热力学与统计物理第九章

合集下载

热力学与统计物理 第九章 系综理论

热力学与统计物理 第九章 系综理论

1 p, q
10
如果系统含有多种粒子

1 Ni !h Ni ri
E H p , q E E
d
三、微正则分布的热力学量表达式 考虑一个孤立系统 A0 ,由 A 1, A 2 两个子系统构成, 两个子系统之间的作用较微弱。
1 N1, E1,V1 , 2 N2 , E2 ,V2 分别表示 A1, A2 系统的微观状态数


确定 空间中的一个曲面,称为能量曲面。 对于经典理论,在 空间中,一点代表代表着系统的 一个微观运动状态,随着时间的推移,这些微观运动状态
的代表点将在 相空间中构成一个连续的分布。 用 d dq1 dq f dp1 dp f 表示相空间中一个体积元, 则在 t 时刻,系统处在 d 内的概率可以表示为 p, q, t d
0 系统 A0 的微观状态数 E1, E2 1 E1 2 E2
令 A1 和 A2热接触,设在热接触中可以交换能量,但 不交换粒子数和改变体积。
也就是 E1, E2 可以改变,但
N1 , V1和N 2 ,V2 不改变。
11
E1 E2 E 0
0 E1, E 0 E1 1 E1 2 E 0 E1
f N i ri
i
那么,根据经典力学,系统在任意时刻的微观运 动状态可由在该时刻的 3
为了形象的描述系统的微观运动状态,以系统的 个广义坐标和相应的
f
f
个广义动量为直角坐标构成一个
空间,称为 (相)空间。
空间是 2 f 维的。
相空间中的一点 q1 q f , p1 p f 代表着系统的 一个微观运动状态,此点被称为系统微观运动状态的 代表点。 系统的微观运动状态随时间改变,代表点将在相

大学物理第九章热力学讲解

大学物理第九章热力学讲解
过程中, 温度每升高(或降低) 10C,吸收的热量.
i C R
V2
单 i 3 双 i 5 多 i 6
i 气体分子的自由度
ν摩尔理想气体在等体过程中, 温度从T1升高到 T2(或降低) ,吸收的热量为
Q V
E - E
2
1
i RT - T
2
2
1

CV T2 - T1
2
1
2
2
1
V
Q E - E + pV V
p
2
1
2
1
C DT + RDT V
定压摩尔热容: 1mol 理想气体在等压过程中吸
收的热量dQp ,温度升高 dT,其定压摩尔热容为
dQ C p
dT p ,m
dQ C dT
p
p ,m
定压摩尔热容另一表述: 1mol 理想气体在等压
p
等 p2 体
升 压
p1
o
2 ( p2,V ,T2 )
1 ( p1,V ,T1)
V
V
T1 T2 Q 0 DE 0
QV
E1
E2
p
等 p1

降 压
p2
o
Q E - E i RT - T
V
2
1
2
2
1
1( p1,V ,T1)
2( p2,V ,T2 )
V
V
T1 T2 Q 0 DE 0
2 公式适用条件 气体压强不太大,温度不太低,密度不太高
例1 一容器内贮有氧气 0.10kg,压强为10atm, 温度为 470C。因容器漏气,过一段时间后,压强 减到原来的 5/8,温度降到 270C。问: (1)容器体积为多大? (2)漏去了多少氧气?

第9章统计热力学初步

第9章统计热力学初步

上一内容 下一内容 回主目录
返回
2021/2/9
9.1 粒子各运动形式的能级及能级的简并度
(5)简并度(统计权重,Degeneration):某一能级所 对应的所有不同的量子状态 (简称量子态) 的数目。以符 号 g 表示。
能级,量子状态及简并度的关系:
一个能级相当于一个楼层,简并度相当于该楼层的房间 数目,一个粒子只要处于同一楼层,无论哪个房间,能量都 相等,但由于处于不同房间,因此处于不同的量子状态.
f转振3n3
例:单原子分子 双原子分子
n1 fr 0 fv 0 n2 fr 2 fv 1
线型多原子分子 nnfr 2 fv 3n5 非线型多原子分子 nn fr 3 fv 3n6
C2(O 3,2,4)、 N3(H 3,3,6) CH4(3,3,9)
上一内容 下一内容 回主目录
返回
2021/2/9
2
定域子系统
gv 1
根据
εv
υ 1hν 2
可能的能级:
v,0
1 2
h
v,1
3 2
h
v,2
5 2
h
v,3
7 2
h
上一内容 下一内容 回主目录
返回
2021/2/9
9.2 能级分布的微态数及系统的总微态数
v,0
1 2
hv
v,1
3 2
hv
v,2
5 2
hv
v,3
7 2
hv
能级 能级分布数
分布 n0 n1 n2 n3
注意:三者的大小关系!
上一内容 下一内容 回主目录
返回
2021/2/9
9.2 能级分布的微态数及系统的总微态数

热力学统计第9章_系综理论

热力学统计第9章_系综理论


第九章 系综理论
二 系统的微观状态与Г空间中体元的对应
系统由N 个粒子组成,粒子自由度r ,系统自由度N r , Г空间是2N r 维。

在µ 空间中,粒子的每个状态占据体元 hr . 在Г空间中, 系统的每个微观状态占据体元 hNr .
孤立系统在能量 E—E+∆E 范围内,系统的微观状态数为 1 Nr Ed N! h E H E
第九章 系综理论
5. 刘维定理(代表点密度随时间的变化规律)
d [ qi pi ] 0 dt t qi pi i
如果随着一个代表点沿正则方程所确定的轨道在相空间中运动,其邻 域的代表点密度是不随时间改变的常数-------刘维尔定理 说明:①刘维尔定理完全是力学规律的结果,其中并未引入任何的统 计概念; ②相空间中的代表点在运动中没有集中或分散的倾向,而保持原 的密度。或者说一群代表点经一定时间后由一个区域移动到另一 个区域,在新区域中代表点的密度等于在出发点区域中的密度。
其中(q, p, t )为概率密度分布函数。 满足
(q, p, t )d 1
统计物理学的基本观点认为,力学量的宏观测量值等于相应微观量 对微观状态的统计平均值。
B(t) B(q, p) (q, p, t) d
不同微观状态在统计平均中的贡献由概率分布函数体现。要想计算 统计平均值,必须知道概率分布函数。
第九章 系综理论
§9.2
微正则分布
不同宏观条件下的系统的分布函数不同。本节讨论 孤立系 ( N、E、V 一定 ) 。 由完全相同的极大数目的孤立系统所组成的系综称为微 正则系综。微正则系综的概率分布称为微正则分布。 孤立系系是与外界既无能量交换又无粒子交换的系统。由 于绝对的孤立系是没有的。所以孤立系是指能量在 E—E+∆E 之间,且 ∆E<< E 的系统。尽管∆E 很小,但在此范围内,系统 可能具有的微观状态数仍是大量的,设其为Ω 。由于这些微观 状态满足同样的已经给定的宏观条件,因此它们应当是平权的。 一个合理的假设是,平衡态的孤立系,系统处在每个微观态上 的概率是相等的。 统计意义 即为等概率原理——微正则分布

热力学与统计物理:第九章 系综理论

热力学与统计物理:第九章  系综理论

f i 1
qi
qi
p i
pi
0
由正则方程知
qi pi 0 qi pi
因此
t
f
i 1
qi
qi
pi
p i
0
2021/3/11
第九章 系综理论
13
或应用正则方程得刘维尔方程的另一表述
f H H
t
i 1
qi
pi
pi
qi
注意:刘维尔定理完全是力学规律的结果。
由量子力学也可以证明量子刘维尔定理。
A1

A2

N1、E1、V1 N2、E2、V2
Ω1(N1,E1,V1) Ω2(N2,E2,V2)
孤立系A0
E1 E2 E0
Ω0(E1,E2) =Ω1(E1)Ω2(E2)
2021/3/11
第九章 系综理论
23
总微观态数表示为E0与E1的函数: Ω0(E1,E0-E1)=Ω1(E1)Ω2(E0-E1)
也就是说复合系统的总态数取决于E1,或者说 取决于E0在两个子系统的能量分配。
设E1取某一定值 E1 时,Ω0取极大值
也就是说:
E1
微观态最多的最可几分布
2021/3/11
A0处于热力学平衡态,或者说 A1与A2达到热力学平衡
第九章 系综理论
24

