×360°=36°,∴图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为36°:故答案为36; (4)1500×30+90200=900.答:该校初中学生对二战历史“非常了解”和“比较了解”的学生估计共有900名.22.解析:由于是从两个不同布袋中摸球,分别有两种和三种情况,所以共有6种等可能的结果;求点P 在一次函数y =x +1图像上的概率关键是找出适合函数关系式的点有几个. 解:(1)画树状图如下;20-1-102(1,-1)(-2,-1)(1,0)(-2,0)(1,2)(-2,2)甲袋乙袋结果或列表如下:(-2,2)(-2,0)(-2,-1)(1,2)(1,0)(1,-1)20-1-21结果乙袋甲袋∴点P 所有可能的坐标为(1,-1),(1,0),(1,2),(-2,-1),(-2,0), (-2,2),(2)∵只有(1,2)与(-2,-1)这两个点在一次函数y =x +1图像上, ∴P (点P 在一次函数y =x +1的图像上)=26=13.点评:本题考查了概率的概念及意义,解题的关键是掌握概率的计算方法. 23.解析:(1)由圆周角定理,得到∠DOA =2∠DBA ;(2)要证明直线ED 与⊙O 相切,关键要证明∠EDO =90°. (1)解:∵∠CBA =50°,∴∠DOA =2∠DBA =100°;(2)证明:方法一:连接OE ,在△EAO 和△EDO 中,∵AO =DO ,EA =ED ,EO =EO ,∴△EAO ≌△EDO ,得到∠EDO =∠EAO =90°,∴直线ED 与⊙O 相切.E C方法二:连接AD ,∵AO =DO ,∴∠ODA =∠OAD ;∵EA =ED ,∴∠EDA =∠EAD , ∠ODA +∠EDA =∠OAD +∠EAD ,即∠EDO =∠EAO =90°,∴直线ED 与⊙O 相切.E C点评:本题考查了圆周角定理、切线的判定、等腰三角形的性质等知识,解题的关键是找出基本图形解决问题. 24. 解析:(1)求交点A 的坐标就是求两函数关系式组成的方程组的解;(2)先由勾股定理求出OA 的长,再用a 表示点B 、C 的坐标,进而表示出BC 的长,从而求出a 的值,再求解.解:(1)由题意得⎩⎪⎨⎪⎧y =34x y =-x +7,解得⎩⎨⎧x =4y =3,∴点A 的坐标(4,3), ·················(2)过点A 作x 轴的垂线,垂足为D ,在Rt △OAD 中,由勾股定理, 得OA =OD 2+AD 2=42+32=5,∴BC =75OA =75×5=7.∵P (a ,0),∴B (a ,34a ),C (a ,-a +7),∴BC =34a -(-a +7)=74a -7,∴74a -7=7,解得a =8,∴S △OBC =12BC ·OP =12×7×8=28.=34x y点评:本题考查了一次函数的图像与性质,点的坐标与坐标平面内线段之间的关系以及数形结合思想,解题的关键是从数形结合的角度理解一次函数的图像性质,用坐标平面内的图形中点的坐标灵活表示出线段的长度. 25.解析:第(1)问,利用tan α=BAAE 可轻松求解;第(2)问需作出α=45° 的光线,构造直角三角形,从而解决问题.解:(1)当α=60°时,在Rt △ABE 中,∵tan60°=BA AE =BA10, ∴BA =10tan60°=103≈10×1.73=17.3米,即楼房的高度约为17.3米.(2)当小猫仍可以晒到太阳.理由如下: 假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H .∵∠BF A =45°,∴tan45°=BAAF=1,∴AF =BA =17.3,即此时的影长为17.3米. ∴CF =AF -AC =17.3-17.2=0.1,∴CH =CF =0.1米,∴大楼的影子才到台阶MC 这个侧面上.∴小猫仍晒到太阳.点评:本题考查了有关的锐角三角函数的应用问题,解题的关键是构造直角三角形,寻找直角三角形中合适的边角关系. 26.解析:(1)求∠EPF 的大小,就是解△EFP ,通过作底边上的高转化为直角三角形解决;(2)这里∠BAD +∠EPF =180°,PE =PF ,可通过构造全等三角形解决问题;(3)观察图形,作PM ⊥AB 于M ,AP 的长随PM 大小的变化而变化. 解:(1)过点P 作PG ⊥EF ,垂足为G , ∵PE =PF ,PG ⊥EF ,∴PG =EG =23,∠FPG =∠EPG =12∠EPF ,在Rt △FPG 中,sin ∠FPG =FG PF =234=32,∴∠FPG =60°,∴∠EPF =2∠FPG =120°.(2)作PM ⊥AB ,PN ⊥AD ,垂足分别为M 、N ,在菱形ABCD 中,∵AD =AB ,DC =BC ,AC =AC ,∴△ABC ≌△ADC .∴∠DAC =∠BAC ,∴点P 到AB 、AD 两边的距离相等,即PM =PN .在Rt △PME 和Rt △PNF 中,∵PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴FN =EM .在Rt △PMA 中,∠PMA =90°,∠P AM =12∠DAB =30°,∴AM =AP •cos30°=33,同理,AN =33,∴AE +AF =(AM -EM )+(AN +NF )=AM +AN =63.(3)由图知,AP =PMsin30° =2PM ,AP 的最大值,∴当点E 运动到PE ⊥AB 时PM 最大,当点E 运动到点A 时PM 最小;故AP 的最大值为8,AP 的最小值为4.点评:本题考查了全等三角形的判定和性质、锐角三角函数和动态图形的最值问题等知识,是一道与图形有关的综合题,解题的关键是熟练掌握图形的性质和判定,善于转化思考的角度.27.解析:“理解运用”可通过阅读“知识迁移”加以解决;“灵活运用”关键在画图,利用数形结合,找出变化范围;“实际运用”主要在理解题意,构造模型,求出a 的值. 理解应用 解:1;1;(1,1). 灵活应用解:函数y =-4x -2-2的图像如图所示;由y =-1,得-4x -2-2=-1,解得x =-2,由图可知,当-2≤x <2时,y ≥-1.实际应用解:当x =t 时,y 1=4t +4,则由y 1=4t +4=12,解得t =4;则当t =4时进行第一次复习时,复习后的记忆存留量变为1,∴点(4,1)在函数y 2=8x -a的图像上.则由1=84-a,解得a =-4.∴y 2=8x +4,再由y 2=8x +4=12,解得x =12.即当x =12时,是他第二次复习的“最佳时机点”. 点评:本题考查了学生阅读理解能力和分析问题与解决问题的能力,对学生后继学习提出了较高要求,解题的关键是在迁移运用、构造模型中发现解决问题的方法. 28.解析:(1)先求出直线AB 与x 轴的交点坐标,再利用待定系数法可解;(2)求点Q 到直线AB 的距离的最大值可转化为平行于坐标轴的线段或三角形面积的最大值;(3)由∠APT =45°可知,△PBQ 中必有一个内角等于45°,而∠BPQ ≠45°,从而分类解决. 解:(1)设直线AB 与x 轴的交点为M ,∵∠OP A =45°, ∴OM =OP =2,即点M 的坐标为(-2,0).设直线AB 的函数表达式为y =kx +b ,将M (-2,0)和P (0,2)两点坐标代人,得⎩⎨⎧2=k ×0+b 0=k ×(-2)+b ,解得⎩⎨⎧k =1b =2,故直线AB 的函数表达式为y =x +2. (2)过点Q 作QC ⊥x 轴,交AB 于点C ,再过Q 作QH ⊥AB 于H ,则QH 就是点Q 到直线AB 距离.根据条件可知△QHC 为等腰直角三角形,∴QH =22QC . 设Q (m ,m 2),则C (m ,m +2), ∴QH =m +2-m 2=,QD =22QC =22[-(m -12)2+94], 故当m =12时,点Q 到直线AB 的最大距离最大,最大距离为928.(说明:如果先求三角形面积最大值也可,如S △AQB 、△PQB 、△AQP 等)(3)∵∠APT =45°,∴△PBQ 中必有一个内角等于45°,由图知∠BPQ =45°不合题意. ①若∠PBQ =45°,过点B 作x 轴的平行线,与抛物线和y 轴分别交于点Q 1、F ,此时满足∠PBQ 1=45°.∵Q 1(-2,4)、F (0,4),∴此时△BPQ 1为等腰直角三角形,由题意知△P AT 也为等腰直角三角形.(i )当∠PTA 为直角时,得PT =AT =1,此时t =1; (ii )当∠P AT 为直角时,得PT =2,此时t =0. 若∠PQB =45°,①中是情况之一,答案同上;现以点F 为圆心,FB 为半径作圆,则P 、B 、Q 1都在⊙F 上,设⊙F 与y 轴左侧的抛物线交于另一点Q 2.∵∠PQ 2B 与∠PQ 1B 所对的弧相同, ∴∠PQ 2B =∠PQ 1B =45°, 即这里的交点Q 2也符合要求.设Q 2(n ,n 2)(-2<n <0),由FQ 2=2,得n 2+(4-n 2)2=22, 即n 4-7n 2+12=0,解得n 2=3或n 2=4, 而-2<n <0,故n =-3,即Q 2(-3,3) .可证△PFQ 2为等边三角形,∴∠PFQ 2=60°,又PQ 1=PQ 2,∴∠PBQ 2=12∠PFQ 2=30°,则在△Q 2PB 中,∠PQ 2B =45°,∠PBQ 2=30°.(i )若△Q 2PB ∽△P AT ,则过点A 作y 轴垂线,垂足为E , 则ET =3AE =3,OE =1,∴OT =3-1,解得t =1-3;(ii )若△Q 2BP ∽△P AT ,则过点T 作直线AB 的垂线,垂足为G ,设TG =a ,则PG =TG =a ,AG =3TG =3a ,AP =2,∴3a +a =2,解得PT =2a =3-1;∴OT =OP -PT =3-3.综上所述,所求t 的值为t =1或t =0或t =1-3或t =3-3.点评:本题考查了一次函数关系式的求法、线段的最值、相似三角形的判定以及分类讨论的思想,解题的关键是将线段的长度适当转化,分类要全面和较强的运算能力.。

相关文档
最新文档