热力管道设计技术规定
城市热力管网设计规定
压力管道设计技术规定(城市热力管网)为了节约能源,保护环境,促进生产,改善人民生活,发展我国城市集中供热事业,提高集中供热工程设计水平和城市热力管道设计质量,特制定本文件。
1 范围本标准规定了城市热力管网的设计本标准适用于由供热企业经营,以热电厂或区域锅炉房为热源,对多个用户供热,自热源至热力站的城市热力管网;也适用于城市热力管网新建、扩建或改建的管道、中继泵站和热力站等工艺系统管道设计;也适用于热水热力管网供热介质设计压力小于或等于2.5MPa,设计温度小于或等于200℃;蒸汽热力管网供热介质设计压力小于或等于1.6MPa,设计温度小于或等于350℃。
2引用标准下列标准中的条款通过本标准的引用而成为本标准的条款。
凡是不注日期的引用标准,其最新版本适用于本规定。
工业设备及管道绝热工程设计规范 GB 50264建筑设计防火规范 GB 50016城市供热管网工程施工及验收规范 CJJ 28城市热力管网设计规范 CJJ 34城市供热管网质量检验、评定 CJJ/T 81城市供热系统安全运行技术规程 CJJ/T 883供热介质选择3.1 对民用建筑物采暖、通风、空调及生活热水热负荷供热的城市热力管网应采用水作供热介质。
3.2 同时对生产工艺热负荷和采暖、通风、空调、生活热水负荷供热的城市热力管网供热介质按下列原则确定:a)当生产工艺热负荷为主要负荷,且必须采用蒸汽供热时,应采用蒸汽作供热介质;b)以水为供热介质能够满足生产工艺需要(包括在用户处转换为蒸汽),且技术经济合理时,应采用水作为供热介质;c) 当采暖、通风、空调热负荷为主要负荷、生产工艺又必须采用蒸汽供热,经技术经济比较认为合理时,可采用水和蒸汽两种供热介质。
4热力管网型式的确定4.1 热水热力管网型式的确定4.1.1 热水热力管网宜采用闭式双管制。
4.1.2 以热电厂为热源的热水热力管网,同时有工艺、采暖、通风、空调、生活热水多种热负荷,在生产工艺热负荷与采暖热负荷所需供热介质参数相差较大,或季节性热负荷占总热负荷比例较大,且技术经济合理时,可采用闭式多管制。
热力管道施工组织设计(直埋敷设管道)
目录一、工程概况及编制依据 (2)(一)、工程概况 (2)(二)、编制依据 (3)二、主要施工方法 (3)第一节直埋敷设管道土方工程 (3)(一)、开挖准备 (3)(二)、管沟开挖 (4)第二节管道安装 (5)(一)施工过程及工艺要求: (5)(二)采暖管道安装注意事项 (6)(三)管道水压试压 (7)(四)管线预热: (7)(五)系统冲洗 (7)第三节管道的防腐与保温 (8)(一)、管道的防腐 (8)(二)、管道的保温 (8)(一).技术措施 (11)(二)、质量保证组织措施 (19)(一)、安全生产保证措施 (27)(二)、文明施工措施 (28)(三)、雨天施工措施 (29)一、工程概况及编制依据(一)、工程概况1.工程名称:2.建设单位:3.设计单位:4.工程地点:5.本工程主要特点:(1)主管线位于(2)该工程工期长,为17个月。
管道种类多包括φ820×10mm、φ630×8mm、φ478×7、φ377×7mm、φ273×6mm。
管道总长1.7万米,管道焊接要求质量高,直管段随机抽样探伤,探伤比例为20%,阀门管件100%探伤。
(3)管道管材采用螺旋焊接钢管预制保温管,主干管采用无补偿直埋敷设,支管采用有补偿直埋敷设。
(4)地区属多风、寒冷气候,施工时根据气候特点须采取必要的防护措施,冬季回填土前管道需进行70℃预热工艺。
夏季应注意防雨。
6.工程内容:(1).本工程占新城中集中供热工程的1/4。
(2).主要工程内容是沟槽开挖、沟槽铺砂、管道保温、管线的敷设与安装,砼支墩制作、管道预热、管周埋砂、管沟回填及余土外运。
(3).系统参数:供热介质:130℃/70℃热水。
工作压力:1.6Mpa 试验压力:强度试验2.4Mpa,严密性试验2 .0Mpa。
(二)、编制依据本施工组织设计是根据建设单位提供施工图及有关施工说明,结合我方现场勘察进行编制。
供热管道方案技术标
供热管道方案技术标
1.管道材料选择标准:
-供热管道材料应符合国家标准,具有良好的耐高温、耐腐蚀、耐压和耐磨损性能。
-应考虑材料的热膨胀系数,以及与其他管道附件的兼容性。