2021/3/11
0 0 E1
1 E1
E1
2
E2
2021/3/11
第九章 系综理论
28
d ln dE dV dN dS dU p dV dN
TT T
则有
p ;
kT
kT
因而,两个系统的平衡条件就是温度、压强及化学势 相等。

热力学与统计物理第九章系综理论

热力学与统计物理第九章系综理论
(2)正则系综: 由N、V、T不变的系统组成 (3)巨正则系综:由V、T、μ不变的系统组成
§微正则系综 (Microcanonical Ensemble)
一. 等概率假设
孤立系是与外界既无能量交换又无粒子交换的系统。 由于绝对的孤立系是没有的。所以精确的说,孤立 系是指能量在E~E+∆E之间,且∆E<<E的系统。尽 管∆E很小,但在此范围内,系统可能具有的微观状
(q, p) 是系统的某一微观态出现在Г空间中
(q, p) 处的概率。
说明:(1)推论:具有同一能量和同一粒子数的全 部微观状态都是可以经历的;因为只有它们 是可以经历的,才谈得上是等概率的
(2)微正则分布是平衡态统计系综理论中的唯一基 本假设,其正确性由它的推论与实际结果符合而 得到肯定 二.系统的微观态数
当粒子之间有很强的相互作用时,粒子除具有独 立的动能外。还有相互作用的势能,这样任何一个 微观粒子状态发生变化,都会影响其它粒子的运动 状态。这时某个粒子具有确定的能量和动量这句话 的意义已经含糊不清,因为它随时间变化。结果是 粒子不能从整个系统中分离出来。
处理粒子间有强相互作用这类问题,不能用粒 子相空间,而要用系统相空间,即把整个系统所对 应的每个可能的微观态集合起来进行考虑,直接从 整个系统的状态出发,不必过问个别粒子的状态。
令 : (N, E,V ) CV N
由: p ln N
kT V V
比较由实验得到的理想气体的物态方程:
pV nRT k R N0
即为玻尔兹曼常量。
四、应用 微正则分布求热力学函数的程序:
1.求出微观状态数Ω(N,E,V) 2.求熵S=ln Ω
3.从S(N,E,V) →E(S,N,V)
因此时刻t,系统的运动状态处于dΩ内的概率可

热力学与统计物理答案

热力学与统计物理答案

第一章热力学的基本规律习题试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ; 解:由得:nRT PV=V nRTP P nRT V ==; 所以,TP nR V T V V P 11)(1==∂∂=α习题试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ=,试求物态方程;解:因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=,因为T T p p VV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dVT T κακα-=-=,所以,⎰-=dp dT VT καln ,当p T T /1,/1==κα.习题测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C;问1压强要增加多少np才能使铜块体积不变 2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:所以,410*07.4,622-=∆=V p xn习题描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略;线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数;假设金属丝两端固定;试证明,当温度由1T 降2T 时,其张力的增加为)(12T T YA --=∆αη解:),(,0),,(T L L T L f ηη==所以,dT TLd L dL T ηηη)()(∂∂+∂∂= 因AY L L L L T T T =∂∂∂∂=∂∂)(;)(1)(ηηη所以,)(12T T YA --=∆αη习题在C ︒25下,压强在0至1000n p 之间,测得水的体积13263)10046.010715.0066.18(---⨯+⨯-=mol cm p p V 如果保持温度不变,将1mol 的水从1n p 加压至1000n p ,求外界所做的功;解:外界对水做功: 习题解:外界所作的功:习题抽成真空的小匣带有活门,打开活门让气体充入;当压强达到外界压强p 0时将活门关上;试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来大气中的0U 之差为000V p U U =-,其中0V 是它原来在大气中的体积;若气体是理想气体,求它的温度和体积;解:假设先前的气体状态是P 0,dV 0,T 0内能是u 0,当把这些气体充入一个盒子时,状态为P 0,dV,T 这时的内能为u,压缩气体所做的功为:00dV p ,依绝热过程的热力学第一定律,得()000000=+-⎰dV P U U V积分得000V p U U=-对于理想气体,上式变为()001vRT T T vc V=-故有()01T R c T c V V +=所以001V T c c T VPγ==对于等压过程0101V T T V V γ==习题热泵的作用是通过一个循环过程将热量从温度较低的环境传送扫温度较高的物体上去;如果以理想气体的逆卡诺循环作为热泵的循环过程,热泵的效率可以定义为传送到高温物体的热量与外界所作的功的比值;试求热泵的效率;如果将功直接转化为热量而令高温物体吸收,则“效率”为何解:A →B 等温过程B →C 绝热过程 C →D 等温吸热D →A 绝热,2111Q Q Q A Q -==η由绝热过程泊松方程:1211--=r Cr B V T V T ;1112--=r Ar DV T V T∴D AC B V V V V =;CDB A V V V V =∴212212212111T T T T T T T T T T T -+=-+-=-=η将功A 直接转化为热量1Q ,令高温物体吸收;有A=Q 1∴11==AQ η; 习题假设理想气体的C p 和C V 之比γ是温度的函数,试求在准静态绝热过程中T 和V 的关系;该关系试中要用到一个函数FT ,其表达式为: 解:准静态绝热过程中:0=dQ,∴pdV dU -=1对于理想气体,由焦耳定律知内能的全微分为dT C dU v =2物态方程VnRT P nRT pV =⇒=32,3代入1得:dV VnRTdTC V -=其中1-=γnR C V ()dTVdV⎰⎰-=-11γ关系式γ为T 的函数∴V -1为T 的函数;∴VT F 1)(=1)(=V T F ; 第二章均匀物质的热力学性质习题已知在体积保持不变的情况下,一气体的压强正比于其绝对温度.试证明在温度保持不变时,该气体的熵随体积而增加; 解:由题意得:)()(V f T V k p +=;因V 不变,T 、p 升高,故kV >0T V S )(∂∂=V Tp)(∂∂=k VkV >0 由于kV >0,当V 升高时或V 0→V ,V >V 0,于是⇒T 不变时,S 随V 的升高而升高;设一物质的物态方程具有以下形式T V f P)(=,试证明其内能与体积无关;解:T V f P)(=,V T V U ∂∂),(T =T V T P)(∂∂-p =)()(V Tf V Tf -=0得证;习题求证:ⅰHP S )(∂∂<0ⅱU VS)(∂∂>0证VdP TdS dH +=等H 过程:H HVdP TdS )()(-=⇒PS ∂∂H=-TV <0V >0;T >0由基本方程:PdV TdS dU-=dV T pdU T dS +=⇒1;⇒VS ∂∂U =Tp>0.习题已知T VU)(∂∂=0,求证T p U )(∂∂=0;解T V U )(∂∂=T V T p )(∂∂-p ;⇒T V U )(∂∂=0;V TpT p )(∂∂= T VU )(∂∂=),(),(T V T U ∂∂=),(),(T p T U ∂∂),(),(T V T p ∂∂=0=T p U )(∂∂T Vp)(∂∂ ∵T Vp)(∂∂≠0;⇒T p U )(∂∂=0;习题试证明一个均匀物体在准静态等过程中熵随体积的增减取决于等压下温度随体积的增减;解:F =U-TS ,将自由能F 视为P ,V 的函数;F =Fp ,V=⎪⎭⎫⎝⎛∂∂p V S ()()p V p S ,,∂∂=()()⋅∂∂p T p S ,,()()p V p T ,,∂∂()()()()p T p V p T p S ,,,,∂∂∂∂==pp T V T S ⎪⎭⎫⎝⎛∂∂⎪⎭⎫⎝⎛∂∂由关系T C p=p T S ⎪⎭⎫ ⎝⎛∂∂;⇒=⎪⎭⎫⎝⎛∂∂pV S ⋅T C p pV T ⎪⎭⎫ ⎝⎛∂∂; 习题试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落;提示:证明S p T ⎪⎪⎭⎫⎝⎛∂∂-Hp T ⎪⎪⎭⎫⎝⎛∂∂>0证:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==dS S H dp p H H T dp p T dH H T dp p T dT H p T T dS S T dp p T dT S p T T p S p H p Hp S),(1),(联立1,2式得:Sp T ⎪⎪⎭⎫⎝⎛∂∂-H p T ⎪⎪⎭⎫ ⎝⎛∂∂=p H T ⎪⎭⎫ ⎝⎛∂∂S p H ⎪⎪⎭⎫ ⎝⎛∂∂=pST H p H ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂=pS C p H ⎪⎪⎭⎫⎝⎛∂∂据:pdV TdS dU-=熵不变时,dS =0,pdV dU -=Vdp TdS dH +=Sp H ⎪⎪⎭⎫⎝⎛∂∂=V⇒S p T ⎪⎪⎭⎫ ⎝⎛∂∂-Hp T ⎪⎪⎭⎫ ⎝⎛∂∂=0>p C V;原题得证;习题一弹簧在恒温下的恢复力X 与其伸长x 成正比,即.X =-Ax ;今忽略弹簧的热膨胀,试证明弹簧的自由能F 、熵S 和内能U 的表达式分别为; 解:),();(,x T U U T A A Ax X==-==dU dT T U x ⎪⎭⎫ ⎝⎛∂∂+dx x U T⎪⎭⎫⎝⎛∂∂⇒+-=;)(xdx T A SdT dF S T F x -=⎪⎭⎫ ⎝⎛∂∂;=x T A )(Tx F ⎪⎭⎫ ⎝⎛∂∂-=⇒S XT F ⎪⎭⎫⎝⎛∂∂=dT T dB x dT T dA )()(212--由于TS U F-=,)(2 dS S T dp p H H T p T p S p H ⎪⎭⎫⎝⎛∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂⋅⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-dT dB T T B x dT T dA T T A )()()(212∵X =0时,U =0,即不考虑自身因温度而带来的能量;实际上,dT dB TT B -)(=0或dTdBT T B -)(=)0,(T U 即得:2)()(21)0,(),(x dT T dA T T A T U X T U ⎥⎦⎤⎢⎣⎡-=-221)0,(),(Ax T F T X F +=;dT dA x T S T X S 2)0,(),(2-= 进而求U ∆略;代入abd c V V V V V aT uV U=⇒==;4习题如下图所示,电介质的介电常数EDT =)(ε与温度有关,试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差;解:当电路闭合时,电容器电场恒定 当电路断开时,电容器电荷恒定D T TED S )()(∂∂-=∂∂,因而 习题已知顺磁物质的磁化强度为:H TCm =,若维持物质温度不变,使磁场由0增至H,求磁化热;解:;H TCm =mV M =;TH S ⎪⎭⎫ ⎝⎛∂∂⇒=0μV H T m ⎪⎭⎫ ⎝⎛∂∂=H T C ⎪⎭⎫⎝⎛-20μ等T 下:22000H T CV HdH T C V S T Q H μμ⋅-=-=∆=∆⎰习题已知超导体的磁感应强度()00=+=m H B μ;求证:ⅰC m 与m 无关,只是T 的函数,其中C m 是在磁化强度m 保持不变时的热容量;ⅱ0202U m dT C U m +-=⎰μ;ⅲ0S dT TC S m+=⎰解:超导体()m H m H M B-=⇒=+=00ⅰT C H=HT S ⎪⎭⎫ ⎝⎛∂∂∵m H-=;T C C m H ==⇒HT S ⎪⎭⎫⎝⎛∂∂ⅱHdM TdS dU0μ+=;mV M =代入m C 表达式,其中U 0 为0K 时的内能;ⅲ由ii 中已应用了dT C TdSm =⇒T C T S mm=⎪⎭⎫⎝⎛∂∂;⇒0S dT TC S m+=⎰〈忽略因体积变化带来的影响〉; 习题实验测得顺磁介质的磁化率)(T χ;如果忽略其体积的变化,试求特性函数fm,t,并导出内能和熵;解:显然χ只与T 有关;)(T χ=TH m ⎪⎭⎫⎝⎛;()T H m m ,=HdMTdS dU 0μ+=;TS U f -=;SdT TdS dU df --=⇒HdM SdT df 0μ+-=;⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=dT T m dH H m V dM H T()H T V H f χμ0=⎪⎭⎫⎝⎛∂∂;()()()T f m V T f H T V f 02002022+=+=⇒χμχμ f 既已知:-=S ()02202S dT T d m V T f m+⋅=⎪⎭⎫⎝⎛∂∂χχμ HdMTdS dU 0μ+=;TS U f -=第三章单元系的相变习题试由0>vC 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp; 证T C C V p =-⇒VT p ⎪⎭⎫⎝⎛∂∂pT V ⎪⎭⎫ ⎝⎛∂∂ =P C p T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫⎝⎛∂∂;=V C V T U ⎪⎭⎫⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= ⇒=⎪⎭⎫ ⎝⎛∂∂T V p V S p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+SV p ⎪⎭⎫⎝⎛∂∂1=⎪⎭⎫ ⎝⎛∂∂V T p VS p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫⎝⎛∂∂2 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫⎝⎛∂∂⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫⎝⎛∂∂VV C T S T . 