2.管道设计标准:
-管道设计应满足热力传输的要求,同时考虑到管道的热损失和压力损失。
-管道布置应符合安全和施工方便的原则,避免与其他设备和管道的干扰。
3.管道安装标准:
-管道应按照设计要求进行施工,保证管道的水平、垂直、直线度和连接的质量。
-管道的连接应采用焊接或螺纹连接,保证连接的紧密性和可靠性。
-管道的支架应牢固可靠,具有足够的强度和刚度。
4.管道保温标准:
-供热管道应进行保温,以减少热损失,提高供热效率。
-选择适当的保温材料和保温层厚度,确保管道的保温效果。
-保温施工应符合规范,保证保温层的密实和光滑度。
5.管道运行和维护标准:
-管道应定期进行检查和维护,发现问题及时处理。
-对于有泄漏或损坏的管道,应及时修复或更换。
-管道运行中应采取相应的措施,保证供热系统的安全和稳定运行。
6.管道检验标准:
-管道施工完工后应进行检验,确认管道的质量和完整性。
-管道的检验方法和标准应符合国家相关规定。
-管道试验应按照设计要求进行,确保管道的运行安全和性能可靠。
在实际的供热工程中,还需要根据当地的实际情况和需求,结合相关的技术标准和规范,制定具体的供热管道方案技术标。
以上是供热管道方案技术标的一些基本内容,供参考。
供热管道总体技术要求
A 供热管道总体技术要求A.1一次网相关要求1、管道布置及材料(1)一次直埋管线均采用耐高温高密度聚乙烯预制保温管,保温材料为聚氨酯,外保护层为高密度聚乙烯。
工作钢管大于等于DN200mm时采用螺旋缝钢管,材质为Q235B,小于DN200mm时采用无缝钢管,材质为20#钢。
主干线抽头必须采取逐级缩径方式,且抽头最小管径不得小于DN200;当一次直埋管网小于等于DN150时,钢管壁厚按照6mm进行设计及制造,且相应的弯头、三通、变径管等管件,钢管壁厚不应小于直管壁厚。
(2)一次网阀门采用焊接连接方式。
直埋管道的弯头、三通、变径管等管件必须采用预制保温管件。
(3)阀门选择:大于DN300mm的管道,采用预制保温双向金属硬密封焊接蝶阀,压力等级为PN2.5Mpa;小于DN300mm的管道采用预制保温球阀,压力等级为PN2.5Mpa。
(4)公建用户的一次网必须设置用户阀门,阀门应设置在用户围墙之外,可以独立操作和管理。
(5)现场接口保温施工必须在管道试压合格后方可进行。
大于等于DN300直埋管道必须采用电热熔预制套袖,热熔套袖熔完后,现场按规范要求进行气密性试验,合格后发泡,使用热缩带收口。
小于DN300mm管道可以使用普通接口发泡形式及热缩的带收口。
(6)工作管异径管应采用同心异径管,异径管圆锥角不应大于20度(即异径管缩颈程度最大不应超过2档)。
异径管壁厚不应小于直管道壁厚。
(7)热水一次网主干线、支干线、支线及户线抽头位置必须安装关断阀门。
阀门安装位置应在满足操作及检修的基础上尽量靠近抽头。
其中公建用户一次线必须设置用户关断阀门且阀门应设在用户厂区、办公院墙之外,公建用户阀门井井盖采用防开启型井盖,自管阀门井井盖采用防盗井盖,井盖承重等级与满足市政道路要求。
(8)直埋敷设的管道由地下转出地面、转出管沟或检查室时,外护管要与工作管一同引出并做好防水封端,防止管沟和地面积水浸入直埋管道保温层内。
一次线穿越地下室墙壁时需保证预制保温管进入地下室20cm以上,绝对严禁光管穿越墙壁:预留的管道孔位置必须高于室外地下水位以上,直径满足预制保温管外径要求,穿墙孔防渗选择柔性密封连接管件等新技术和新工艺。
热力管道的国家强制标准
热力管道的国家强制标准热力管道是一种用于输送热力能量的管道系统,广泛应用于供热、供冷、工业加热等领域。
为了保证热力管道的安全运行和高效利用,各国制定了相应的国家强制标准。
本文将介绍热力管道的国家强制标准,以及其在保障热力管道运行安全和高效的重要性。
热力管道的国家强制标准主要包括:设计标准、材料标准、施工标准、验收标准和运行维护标准等。
下面将逐一介绍这些标准的内容和意义。
首先是热力管道的设计标准。
设计标准是热力管道建设的基础,它规定了热力管道的设计原则、技术参数、布置方案等。
设计标准的制定旨在保证热力管道的安全性、可靠性和有效性。
例如,设计标准规定了热力管道的设计压力、温度、流速等参数,以及热力管道的布置要求和关键部位的结构设计要求。