于是:0>=⎪⎭⎫⎝⎛∂∂T V p +⎪⎭⎫⎝⎛∂∂SV p 正数 于是:SV p ⎪⎭⎫⎝⎛∂∂<0 0>V C ;因而0>P C习题求证:1-=⎪⎭⎫⎝⎛∂∂n V T ,μV T n S ,⎪⎭⎫ ⎝⎛∂∂;2-=⎪⎪⎭⎫ ⎝⎛∂∂nT p ,μp T n V ,⎪⎭⎫⎝⎛∂∂ 证:1开系吉布斯自由能dn Vdp SdT dG μ++-=,),(T V p p =⇒VS T G n V +-=⎪⎭⎫⎝⎛∂∂,VT p ⎪⎭⎫⎝⎛∂∂① V V G nT =⎪⎭⎫⎝⎛∂∂,T V p ⎪⎭⎫⎝⎛∂∂② μ=⎪⎭⎫⎝⎛∂∂VT n G ,③ 由式①⇒n V n V T G T p V S ,⎪⎭⎫ ⎝⎛∂∂-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂=V T n S ,⎪⎭⎫ ⎝⎛∂∂nV T ,⎪⎭⎫ ⎝⎛∂∂-=μ第1式得证;习题试证明在相变中物质摩尔内能的变化为:⎪⎪⎭⎫⎝⎛⋅-=∆dp dT T p L u1如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简; 解V p S T U∆-∆=∆VT L dT dp ∆=;S T L ∆=;dp dT T p L L U ⋅⋅-=∆⇒⎪⎪⎭⎫⎝⎛⋅-=dp dT T p L 1 习题在三相点附近,固态氨的蒸气压单位为a P 方程为:Tp 375492.27ln -= 液态氨的蒸气压方程为:Tp 306338.24ln -=,试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热;解:1固态氨的饱和蒸气压方程决定了固态-气态的相平衡曲线;液态氨的饱和蒸气压方程决定了氨的液态-气态的相平衡曲线;三相点是两曲线的交点,故三相点温度3T 满足方程:TT 306338.24375492.27-=-;由此方程可解出3T ,计算略; 2相变潜热可由RTLA p -=ln与前面实验公式相比较得到: 3754=RL S,从而求出S L ;类似可求出Q L ;计算略; 3在三相点,有r Q SL L L +=,可求得r L ,计算略;习题蒸汽与液相达到平衡;以dTdv 表在维持两相平衡的条件下,蒸汽体积随温度的变化率;试证明蒸汽的两相平衡膨胀系数为⎪⎭⎫ ⎝⎛-=⋅RT L T dT dv v 111; 解αV ~0.方程近似为:TVLT p ≈∆∆,V —气相摩尔比容;Vp T L T V V 11⋅∆=∆⋅⇒①气相作理想气体,pV=RT ②T R V p pV ∆=∆+∆⇒③联立①②③式,并消去△p 、P 得:TL TV VVP T R ∆=⋅∆-∆21RT LRT T V V -=⎪⎭⎫ ⎝⎛∆∆⇒;⎪⎭⎫ ⎝⎛-=-=⎪⎭⎫ ⎝⎛∂∂=⇒RT L T RT T T V V P 111112α 习题证明爱伦费斯公式:()()()()1212k k dT dp --=αα;()()()())(1212αα--=Tv c c dT dpp p 证:对二级相变0)(=∆dS ;即()2dS -()1dS =00)(=∆dV ;即()2dV -()1dV =0()2dS()dT T S ⎪⎪⎭⎫ ⎝⎛∂∂=2()dp p S ⎪⎪⎭⎫ ⎝⎛∂∂+1;()1dS ()dT T S ⎪⎪⎭⎫ ⎝⎛∂∂=1()dp p S ⎪⎪⎭⎫ ⎝⎛∂∂+1 )(0dS ∆=()2dS=-()1dS⇒()()=⎥⎦⎤⎢⎣⎡∂∂-∂∂dT T S TS 12()()dp p S p S ⎥⎦⎤⎢⎣⎡∂∂-∂∂-12 ()()()()⎥⎦⎤⎢⎣⎡∂∂-∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂-=⇒p S p S T S T S dT dp 1212;将pp T S T C ⎪⎭⎫ ⎝⎛∂∂=代入得;()()[]()()pS p S C C T dT dppP ∂∂-∂∂--=12121①即为:()-∂∂p S 2()()()()121αα--=∂∂V pS ;代入①得:()()()()1212αα--=TV C C dT dp p P类似地,利用0)(=∆dV 可证第二式;略第四章多元系的复相平衡和化学平衡习题若将U 看作独立变数T ,V ,n 1,…n k 的函数,试证明:1VUV n U n Ui ii∂∂+∂∂=∑;2VUv n U u i i i∂∂+∂∂=证:1),,,(),,,(11k k n n V T U n n V T U λλλλ=根据欧勒定理,f x fx iii=∂∂∑,可得 2i ii i i i i i iiu n V Uv n U n V U V n U n U∑∑∑=∂∂+∂∂=∂∂+∂∂=)( 习题证明),,,(1k i n n p T μ是k n n ,1的零次齐函数,0=⎪⎪⎭⎫⎝⎛∂∂∑j ij j n n μ; 证:),,,(),,,(11k m k n n p T n n p T μλλλμ=,化学势是强度量,必有m =0,习题二元理想溶液具有下列形式的化学势:其中g i T ,P 为纯i 组元的化学势,x i 是溶液中i 组元的摩尔分数;当物质的量分别为n 1、n 2的两种纯液体在等温等压下合成理想溶液时,试证明混合前后 1吉布斯函数的变化为)ln ln (2211x n x n RT G+=∆2体积不变0=∆V3熵变)ln ln (2211x n x n R S +-=∆4焓变0=∆H ,因而没有混合热;5内能变化如何解: 1222211112211ln ),(ln ),( x RT n p T g n x RT n p T g n n n n G i ii +++=+==∑μμμ所以22110ln ln x RT n x RT n G G G+=-=∆2p G V ∂∂=;0)(=∂∆∂=∆∴pG V ; 3T G S ∂∂-= ;2211ln ln )(x R n x R n TG S --=∂∆∂-=∆∴ 4TSH G -=50=∆-∆=∆V p H U习题理想溶液中各组元的化学势为:i i ix RT P T g ln ),(+=μ;(1) 假设溶质是非挥发性的;试证明,当溶液与溶剂蒸发达到平衡时,相平衡条件为其中'1g 是蒸汽的摩尔吉布斯函数,g 1是纯溶剂的摩尔吉布斯函数,x 是溶质在溶液中的摩尔分数; (2) 求证:在一定温度下,溶剂的饱和蒸汽压随溶液浓度的变化率为 (3) 将上式积分,得)1(0x p p x -=其中p 0是该温度下溶剂的饱和蒸汽压,p x 是溶质浓度为x 时的饱和蒸汽压;该公式称为拉乌定律; 解:1设“1”为溶剂,())1ln(,'111x RT P T g g -+==μ2由⇒=∂∂v p g Tp x x RT p g p g ⎪⎪⎭⎫⎝⎛∂∂--⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂)1(1'1Tp x ⎪⎪⎭⎫⎝⎛∂∂ -=⇒v v ')1(x RT-Tp x ⎪⎪⎭⎫ ⎝⎛∂∂;v’—蒸汽相摩尔热容 v —凝聚相摩尔热容故有v’-v ≈v’,又有pv’=RT 代入⇒ Tx p ⎪⎭⎫⎝⎛∂∂x p --=1 3积分2式得拉乌定律习题的气体A 1和n 0v 2mol 的气体A 2的混合物在温度T 和压强p 下所占体积为V 0,当发生化学变化,0A A A A 22114433=--+νννν;并在同样的温度和压强下达到平衡时,其体积为V e ;试证明反应度为 证:未发生化学变化时,有当发生化学变化时,原来有n 0v 1mol 的气体A 1,反应了n 0v 1εmol,未反应1-εn 0v 1mol,n 0v 2mol 的气体A 2,反应了εn 0v 2mol,未反应1-εn 0v 2mol,生成εn 0v 3molA 3和εn 0v 4molA 4,有习题根据第三定律证明,在T →0时;表面张力系数与温度无关;即0→dTd σ; 证:表面膜系统,dA SdT Fσ+-=S T F A -=⎪⎭⎫ ⎝⎛∂∂⇒;σ=⎪⎭⎫⎝⎛∂∂T A F=⎪⎭⎫ ⎝⎛∂∂T A S AT ⎪⎭⎫⎝⎛∂∂-σ;而实际上σ与A 无关,即=⎪⎭⎫⎝⎛∂∂TA S dT d σ-T →0时,根据热力学第三定律;()0lim 0=∆→TT S于是得:dT d σ0=⎪⎭⎫⎝⎛∂∂-=TA S ;原式得证; 习题试根据第三定律证明,在T →0时,一级相变两平衡曲线的斜率dTdp为零;证:VS dT dp ∆∆=;T →0;000=⎪⎭⎫⎝⎛∆∆=⎪⎭⎫⎝⎛→→T T V S dT dp ()0lim 0=∆→TT S ;原式得证;习题设在压强p 下,物质的熔点为T 0,相变潜热为L ,固相的定压热容量为C p ,液相的定压热容量为C p ’.试求液体的绝对熵表达式;解:为计算T 温度,p 压强下,液体绝对熵,可假想如下图过程;p液相 ABC 固相T 0T①A →B,等压过程:⎰=∆→0T p BA TdT C S②B 点相变过程.0T L S B =∆相变③B →C,等压过程:⎰=∆→TT p CB TdT C S 0'于是∑=∆+=S S S)0(⎰T p TdT C 0T L+⎰+TT p T dT C 0'习题试根据第三定律讨论图ab 两图中哪一个是正确的 图上画出的是顺磁性固体在H =0和H=H i 时的S-T 曲线;解:图b 正确;拒热力学第三定律;T →0;S 0=0;且T →0,0=⎪⎭⎫⎝⎛∂∂Tx S ; 即0K 附近,S 在等温过程中的变化与任何其它参量无关;第五章不可逆过程热力学简介习题带有小孔的隔板将容器分为两半,容器与外界隔绝,其中盛有理想气体,两侧气体存在小的温差ΔT 和压强差Δp 而各自处于局域平衡;以dt dn J n=和dtdUJ u =表示单位时间内通过小孔从一侧转移到另一侧的气体的物质的量和内能;试导出熵产生率公式,从而确定相应的动力; 解:根据热力学基本方程∑-=iii dn dU Tdsμ得dtdn T dt dU T dt ds i i i ∑-=μ11设温度为T +ΔT 的一侧熵为s 1;温度为T 的一侧熵为s 2,则 因为0 ;0='+='+n d dn U d dU所以dn n d dU U d -='-=';,dtdnT dt dU T dt ds μ+-=12熵产生率 dt ds dt ds dt s d i 21+==dtdnT dt dU T dt dn T T dt dU T T μμμ+-∆+∆+-∆+11 =dtdn T T T dt dU T T T ⎪⎭⎫ ⎝⎛-∆+∆+-⎪⎭⎫⎝⎛-∆+μμμ11=⎪⎭⎫ ⎝⎛∆-⎪⎭⎫⎝⎛∆T J T J n u μ1 相应的动力22 ,1T T T T X T T T X n u μμμ∆-∆=⎪⎭⎫ ⎝⎛∆-=∆-=⎪⎭⎫ ⎝⎛∆=第六章近独立粒子的最概然分布习题试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围内,量子态数为:证:一维自由粒子,x P 附近的量子态为x dP hLdn =;x x x x x dP m dP m m m dP P d m P εεεε21222+=⋅+==⇒= 于是;()εεεεd mh Ld D2+=而±P x对应同一能量ε,于是:()mh L m h L D εεε2222=⎪⎪⎭⎫ ⎝⎛⨯=习题试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围内,量子态数为证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数;ϕPdPd hSdP dP h S dn y x 22==s -面积 因mP 22=ε只与P 有关P >0,故对ϕ积分可得:()⎪⎪⎭⎫ ⎝⎛==m P h S PdP h S d D 222222ππεε,επd h mSm 22= ()22hmS D πε=⇒s=L 2习题在极端相对论情形下,粒子的能量动量关系为cp =ε;试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数; 解:φθθd dpd p hV dp dp dp h V dn z y x sin 233==由于cp =ε只与p 有关,与θ、φ无关,于是以上已经代入了cdp d cp =⇒=εε于是,32)(4)(hc V D επε=习题设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很弱,可 看作是近独立的;假设粒子可分辨,处在一个个体量子态的粒子数不受限制;试证明, 在平衡态下两种粒子的最概然分布分别为:le a l lβεαω--=和'--'='l e a l lβεαω;其中l ε和'l ε是两种粒子的能级,l ω和'l ω是能级简并度;证:粒子A 能级,粒子数分布:l ε——{a l }——简并度l ω 粒子B 能级,粒子数分布:'l ε——{a ’l }——简并度'l ω由21Ω⋅Ω=Ω21ln ln ln Ω+Ω=Ω即使Ω最大,()11ln ΩΩ,()22ln ΩΩ达到最大;l e a