符合设计标准的热力管道可以有效地防止泄漏、爆炸和其他安全事故的发生。
其次是热力管道的材料标准。
材料标准规定了热力管道所使用的材料的选择、使用性能要求、质量控制等。
热力管道的材料需要具备耐高温、耐压、耐腐蚀等特性,以保证热力管道在复杂的工况下安全运行。
材料标准的制定可以有效地保证热力管道的材料质量和使用效果,从而降低热力管道的安全风险和运营成本。
第三是热力管道的施工标准。
施工标准规定了热力管道的施工技术要求、工艺步骤、施工现场管理等。
施工标准的制定旨在确保热力管道在施工过程中的质量和安全。
例如,施工标准规定了热力管道的焊接工艺、防腐处理、安装要求等,以保证管道的密封性和可靠性。
符合施工标准的热力管道可以有效地防止施工质量问题和事故的发生。
接下来是热力管道的验收标准。
验收标准规定了热力管道建设完成后的验收程序、验收标准和验收要求。
验收标准的制定可以有效地控制热力管道建设质量,保证热力管道的工程质量和安全性。
例如,验收标准规定了热力管道的安全运行试验、泄漏检测、设备检测等,以验证热力管道符合设计要求和技术标准。
符合验收标准的热力管道可以保证其安全、可靠地运行。
最后是热力管道的运行维护标准。
热力管道技术方案
供热管网设计总说明一、基本概况:马家岸村一组新建二级供热管线 2×7023m,其中:DN250 供热管线 2×518m,DN200 供热管线 2×114m,DN125 供热管线 2×339m,DN100 供热管线2×1400m,DN80 供热管线 2×538m,DN70 供热管线入户管 2×114m,DN40 供热管线入户管 2×4000m,新建采暖检查井 5 座,新建采暖入户井 38 座。
最大冻土深度为1.5m。
二、设计依据《城镇供热直埋热水管道技术规程》(CJJ/T81-2013)《城镇供热管网设计规范》(CJJ34-2010)《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)《城镇供热管网工程施工及验收规范》(CJJ28-2014)《高密度聚乙烯外护管硬质聚氨酯泡沫塑料预制直埋保温管及管件》(GB/T29047-2012)《工业金属管道工程施工规范》(GB50235-2010)《建筑给水排水及采暖工程施工质量验收规范》(GB50242-2012)三、设计说明1、本工程热力管道采用直埋敷设,直埋管工程做法见05R410/50,热源由锅炉房提供。
2、管道及附件设计要求:a.直埋管道应使用整体式预制保温管道,管道及管件应符合《城镇供热直埋热水管道技术规程》(CJJ/T81-2013)和《高密度聚乙烯外护管硬质聚氨酯泡沫塑料预制直埋保温管及管件》(GB/T29047-2012)的要求。
管道采用管径DN≤200mm,用无缝钢管,材质为20号钢,DN>200mm,用螺旋缝埋孤缝钢管,材质为325-B号钢。
b.管道的连接采用焊接,焊条型号E4303焊条,直径4mm。
直埋管道接头安装见05R410/79。
管道与设备、阀门等需要拆卸的附件连接时,应采用法兰连接。
c.固定支架安装见03R411-1。
3、管道阀门的选用及安装:采暖供回水干管上设D74X型法兰连接金属硬密封蝶阀,其允许工作温度应≥60°C,允许工作压力为1.6MPa。
热力管道设计规范
热力管道设计规范热力管道设计规范是指在热力管道设计中必须遵循的一系列规范和标准。
它的目的是为了确保热力管道的设计、安装和运行的安全性和可靠性。
以下是热力管道设计规范的主要内容。
首先是关于热力管道的工程基本要求。
热力管道的设计应符合国家相关法律法规的规定,并且要满足工程建设的需要。
设计时要考虑到管道的功能、安全性、经济性和环保性等方面的要求。
其次是有关热力管道材料的要求。
热力管道的材料应选择合适的金属或非金属材料,并且要符合相关标准和规范。
材料的抗压强度、耐腐蚀性、耐高温等性能必须满足设计要求。
第三是有关热力管道的设计标准和计算方法。
热力管道的设计应符合国家和行业标准的规定。
在设计过程中,要进行管道的传热计算和流体力学计算,确保管道的传热效果和流动特性符合要求。
第四是关于热力管道的安装和施工要求。
热力管道的安装应按照设计要求和相关标准进行,包括管道的垂直度、水平度、支撑方式等方面的要求。