l l εβαω''-'-'='注:'l a δ与l a δ在此情况下独立讨论,若将一系作为子系统,意味总能守恒,于是参照教材玻尔兹曼分布证明……0ln ln =⎪⎭⎫ ⎝⎛''+-''-'⎪⎪⎭⎫ ⎝⎛''+-⎪⎪⎭⎫ ⎝⎛⇒∑∑∑∑∑∑l l l l l l l l l llla a a a a a a a δεδεβδαδωδαδω同一0β,原题得证;这也是满足热平衡的要求;第七章玻耳兹曼统计习题根据公式∑∂∂-=lllVa Pε证明,对于非相对论粒子:)()2(21222222z y x n n n Lm m p s ++== π,z y x n n n ,,=0,±1,±2,…有VU p 32=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立;证:∑∂∂-=lllVa Pε=⎥⎦⎤⎢⎣⎡++∂∂-∑)()2(212222z y x lln n n L m V a π=⎥⎦⎤⎢⎣⎡++∂∂-∑)()2(222223z y x l l n n n L m L V a π 其中Va ul l ε∑=;V ~3L 对同一l ,222zy x n n n ++=m a ll21∑-2)2( π)(222z y x n n n ++)32(35--V =m a ll21∑-22222)()2(L n n n z y x ++ π)32(3532--V V =V U32习题试根据公式∑∂∂-=lllVa Pε证明,对于极端相对论粒子:21222)(2z y x n n n L c cp ++== πε,z y x n n n ,,=0,±1,±2,…有VU p 31=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立;证:∑∂∂-=ll lVa Pε;对极端相对论粒子21222)(2z y x n n n Lc cp ++== πε类似得31212)()2(-∑∂∂-=∑V n V a P i ll π=VUVV a ll l 31)31(3431-=---∑ε 习题当选择不同的能量零点时,粒子第l 个能级的能量可以取为ll *εε或,以∆表示二者之差=∆l l εε-*;试证明相应的配分函数存在以下关系11Z e Z ∆-*=β,并讨论由配分函数Z 1和Z 1求得的热力学函数有何差别; 证:配分函数∑-=le Z l βεω1以内能U 为例,对Z 1:1ln Z NUβ∂∂-=对Z 1:()U N e N Z NU Z +∆=∂∂-=∂∂-=-1ln ln 1**βββ习题试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为式中P s是总粒子处于量子态s 的概率,1Z e N e P ss s βεβεα---==,∑s对粒子的所有量子态求和;证法一:出现某状态s ψ几率为P s设S 1,S 2,……S k 状态对应的能级s 'ε;设S k+1,S k+2,……S w 状态对应的能级s 'ε;类似………………………………;则出现某微观状态的几率可作如下计算:根据玻尔兹曼统计Ne P sS βεα--=;显然NP s 代表粒子处于某量子态S 下的几率,Se NP Sβεα--=;于是Se βεα--∑代表处于S 状态下的粒子数;例如,对于s 'ε能级⎪⎪⎭⎫⎝⎛∑=--'K S S S S e 1βεα个粒子在s 'ε上的K 个微观状态的概率为: 类似写出:()⎪⎪⎭⎫ ⎝⎛''∑=''=''--k S S S s e S PS P1βεα ………………………………………………等等; 于是N 个粒子出现某一微观状态的概率; 一微观状态数P1=Ω,基于等概率原理将Se NP Sβεα--=带入S SS P P kN S ln ∑-=⇒;习题固体含有A 、B 两种原子;试证明由于原子在晶体格点的随机分布引起的混 合熵为k S=㏑[][][])1ln()1(ln !)1(!!x x x x N x N N N x --+-=-κ其中N 是总原子数,x 是A原子的百分比,1-x 是B 原子的百分比;注意x<1,上式给出的熵为正值; 证:显然[]!)1()!(!!!!21x N Nx N n n N -==ΩS=k ㏑Ω=-N k [])1ln()1(ln x x x x --+=)1()1(ln x x x x Nk ---;由于)1()1(x xx x--<1,故0〉S ;原题得证;习题气体以恒定的速度沿方向作整体运动;试证明,在平衡状态下分子动量的最 概然分布为证:设能级l ε这样构成:同一l ε中,P z 相同,而P x 与P y 在变化,于是有:∑==0p a p p l z参照教材玻耳兹曼分布证明;有E N βδαδδ--Ωln -z p γ,其中)(22221Z y x lp p p m++=ε 由1知:N dp dp dp ehV z y x p z=⎰---γβεα3 将l ε代入并配方得:=N dp dp dp e hV z y x m p mm z y x =⎰+-+---2)(2)()22(3βγβεεββγα其中mp m p y y xx 2,222==εε整个体积内,分布在z z z y y y x x x dp p p dp p p dp p p +→+→+→,,内分子数为:由条件3知⎰=0),,(Np dp dp dp p p p f pz y x z y x z计算得 =z m p my x dp em dp dp emkTz y x ⎰⎰+-+--2)(2)(23)()21(βγβεεββγπ=0p Ndp dp fdp m zy x =-⎰βγ0p m -=⇒βγ代入得出分布:[]3)(22022"hdp dp Vdp ezy x p p p p mz y x-++--βα其中βγαα22'm -=,0p m -=βγ习题试根据麦克斯韦速度分布率导出两分子的相对速度12v v v r-=和相对速率rr v v =的概率分布,并求相对速率的平均值r v ;解:两分子的相对速度r v在rz ry rx dv dv dv 内的几率2122111])()()()[(23211)()2()()()(2212121212121--∞∞-+++++++-===⎰⎰⎰⎰kTm edv dv dv e kT m v V v V v d v V rx rz z ry y rx x z y x v kT m zy x v v v v v v v v v kT mr r ππ 同理可求得z y v v 11,分量为2122)(2--kTm ery v kT m π和2122)(2--kTm er v kT m π引进2m=μ,速度分布变为r r v kT mdv v e kT r 22232)2(-πμ 利用球极坐标系可求得速率分布为:r r v kT m dv v e kTr22232)2(4-πμπ 相对速率平均值v kT dv v e v kT v r r v kT m r r r28)2(4220232===-∞⎰πμπμπ习题试证明,单位时间内碰到单位面积上,速率介于v 与dv v +之间的分子数为:dv v e kTm n d kTmv 322/32)2(-=Γππ证:在斜圆柱体内,分速度为z v 的v 方向的分子数为:对于:0,,积分得从对从+∞→+∞→∞-z y x v v vdt 时间碰撞到ds 面积上的分子数dv v v +→=dsdt d dvd v ekTm n kTmv ϕθθπππcos )2(2/032202\32⎰⎰-得到:若只计算介于dv v v +→分子数则为:只对φθ,积分习题分子从器壁小孔射出,求在射出的分子束中,分子平均速度和方均根速度;解:dvv e kT m n dvv e kT m n v kT nv v kT m3022/30422/322)2()2(⎰⎰∞+-+∞-=ππππ;变量代换⇒==dx mkTdv x n kT m2;2 习题已知粒子遵从经典玻耳兹曼分布,其能量表达式为:bx ax p p p mz y x ++++=2222)(21ε其中b a ,是常数,求粒子的平均能量; 解:ab a b a bx x a m p 4)4(222222-+++=ε习题气柱的高度为H ,截面为S ,在重力场中;试求解此气柱的内能和热容量;解:配分函数⎰-++-=z y x mgz p p p mdp dp dxdydzdp ehZ z y x ββ)(232221 设⎥⎦⎤⎢⎣⎡=mg m hS A 1)2(2/33π;[]mgH e A Z ββ--+-=1ln ln )2/5(ln ln习题试求双原子理想气体的振动熵;解:振动配分函数ωβωβ ---=e e Z V 12/1代入式)1ln(2/ln 1ωβωβ ----=⇒e Z代入熵计算式V V k T Nk Nk S θωθ=+=⇒其中)./ln(;习题对于双原子分子,常温下kT 远大于转动的能级间距;试求双原子分子理 想气体的转动熵; 解转动配分函数212 βI Z r=);/ln(;/1ln ;2ln ln 121r T Nk Nk S Z I Z θβββ+=⇒-=∂∂=其中r k I h θ=22习题气体分子具有固有电偶极矩0d ,在电场ε下转动能量的经典表达式为:θεθεφθcos )sin 1(210222d p p I r -+=,证明在经典近似下转动配分函数: 解:经典近似下,rε视为准连续能量配分函数⎰⎰⎰⎰⎰⋅==∞∞-+⋅---πφθεβθβθβφθβεφθφθθ20cos sin 21222102211d dp d edp ehd d dp dpe hZ d I p Ir利用π=⎰∞∞--dx ex 2习题同19题,试证在高温10≤εβd 极限下,单位体积电偶极矩电极化强度为:εξkT d 320=; 解:电极化强度)1(1ln 0000001εβββεβξεβεβεβεβ--+=∂∂=--d d d d ee e d e d Z N 高温极限下,0→β,保留至20)(εβd εεβkTnd d 222020=⇒;其中VN n =习题试求爱因斯坦固体的熵;解:将ωβωβh h eeZ ---=121,代入至S 表达式即得,注意N 取3N;略第九章系综理论习题证明在正则分布中熵可表为∑-=ss s k S ρρln 其中sE s e Zβρ-=1是系统处在s 态的概率; 证:)ln (ln ββ∂∂-=Z Z k S多粒子配分函数)1(1ss E s E e Z e Z ββρ--=⇒=∑由1知[]s s s s s E Z E Z E Z esρβρβρβln ln 1;ln ln +=-+=-⇒=-代至2得[]∑∑+=+=∂∂ssss s s Z Z Z ρρββρρββln 1ln 1ln ln 1ln ;于是∑-=⎪⎪⎭⎫⎝⎛∂∂-=s ss k Z Z k Sρρββln ln ln习题试用正则分布求单原子分子理想气体的物态方程,内能和熵 证:()222121;iziy ix Ni s sE p p p mE eZs++==∑∑=-β符号∏=i iz iy ix dp dp dp dp符号∏=i ii i dz dy dx dq 利用式V NTk V Z Z Z P =∂∂=∂∂=⇒βββ1ln 1类似求S U ,;习题体积内盛有两种组元的单原子混合理想气体,其摩尔数为1n 和2n ,温度为T ; 试由正则分布导出混合理想气体的物态方程,内能和熵;解:习题利用范氏气体的配分函数,求内能和熵;解:Q m N Z N 2/32!1⎪⎪⎭⎫ ⎝⎛=βπ()⎰⎰⎰-----++=-=∂∂⇒dr f V N V dr e V N NTk U dr e V N Q N N N N 12121212122/3;22βφβφφφβ一般认为dr f VN 1222较小; 习题利用德拜频谱求固体在高温和低温下配分函数对数Z ln ,从而求内能和熵; 解:式 德拜频谱B ND 93=ω 对于振动())(1ln 1ln ln ln 2020020x d e e B d D e e e Z D D =⎪⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎪⎭⎫ ⎝⎛-+=⎰⎰-----ωβωωβφωωωωβωβωωβωββφ 代换 S 计算略高温近似,∞→T ,0→ωβ()N N +--=ωββφ ln 30计算略习题用巨正则分布导出单原子分子理想气体的物态方程,内能,熵和化学势; 解:参照关于玻耳兹曼体系配分函数的处理过渡到连续能量分布得: 利用热力学式可求得kT N pV =,kT N U 23=等略 注:l ε--------单粒子处于l 能级的能量;习题利用巨正则分布导出玻耳兹曼分布; 解:∑∑--=ΞN S E N s eβα;由于玻耳兹曼系,粒子可分辨,从而为简单起见,考虑无简并有简并情况完全可类似处理 于是:(){}∏∞=+-=Ξ0ex p l a l l eβα即对无简并情况()l e a l βεα+-=对有简并者,类似处理可得()l e a l lβεαω+-=略 l ω——简并度。