施工过程中要保证管道的质量和安全。
第五是有关热力管道的试验和验收的规定。
热力管道的试验应按照相关标准进行,包括压力试验、泄漏试验、渗透试验等。
验收时要检查管道的质量、安全等方面是否符合设计要求。
最后是关于热力管道的维修和维护的要求。
热力管道在运行过程中需要进行定期的维修和维护,以保证其正常运行。
维修和维护的要求包括对管道的检查、清洗、修补等方面的要求。
总之,热力管道设计规范是保证热力管道安全、可靠运行的重要依据。
设计、安装、施工、试验、验收和维修等方面的要求都需要严格按照规范执行,以保证热力管道的质量。
同时,设计规范的不断完善和更新也是为了适应不断发展变化的技术和环境要求。
热力管道设计手册
热力管道设计手册导言热力管道设计手册是对热力管道设计所需的知识、原理和规范进行全面总结和归纳的一本手册。
本手册旨在为热力管道设计人员提供设计准则、技术规范和实用经验,以确保热力管道的安全、可靠和高效运行。
重要性热力管道在城市热供系统中起着至关重要的作用。
它们负责将热能从热源输送至用户,为社会提供稳定、高效的供暖和热水。
热力管道的设计质量直接影响到供热系统的运行效率和安全性。
因此,热力管道设计手册的编制非常必要。
提供设计准则和技术规范设计准则和技术规范是热力管道设计的指导原则。
它们包括了管道系统的设计要求、选材标准、安装规范等内容。
该手册将这些准则和规范集中起来,为设计人员提供一个便捷的参考工具。
传授实用经验和解决方案热力管道设计是一个复杂的过程,需要设计人员综合考虑材料、传热、机械强度等多个因素。
在实际设计中,设计人员常常会遇到各种具体问题。
热力管道设计手册通过分享实用经验和提供解决方案,帮助设计人员更好地应对挑战。
设计流程热力管道设计是一个系统工程,包含多个环节和步骤。
下面将介绍一个常见的设计流程,以供参考。
系统调研与方案设计1.了解供热系统的整体情况:包括供热范围、用户需求、热源类型等;2.确定管网布置方案:综合考虑地形地貌特点、建筑布局等因素,确定管道布置方案;3.选择管道材料和绝热材料:根据供热系统特点和运行条件,选择适合的管道材料和绝热材料。
工程量计算与管径选取1.对供热区域进行综合热功率计算:考虑用户需求和气候条件,计算供热区域的综合热功率;2.计算管道输水量:结合供热区域热功率和供回水温度差等参数,计算管道的输水量;3.选取合适的管径:根据管道输水量和流速要求,选择合适的管径。
弹性支座设计1.管道伸缩计算:根据管道的长度、温度变化范围等参数,计算管道的伸缩量;2.选取合适的弹性支座:根据管道伸缩量和弹性支座的承载能力,选择合适的支座类型和数量。
管道强度计算与防腐措施1.管道强度计算:考虑管道内压力、外部荷载、安装方式等,计算管道的强度;2.防腐措施选取:结合管道所处环境和使用要求,选择合适的防腐措施。
热力管道设计技术规定
1 目的为规公司部城市热力管网设计,特制定本规定。
2 围本规定适用于城市热力网设计。
本次规定暂以蒸汽作为主要供热介质编制,今后将补充热水热力网设计的有关规定。
3 职责3.1 由设计部负责组织实施本规定。
4 工程设计基础数据基础数据应为项目所在地资料,以下为镇海炼化所在地资料。
4.1 自然条件4.1.1 气温年平均气温:16.3 C极限最高气温:38.5 C(1988 年7 月20 日)极端最低气温:-6.6C(1977 年1 月31 日)最热月平均气温:27.8C(7 月)最冷月平均气温: 5.2C防冻温度: 1.4C4.1.2 湿度年平均相对湿度:79%月平均最大相对湿度:89%(84 年6 月)月平均最小相对湿度:60% (73 年12 月,80 年12 月,88 年11 月)4.1.3 气压年平均气压:1014.0 百帕年极端最高气压:1038.4 百帕(81 年12 月2 日)年极端最低气压:972.2 百帕(81 年9 月1 日)夏季(7、8、9 月)平均气压:1005.5 百帕夏季(7、8、9 月)平均最低气压:1000.5 百帕(72 年7 月)冬季(12、1、2 月)平均气压:1023.1 百帕冬季(12、1、2 月)平均最高气压:1026.2 百帕(83 年1 月)4.1.4 降雨量多年平均降雨量:1297.2 mm年最大降雨量:1578.7 