物理化学第九章

物理化学第九章

设有 N 个粒子的某定域子系统的一种分配方式为:
能级: 各能级简并度 一种分配方式:
1, 2 ,, i
g1, g2 ,, gi n1, n2 ,, ni
上一内容 下一内容 回主目录
返回
3. 定域子系统能级分布微态数的计算
先从N个分子中选出n1个粒子放在1 能级上,

C
n1 N
种取法;
但1能级上有g1 个不同状态,每个分子在1
t
h2 8m
(
nx2 a2
ny2 b2
nz2 c2
)
式中h是普朗克常数,nx , ny , nz 分别是 x, y, z轴上 的平动量子数,其数值为 1,2,, 的正整数。
若在正方体内
t
h2 8mV 3/ 2
(nx2
ny2
nz2 )
上一内容 下一内容 回主目录
返回
1. 三维平动子
能量是量子化的,但每一个能级上可能有若 干个不同的量子状态存在,反映在光谱上就是代 表某一能级的谱线常常是由好几条非常接近的精 细谱线所构成。
(U,V , N) WD D
i
N!
i
g ni i
ni !
上一内容 下一内容 回主目录
返回
4. 离域子系统能级分布微态数的计算
离域子系统由于粒子不能区分,它在能级上分 布的微态数一定少于定域子系统,所以对定域子系 统微态数的计算式进行等同粒子的修正,即将计算 公式除以N! 。而定域子能级分布D的微态数:
量子力学中把能级可能有的微观状态数称为
该能级的简并度,用符号gi 表示。简并度亦称为
退化度或统计权重。
上一内容 下一内容 回主目录
返回
1. 三维平动子

热力学统计物理-统计热力学课件第九章

热力学统计物理-统计热力学课件第九章

d
dt t i
[ q i q& i p i p & i]
2020/4/4
7
考虑相空间中一个固定的体积元:
d d q 1Ld qfd p 1Ld pf
体积元边界: qi,qidqi;pi,pidpi i1,2,L, f
t时刻代表点数: t+dt时刻代表点数: 增加代表点数:
d
( dt)d
t dtd t
间中运动,其邻域的代表点密度是不随时间改变的常数。
2020/4/4
11
•表达式交换 t t 保持不变,说明刘维尔定理是可逆的。
•刘维尔定理完全是力学规律的结果,其中并未引入任何统 计的概念。
2020/4/4
12
§9.2 微正则系综
统计物理学研究系统在给定宏观条件下的宏观性质. 这就 是说,所研究的系统是处在某种宏观条件之下的,如果研究的 是一个孤立系统,给定的宏观条件就是系统具有确定的粒子
s (t) 1
s
2020/4/4
16
B(t) s(t)Bs
s
上式给出了宏观量与微观量的关系,是在系综理论中求 宏观量的基本公式。而确定系综分布函数是系综理论的根本 问题。
二、平衡状态的孤立系统经典及量子分布
1.微正则分布
平衡孤立系统的能量具有确定值,能量在 EEE范围内。
B (t)B (q ,p )(q ,p ,t)d
热力学中类似的两个系统达到热平衡的条件:
US11
N1,V1
US22
N2,V2
比较可得:
1 kT
Skln
S U
N ,V
1 T
——熵与微观状态数的关系—玻耳兹曼关系。
•不仅适用于近独立粒子系统,也适用于粒子间存在相互

热力学统计物理各章总结

热力学统计物理各章总结

第一章1、与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、与外界没有物质交换,但有能量交换的系统称为闭系;3、与外界既有物质交换,又有能量交换的系统称为开系;4、平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。

5、参量分类:几何参量、力学参量、化学参量、电磁参量6、温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、t=T-273.59、体胀系数、压强系数、等温压缩系数、三者关系10、理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔11、顿分压12、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。

13、广义功14、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。

15、等容过程的热容量;等压过程的热容量;状态函数H;P2116、焦耳定律:气体的内能只是温度的函数,与体积无关。

P2317、理想气体准静态绝热过程的微分方程P2418、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程19、热功转化效率20、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成21、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程22、如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程23、卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高24、卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等25、克劳修斯等式和不等式26、热力学基本微分方程:27、理想气体的熵P4028、自由能:F=U-FS29、吉布斯函数:G=F+pV=U-TS+pV30、熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少31、等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。