mm(83 年)一小时最大降雨量:81.2 mm(81 年7 月30 日6 时44 分开始)十分钟最大降雨量:26.3 mm(81 年7 月30 日7 时22 分开始)一次最大暴雨量及持续时间:161.2 mm(出现在81 年9 月22 日14 时16 分至23 日18 时16 分)4.1.5 雪历年最大积雪深度:14 cm(77 年1 月30 日)4.1.6 风向全年主导风向:东南偏东;西北;频率10%夏季主导风向:以东南偏东为主冬季主导风向:以西北为主附风玫瑰图夏季风速(7、8、9 月平均):冬季平均风速(12、1、2 月平均):历年瞬间最大风速:年8月7日N)最大台风十分钟平均风速:30 年1 遇10 分钟平均最大风速:4.1.7.2 基本风压4.8 m/s6.1 m/s>40m/s(1980 年8 月28 日NNW 、34.3 m/s(1988 年8 月8 日E)31.0~32.4 m/s(十米高,省气象局)19884.1.7 风速、风压4.1.7.1 风速0.60〜0.65kPa(按离海较远取小值,靠近海岸取大值)4.1.8 最大冻土层深度及地温4.1.8.1 冻土层深度:最大冻土层深度:50mm 4.1.8.2 地温:-0.8 m最低月平均地温(2月):9.1C-0.8 m 最高月平均地温(8月):26.1C-1.6 m最低月平均地温(3月):12.4 C-1.6 m 最高月平均地温(9月):23.5 C-3.2 m最低月平均地温(4月):15.8 C-3.2 m 最高月平均地温(10月):20.5 C 4.1.9 雷暴日年平均雷电日数:31.1 天4.1.10 雾CJJ34-2002GB 50264-97 GB 50235-97 现场设备、工业管道焊接工程施工及验收规 GB 50236-98 工业设备及管道绝热工程施工及验收规 GBJ -89 火力发电厂汽水管道应力计算技术规定 SDGJ6CJJ/T 81 -年最高雾日: 48 天(1984 年)4.2 工程地质4.2.1 地质勘探资料见省勘察初勘资料。
城市供热管道设计的最新标准与规范
城市供热管道设计的最新标准与规范近年来,城市供热管道设计在我国城市化发展的过程中起到了至关重要的作用。
城市供热管道是城市热力输送的主要设施,对于人民的生活和城市经济的发展都有着重要的影响。
因此,制定最新的标准与规范对于提高城市供热管道设计的质量和安全性意义重大。
首先,最新的标准与规范应该紧跟国际的最新技术标准。
随着科技的发展,国际上不断出现新的技术和设备,这些新技术和设备在城市供热管道设计中应该得到合理的运用。
例如,采用先进的制冷技术可以提高管道的热效率,降低能耗,减少环境污染。
同时,国际上已经出现的一些新的管道材料,如耐腐蚀性强的不锈钢材料、高强度玻璃钢等,可以增强管道的耐压性和耐腐蚀性,提高管道的使用寿命。
因此,在制定最新的标准与规范时,应该与国际接轨,引进和运用国际最新的技术标准。
其次,最新的标准与规范应该注重环保与节能。
城市供热管道设计过程中应该注重减少能源的消耗和对环境的污染。
例如,在管道的保温设计上应该尽量减少热量的散失,降低能耗。
同时,管道的材料应选择环保的材料,减少对环境的污染。
此外,应注重管道的维护和管理工作,定期检测和维修管道,提高供热系统的整体热效率。
再次,最新的标准与规范应该关注安全问题。
城市供热管道的安全问题直接关系到人民的生命财产安全。
因此,最新的标准与规范应该注重管道的安全设计和施工,确保管道的结构和材料的安全性。
同时,在设计和施工过程中应注重防火和防爆措施,确保管道能够在火灾和爆炸等事故中保持稳定和安全。
最后,最新的标准与规范应该注重管道的可持续发展。
随着城市的快速发展,供热管道的需求也在不断增加。
因此,在设计和建造城市供热管道时应考虑未来的发展需求,确保管道的可持续发展性。
例如,在管道的布置上应留有足够的空间以适应未来的扩展。
此外,应采用可拆卸连接方式,方便今后维护和改造。
综上所述,制定最新的标准与规范对于提高城市供热管道设计的质量和安全性非常重要。
最新的标准与规范应紧跟国际的最新技术标准,注重环保与节能,关注安全问题,同时注重管道的可持续发展性。
热力管道工程施工具体技术要求