热力学统计物理第九章答案

热力学统计物理第九章答案

热力学统计物理第九章答案【篇一:热力学统计物理课后习题答案】t>8.4求弱简并理想费米(玻色)气体的压强公式.解:理想费米(玻色)气体的巨配分函数满足ln?????lln1?e?????ll??在弱简并情况下:2?v2?v3/23/22ln???g3?2m???1/2ln1?e?????ld???g3?2m???d?3/2ln1?e??? ??l30hh0????????2?v3/22?3/2??g3?2m????ln1?e?????l3?h?????0?3/2dln1?e???????l???? ?2?vd?3/22 ??g3?2m????3/2????l30he?1与(8.2.4)式比较,可知ln??再由(8.2.8)式,得3/23/2??1n?h2??1?h2?????????nkt?1??ln???nkt?1?????v2?mkt??2?mkt?????42???42???2?u 3?e??n?h2?????v?2?mkt??3/2?3/2h2???n????? ????e?????v?t?2?mkt??n?n v3/23/2??1?n?h2????n?n?h2?????????p?ln??kt?1???nkt?1???????v2?mkt?t2?mkt?t???? ???42????42??8.10试根据热力学公式 s?熵。

解:(8-4-10)式给出光子气体的内能为u?cv??u?dt及光子气体的热容量c???,求光子气体的v?t??t?v?2k415c3?4vt-------(1) 3?u4?2k4)v?vt3---------(2)则可以得到光子气体的定容热容量为cv?(33?t15c?根据热力学关于均匀系统熵的积分表达式(2-4-5),有s??[cv?pdt?()vdv]?s0----------(3) t?t取积分路线为(0,v)至(t,v)的直线,即有t4?2k44?2k423s?vtdt?vt----------------(4) 3333?015c?45c?其中已经取积分常量s0为零。

统计物理学 课件PPT-第九章 系综理论

统计物理学 课件PPT-第九章 系综理论

得到 将此式代入 (9.1.5),便得到
如果随着一个代表点沿正则方程所确定的轨道在 相空间运动,其邻域的代表点密度不随时间改变. 称刘维定理. Liouville’s theorem 的另一表达
对(9.1.9)作变换 t 到 –t, 公式保持不变.刘维定理可 逆.
§9.2 微正则分布 9.2.1 经典理论
从哈密顿正则方程
在孤立系统中,哈密顿量不是时间的显函数, 总能 量:
能量曲面由(9.1.2) 确定. 能量曲面上的一个确定 点与系统的一个微观状态对应.
相空间和体积元可写为 t 时间内这个体积元内的点数由下式决定 有
若隔着在内相时,空刻系间统t 系轨演统道化在,到相一另空个一间确微密定观度的态随态时qiq+间i,dpq变i,i ,在化pi时.+一d间p般i间. 来沿 说,瞬时变化可表达为,
统计物理的假设之一就是等几率原理.
对于一个小的能量 ΔE 在经典描述下
人们设
等概率原理的量子描述
经典统计是量子统计的极限. 在 E 和 E+ ΔE 之间的微观态数
对于含多种粒子的系统, 推广为
§9.3 微正则分布的热力学表达式
9.3.1 微观态数与熵的关系
孤立系统 A(0)
A1 N1, E1, V1
(2) 系综平均值: 即:(9.2.3),量B在系综上的统计平 均值.
(3) ρ可以理解为一个系统在(q,p)处的概率,也是 系综在(q,p)处的微观态的数目,或态密度,表示 微观态的分布.
9.2.2 量子理论中
确定系综分布函数ρ是系综理论的根本问题
9.2.3 在孤立系统中
(1) 微正则系综: 一个孤立系统的相空间密度,因 而也是统计分布函数在与系统的能量相应的 等能面上是恒量.在面外是零.这样的系综为微 正则系综,分布叫微正则分布.

热力学第九章第一部分

热力学第九章第一部分

p T xA p T xB p T 1mol xA xB 1
§9-4 同T同p下理想气体绝热混合熵增
S m i x S A + B ( p ,T ) S A ( p ,T ) S B ( p ,T )
xASmA ( pA ,T ) xBSmB ( pB,T )
xASmA ( p,T ) xBSmB ( p,T )
本章主要内容
1、成分描写 2、分压定律和分容积定律 3、混合物参数计算 4、湿空气
§9-1 混合气体的成分
设混合气体由1, 2 , 3,…, i,… k种气体组成
k
m m 1m 2m 3m im k m i i 1

i
种组元气体的质量成分:
Mass Fraction
i
mi m
i m mi mmi 1
ni n
Mi mi Mi
Mi
im
Mi
Mi
i
Mi
Dpraelst§sounr9’es-lo2afwa分ogfaas压dmd定iixtitvu律erper和iesses分quurea容sl:toT积hthe定e su律m of
the pressures each gas would exert if it existed alone at the mixture temperature and volume
混合物比参数的计算
s isi(T,pi)
[kJ/kg.K]

Sm xiSm i(T,pi) [kJ/kmol.K]
ex iexi(T,pi) [kJ/kg.K]
ex
E xm xiE xm i(T ,p i) [kJ/kmol.K]
混合物容积的计算

统计物理第九章-2

统计物理第九章-2
i 1
•要确定{q1,q2,…,qf ; p1,p2,…,pf},共2f个广义 坐标和广义动量。以这2f个变量为直角坐标,构成一 个2f维空间,称为Γ空间。 •系统在某一时刻运动状态就由这2f个变量所确定的 Γ空间中的一个点表示
• 哈密顿正则方程 f pi2 H U (q1 , q2 ,..., q f ) i 1 2mi
•孤立体系可以看成封闭体系的一个特例,因而 也可用正则系综讨论孤立系的热力学性质。

• •
1.封闭系客观条件
封闭系:系统与外界有能量交换,无物质 交换,设想为系统与一大热源接触,且达 到平衡。 大热源:理论上指无穷大的物质系统,不 管取走多少能量温度仍保持不变。物理上 指温度恒定的热源,实际上指温度为T的 环境。 宏观条件:N,V,T不变。 满足上述宏观条件的系综称为正则系综。
2)宏观物理量统计平均值公式
• 在统计物理学中,我们研究系统在给定宏观条件下 的宏观性质。如系统具有的粒子数为N,体积为V和能 量为E。在给定的这些宏观条件下,系统可能的微观 状态还是很多的。各种可能的微观状态都有出现的 机会。我们不能肯定系统在某一时刻一定处在或一 定不处在某种运动状态,而只能确定系统在某一时 刻处在各状态的概率。
•宏观物理量是相应的微观量对体系一切可能的 微观运动状态的统计平均理解为对系综平均,二 者是等效的。
•经典:
•量子:
B (t ) B (q, p ) (q, p, t )dqdp
B (t ) s Bs
s
d 系综的分类
• 根据给定的宏观条件来分类: • 微正则系综:大量的孤立系统即大量具有相同的N ,V , E 系统的集合。 • 正则系综:大量的封闭系统,即大量的具有相同的 • 系统的集合。 N ,V , T • 巨正则系综:大量的开放系统,即大量的具有相同 的化学势 ,体积V和温度的T ,V , 系统的集合。 • 以上三种系综的概率分布分别叫微正则分布,正则 分布和巨正则分布。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w. ww
得 下,
习题 9.10 固体的结合能 U 0 和德拜特征温度 θ D 都是体积 V 的函数。利用上题求
的 ln Z 求低温条件下固体的物态方程。令 ν = −
kh da
课 后
S 计算略 βℏω → 0
ln Z = − βφ0 − ∫0
ωD
1 Bπ 4 Nπ 4 = − βU 0 + = −βU 0 + 3 ( βℏ )3 15 5
2
N2 f 12 dr 较小; 2V N 2 N −1 V ∫ φe −βφ dr U = 3 NTk / 2 + 2 ≈ 3kNT / 2 − a / V ⎞ N2 N ⎛ V ⎜ ⎜1 + 2V ∫ f 12 dr ⎟ ⎟ ⎝ ⎠
kh da
课 后
∂Q N 2 N −1 ∂f 12 ∂f = V ∫ dr ;∵ f 12 = e − βφ (r12 ) − 1 ⇒ 12 = −φ e −φβ ∂β 2 ∂β ∂β
U =U 0 + ∫ D(ω )
0
ww
w.
令 低温近似
ℏω = x, ℏdω = kTdx kT
⎛ kT ⎞ 2 ℏω D ⎜ ⎟ x 3 kT ℏ kT x2 ⎛ kT ⎞ ⇒ U = U 0 + Bℏ∫ ⎝ x ⎠ dx = U 0 + B ℏ⎜ ⎟ ∫ x dx e −1 ℏ ⎝ ℏ ⎠ 0 e −1 ⎛ kT ⎞ U ≈ U 0 + B ℏ⎜ ⎟ ⎝ ℏ ⎠
− 1)2πrdr ; S 为液体的面积, φ 为两分子的互作用势。
答 案
3N / 2 3N / 2 ∂ ln Z ⎧ 1 ⎛ 2mπ ⎞ ∂Q ⎫ ⎪ ⎡ (2mπ ) ⎪ ( −1 −3 N / 2 ) ⎤ ( ) ⎜ ⎟ U =− = ⎨⎢ 3N / 2 β Q⎥ − ⎜ ⎬/ Z ⎟ ∂β N! ∂β ⎪ ⎪⎣ ⎦ N! ⎝ β ⎠ ⎩ ⎭
1 ∂Q N 2 N −1 ;Q = V N + V ∫ f 12 dr Q ∂β 2
w.