热力管道工程施工具体技术要求一、管沟开挖与回填(一)管线施工前应统一进行平面测量,定位放线并核实沿线的地下管道交叉设施情况,以统筹调整施工中碰到的障碍,合理安排土方运输车的行走路线及弃土场。
(二)投标人应结合管道沿线的地质条件及设计要求的管道埋深,确定合适的沟槽开挖方案,并满足施工图纸的要求。
对管沟进行开挖的过程中,如果地基出现松软现象,对其进行压实,满足打桩支护要求。
当土方开挖中发现事先未探明的地下障碍物时,应与产权或主管单位协商,采取措施后,再进行施工。
若管线产权单位要求管线范围内采用人工开挖土方,严禁使用挖掘机等机械。
(三)开挖时不得影响各种管线和其它设施的安全;遇到一切市政设施(包括但不限于道路、渠、沟、田埂、井盖等)投标人进行拆除,并在施工后原样恢复。
(四)开挖前必须对邻近建筑物、构筑物、给水、排水、电力等地下管线进行调查,摸清位置、埋设标高、基础和上部结构形式,当处于基坑较强影响区域范围内必须采取可靠措施保护,当邻近建筑物可能受基坑开挖影响时,应详细调查其已有裂缝或破损情况,并做好记录。
(五)土方开挖时,必须按有关规定设置沟槽边护栏、夜间照明灯及指示红灯等设施,并按需要设置临时道路。
土方开挖应保证施工范围内的排水畅通,并应采取防止地面水、雨水流入沟槽的措施。
(六)开挖的土方应及时外运;土方开挖施工期间,基坑(槽)两侧严禁大量堆载。
(七)在地下水位高于基底的地段应采取降水措施或地下水控制措施。
降水措施应符合现行《建筑与市政降水工程技术规范》JGJ/T111 的相关规定,并应将施工部位的地下水位降至基底以下500mm后方可开挖,降水措施费用自理。
(八)雨季施工时,应尽可能缩短开槽长度,且成槽快并采取防泡槽措施。
一旦发生泡槽,应将受泡的软化土层清除,换填砂石料或中粗砂。
施工做好防止地面水或雨水流入沟槽的措施,防止浮管及泥浆进入。
(九)机械挖土应有200mm预留量,宜人工配合机械挖掘,挖至槽底标高,对松软的地基应确定加固措施。
热力管道 国家标准
热力管道国家标准
热力管道是指用于输送热水、蒸汽等热介质的管道系统,是城市供热、工业生
产中不可或缺的重要设施。
为了确保热力管道的安全运行和有效利用,国家对热力管道的设计、安装、使用等方面都进行了严格的规范,制定了一系列的国家标准。
首先,热力管道的设计需要符合国家标准,包括管道的材质、尺寸、承压能力
等方面的要求。
在设计过程中,需要考虑管道的输送介质、温度、压力等参数,确保管道能够安全、稳定地运行。
同时,还需要考虑管道的防腐、保温、排水等工艺,以提高管道的使用寿命和运行效率。
其次,热力管道的安装也需要严格按照国家标准进行。
安装过程中需要严格控
制管道的施工质量,确保管道的连接牢固、密封可靠,避免因安装质量不达标而导致的安全隐患。
此外,还需要对管道进行严格的试压、泄漏检测,以确保管道安装后的运行安全。
在热力管道的使用过程中,国家标准也规定了管道的日常维护和管理要求。
包
括定期对管道进行检测、维修和保养,确保管道的运行状态良好。
同时,还需要建立健全的管道管理制度,加强对管道运行的监控和管理,及时发现并解决管道运行中出现的问题,确保热力管道的安全运行。
总的来说,热力管道国家标准的制定和执行,对于保障热力管道的安全运行、
提高热力资源的利用效率具有重要意义。
只有严格按照国家标准进行设计、安装和使用,才能确保热力管道的安全可靠,为城市供热、工业生产等提供稳定的热力支持。
因此,各相关单位和人员都应该严格遵守国家标准,共同维护好热力管道系统的安全运行。
城市热力管网设计规定
城市热力管网设计规定压力管道设计技术规定(城市热力管网)23引用标准下列标准中的条款通过本标准的引用而成为本标准的条款。
凡是不注日期的引用标准,其最新版本适用于本规定。
工业设备及管道绝热工程设计规范GB 50264建筑设计防火规范GB 50016城市供热管网工程施工及验收规范CJJ 28城市热力管网设计规范CJJ 34城市供热管网质量检验、评定CJJ/T 81城市供热系统安全运行技术规程CJJ/T 884供热介质选择3.1 对民用建筑物采暖、通风、空调及生活热水热负荷供热的城市热力管网应采用水作供热介质。
3.2 同时对生产工艺热负荷和采暖、通风、空调、生活热水负荷供热的城市热力管网供热介质按下列原则确定:a)当生产工艺热负荷为主要负荷,且必须采用蒸汽供热时,应采用蒸汽作供热介质;b)以水为供热介质能够满足生产工艺需要(包括在用户处转换为蒸汽),且技术经济合理时,应采用水作为供热介质;c) 当采暖、通风、空调热负荷为主要负荷、生产工艺又必须采用蒸汽供热,经技术经济比较认为合理时,可采用水和蒸汽两种供热介质。
5热力管网型式的确定4.1 热水热力管网型式的确定4.1.1 热水热力管网宜采用闭式双管制。
4.1.2 以热电厂为热源的热水热力管网,同时有工艺、采暖、通风、空调、生活热水多种热负荷,在生产工艺热负荷与采暖热负荷所需供热介质参数相差较大,或季节性热负荷占总热负荷比例较大,且技术经济合理时,可采用闭式多管制。
4.1.3 当热水热力管网具有水处理费用较低的丰富的补给水资源且技术经济合理时,可采用开式热力管网。
4.1.4 当热水热力管网具有与生活热水热负荷相适应的廉价低位能热源且技术经济合理时,可采用开式热力管网。
4.1.5 开式热水热力管网在生活热水热负荷足够大且技术经济合理时,可不设回水管。
4.2 蒸汽热力管网型式的确定4.2.1 蒸汽热力管网宜采用单管制。
4.2.2 当各用户间所需蒸汽参数相差较大或季节性热负荷占总热负荷比例大且技术经济合理时,蒸汽热力管网可采用双管或多管制。
热力管道设计规范
热力管道设计规范热力管道设计规范主要包括以下方面内容:1. 设计原则:热力管道设计应遵循经济可行、安全可靠、操作及维修方便的原则。
同时应考虑保护环境、节能减排等因素。
2. 材料选择:热力管道的材料应具有良好的耐热性、耐压性和耐腐蚀性。
常用的材料有碳钢、合金钢、不锈钢等。
在选择材料时还要考虑管道的工作温度、压力和介质的特性。
3. 管道布置:热力管道的布置应尽量简短、直线、平顺,能够保证介质流动的畅通。
管道的斜率和高度差应满足排气和排水的需要。
同时要考虑管道的维护和检修空间。
4. 管道直径:热力管道的直径应在一定范围内选择,以保证介质能够正常流动,避免过大或过小造成能量损失或压力损失。
5. 设备选择:热力管道系统中的设备如泵、阀门、热交换器等应选择合适的类型和规格,以满足工艺要求。
同时要考虑设备的运行效率、能耗和维护方便程度。
6. 管道保温:热力管道应进行保温处理,以减少能量损失。
保温材料的选择应考虑管道的工作温度和外界环境的温度变化。
7. 通风和放热:热力管道系统中的热交换设备、泵站等应设置通风和放热设施,以保证设备的正常运行。
8. 管道的支撑和固定:热力管道应设置合理的支撑和固定装置,以保证管道的稳定和安全。
9. 防腐蚀措施:热力管道应采用适当的防腐蚀措施,以延长管道的使用寿命。
10. 安全措施:热力管道的设计应考虑安全措施,包括设置安全阀、防火墙等设施,以及制定应急处置方案。
总之,热力管道设计规范包括材料选择、管道布置、设备选择、管道保温、通风和放热、管道支撑和固定、防腐蚀措施和安全措施等内容,旨在确保热力管道系统的安全、可靠和经济运行。
CJJ28-2004标准热力管道规范【范本模板】
城镇供热管网工程施工及验收规范Code for construction and acceptance of city heating pipelinesCJJ28-2004/J372—2004发布日期:2004年12月02日实施日期:2005年02月01日发布单位:中华人民共和国建设部出版单位:中国建筑工业出版社前言根据建设部建标(2002)84号文的要求,标准编制组在广泛调查研究、认真总结实践经验并广泛征求意见的基础上,修订了本规范。
本规范的主要技术内容是:1 总则;2 工程测量;3 土建工程用地下穿越工程;4 焊接及检验;5 管道安装及检验;6 热力站、中继泵站及通用组装件安装;7 防腐和保温工程;8试验、清洗、试运行;9 工程验收。
修订的主要内容是:1 将原规范的适用范围扩大到二级管网工程;2 增加了浅埋暗挖法施工及验收的技术要求;3 补充了直埋保温管道的制作、施工、验收要求;4 修改了钢管、管路附件及设备等供热管网工程专用设施的质量及安装要求;5 对近十年来出现的新技术、新工艺纳入了本规范,同时修改了不相适应的内容;6 将《城市供热管网工程质量检验评定标准》CJJ38-—90中的质量标准和允许偏差,纳入本规范相关章节,工程质量验收的方法编入本规范第九章。