co m
解:
N! h 2 N ∫
⎛ −β ⎜ ⎜ ⎝
2 ⎟ ∑ 21m ( p 2 ix + p iy )+ ∑ φ i ⎟
⎞ ⎠
i< j
∏ dp
ix
dp iy ∏ dx i dy i
ℏω D 3 kT 3
高温近似
⎛ kT ⎞ U ≈ U 0 + B ℏ⎜ ⎟ ⎝ ℏ ⎠
⎛ kT ⎞ 1 ⎛ ℏω ⎞ xdx = U 0 + Bℏ ⎜ ⎟ ⎜ D ⎟ ∫ ⎝ ℏ ⎠ 2 ⎝ kT ⎠ 0
Cv 计算略。
co m
3 2
sdk x dk y
=
skdkdϕ 4π 2
习题 9.9 利用德拜频谱求固体在高温和低温下配分函数对数 ln Z ,从而求内能 和熵。 解:式(3.9.4) ln Z = ln e − βφ 0 德拜频谱
多粒子配分函数 Z = ∑ e − βE s ⇒ Z =
1 −β E s e (1) ρs
∑ρ
s
s
ln ρ s ;
∫e
∑(
) dp
−∞
⎛ 2mπ ⎜ ⎜ β ⎝
⎞ ⎟ ⎟ ⎠
3N / 2
度为 T 。 试由正则分布导出混合理想气体的物态方程,内能和熵。 解:
Z=
β 2 2 2 − [( pix + piy + p iz )+ (p 2jx + p2jy + p2jz )] 1 2m∑ e dpix dp iy dp iz dxi dy i dz i ∏ dp j dq j ∏ n1 ! n2 ! h 3 ( n1 + n 2 ) ∫ i j
习题 9.2 试用正则分布求单原子分子理想气体的物态方程,内能和熵 证:
Z = ∑ e −βE s ; E s = ∑
s i =1
w. ww
符号 dp = ∏ dpix dpiy dp iz
i
符号 dq = ∏ dx i dy i dz i
i
N N 2 2 +∞ − β p2 ix + p iy + p iz 2 m i =1

2
横波按频率 ω 分布为


0
Skdk S ω dϕ = dω 2 4π 2π c12
0
答 案
2
D(ω )dω = D横 (ω )dω + D纵 (ω )dω = B=
ωD
2 ωD 4N 2 D(ω ) dω = 2 N ⇒ B = 2N ⇒ ω D = ∫ 2 B 0
ωD

S 2π
⎡1 1⎤ ⎢ 2 + 2⎥ ⎣ c1 c2 ⎦
w.
∫f
12

= 2πNc / L
∫e
xdx x −1
co m
dr 据式(9.5.3) B dr ⎤ = kNT ⎡ 1+ ⎤ ⎥ ⎢ ⎦ ⎣ S⎥ ⎦
∫ ∏ (1 + f
)dr1 dr2 drn = (只保留前部分) ∫ (1 + ∑ f ij )dr1 drn
∫f
12
低温近似 U ≈ U 0 +
第九章 系综理论
习题 9.1 证明在正则分布中熵可表为 S = −k ∑ ρ s ln ρ s 其中 ρ s =
s
1 − βE s e 是系统 Z
处在 s 态的概率。
∂ ln Z = ∂β
− ∑ E k e − βE k
k
∑e
k
− βE k
( 2)
kh da
后 课
N
代至(2) 得
∂ ln Z 1 1 1 = ∑ [ln Z + ln ρ s ]ρ s = ln Z + ∂β β β s β
N
利用式(9.5.3) ⇒ P =
1 ∂ ln Z 1 ∂Z NTk = = 类似求 U , S 。 β ∂β βZ ∂V V
习题 9.3 体积内盛有两种组元的单原子混合理想气体,其摩尔数为 n1 和 n 2 ,温
co m
1 [ln Z + ln ρ s ] β
证:
S = k (ln Z − β
∂ ln Z ) ∂β
e 2 + ∑ ln 1 − e − βℏω i 9N 3 ωD = B
ln Z = ln e
− βφ 0

βℏω
对于振动
= − βφ 0 +
∫0
ωD
w.

βℏω D
0
答 案
ωD B ⎛ βℏω ⎞ = − βφ0 + ∫0 B ω 2 ⎜ ⎟dω − ⎝ 2 ⎠ (βℏ )3

高温近似, T → ∞ ,
答 案
由(1) 知
e −β E s = Zρ s ⇒ − βE s = ln Z + ln ρ s ;− E s =
w.
1 2 2 2 ( pix + piy + piz ) 2m

于是
⎛ ∂ ln Z ⎞ S = k⎜ ⎜ ln Z − β ∂β ⎟ ⎟ = −k ∑ ρ s ln ρ s s ⎝ ⎠
3∞
kh da

ℏωdω
ℏω kt
ωD
= U 0 + Bℏ ∫
0
e
−1
w.
ω2 e
ℏω kt


纵波按频率 ω 分布为

Skdk S ω dϕ = dω 2 2 4π 2π c 2
S ⎡1 1⎤ + 2 ⎥ωdω = B ωdω 2 2π ⎢ ⎣ c1 c2 ⎦
dω −1
x2 ⎛ kT ⎞ dx = U 0 + 2.404B ℏ⎜ ⎟ ∫ x e −1 ⎝ ℏ ⎠ 0
(
)
⎛ 1 ⎜ ⎜ βℏω ⎝ D
固体的物态方程都可表为: p = − 解: 以低温为例
dU 0 U −U 0 +ν 。 dV V
3 3
Nπ 4 ln Z = − βU 0 + 5
⎛ 1 ⎜ ⎜ βℏω ⎝ D
⎞ ⎛ 1 ⎞ −3 ⎟ ⎟ = − βU 0 + A⎜ ⎜ βθ ⎟ ⎟ = − βU 0 + A(βθ D ) ⎠ ⎝ D⎠
β 2 2 − ∑ (p2 ix + p iy + p iz ) 2m 1 VN i =1 Z= e dpdq = N! h 3 N ∫ N !h 3 N
β 2 ⎤ V N ⎡ + ∞ − 2 m ( p x2 + p 2 y + pz ) VN = e dp ⇒ Z = ⎢ ⎥ N! h 3 N ⎣ ∫−∞ N! h 3 N ⎦
V ( n1 +n 2 ) ⇒Z = n1 ! n2 !h 3( n1 + n2 )
⇒P=
⎛ 2πm ⎞ ⎜ ⎜ β ⎟ ⎟ ⎝ ⎠
3 (n1 + n2 ) / 2
1 ∂ ln Z (n1 + n2 )kT = ⇒ PV = ( n1 + n2 ) kT β ∂V V
习题 9.5 利用范氏气体的配分函数,求内能和熵。 解: 1 ⎛ 2mπ Z= ⎜ N! ⎜ ⎝ β ⎞ ⎟ ⎟ ⎠
3N /2
Q
= (3 / 2) Nβ −1 −

一般认为
ww
B=− N 2
习题 9.6 被吸附在液体表面的分子形成一种二维气体,考虑分子间的相互作用, 试用 正则分布证明,二维气体的物态方程为 pS = NTk [1 + B / S ],其中:
相关文档
最新文档