本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技要内容的解释。
1 总则1.0.1 为提高城镇供热管网工程的施工水平,保证工程质量,制定本规范。
1。
0.2 本规范适用于符合下列参数的城镇供热管网工程的施工及验收:1 工作压力P≤1。
6MPa,介质温度T≤350℃的蒸汽管网;2 工作压力P≤2。
5MPa,介质温度T≤200℃的热水管网;1。
0。
3 施工单位开工前应熟悉图纸和现场,并应按建设单位或监理单位审定的施工组织设计组织施工.工程施工和工程所需的材料及设备必须符合设计要求且有产品合格证;设计未提出要求时,应符合国家现行有关标准的规定.工程变更、材料及设备需代用或更换时,必须得到设计部门的同意。
热力供暖设计的执行相关规范及标准
热力供暖设计的执行相关规范及标准热力供暖设计是指为了满足建筑物内的采暖需要而执行的一系列工作。
在设计过程中,遵循相关规范和标准是非常重要的,这些规范和标准确保了热力供暖系统的安全、高效运行。
本文将介绍热力供暖设计中的执行相关规范及标准,帮助读者更好地了解并应用于实际工程中。
一、供暖系统设计的基本原则热力供暖系统的设计需要遵循一些基本原则,包括以下几个方面:1. 合理选取热源和热力站的位置,确保供热管网布局合理;2. 根据建筑物的类型、结构特点和采暖需求合理选择供热器型号和规格;3. 确保供热设备的安全可靠性以及运行的高效性;4. 保证采暖系统的节能性和环保性。
二、热力供暖设计的执行相关规范1. 建筑给排水设计规范建筑给排水设计规范提供了热力供暖系统在建筑物内的布置、管道选择、保温层的设计等相关规范。
它涵盖了管道的安装要求、连接方式、截断阀的设置以及设备的选择等内容。
2. 建筑热工设计规范建筑热工设计规范用于热力供暖系统在建筑物内的热量计算、供暖面积确定等方面。
此规范规定了采暖面积的计算方法,确保建筑物采暖需求的准确性,保证供热系统的安全运行。
3. 热力管道设计规范热力管道设计规范详细说明了热力管道的设计、布置、保温以及材料选用等方面。
它要求热力管道的敷设必须符合相关标准,且管道的保温层应采用合适的材料和厚度,以减少能量损失。
4. 热力站设计规范热力站设计规范规定了热力站的基本要求,包括燃料供应、系统调节、设备选用和热交换等方面。
它要求热力站的设计必须满足安全、高效和可靠的要求,确保整个供热系统的正常运行。
三、热力供暖设计相关的标准除了上述规范外,还有一些标准与热力供暖设计密切相关,如下所示:1. 建筑节能标准建筑节能标准对建筑物的能耗要求进行了规定,对于热力供暖设计来说,需要合理选择能效高的供热设备,以及优化管道布局和保温层材料,以实现节能目标。
2. 燃气供应标准燃气供应标准规定了燃气管道的设计和敷设要求,保证供气的安全性和稳定性。
热力管道设计方法
用户
用户 用户
热源
用户
(1个或n个)
用户
用户
(二)主要分类
31 根据热源分类 2 根据热媒分类 3 根据供热管网分类
(二)主要分类——根据热源分类
➢ 热电厂供热系统 ➢锅炉房供热系统 ➢余热供热系统 ➢可再生能源供热系统
其它5.8%
热电厂 51.3%
锅炉房 42.9%
(二)主要分类——根据热媒分类
W : 年产量(t或件) b : 单位产品耗煤量(kg/t或kg/件) Ψ : 回水率 Ta : 年平均负荷利用小时数(h) hb、hma :供汽焓、补水焓(kJ/kg) hrt : 回水焓(kJ/kg)
(二) 热负荷计算
采暖热负荷:室外采暖设计温度时,为保证室内温度
符合要求,由供热设备提供的热量。
➢蒸汽供热系统 ➢热水供热系统
(二)主要分类——根据供热管网分类
➢单管制 ➢双管制 ➢多管制
(三)选择方法
安全、经济
用户性质
用户规模
自然条件
二、热负荷
(一) 热 负 荷 类 型
根据负荷性质分为: 生产热负荷 采暖热负荷 通风热负荷 空调热负荷 生活热水热负荷
(二) 热负荷计算
生产工艺热负荷:生产工艺实际数据
(三)平面布置形式
燃气管不得进入热网管沟。热网管沟与燃气管道交叉垂 直净距小于300mm时,燃气管必须加套管,套管两端 超出管沟1m以上。
总原则
节约用地 降低投资
运行安全 施工维修方便
(四)管道敷设方式
敷设方式
地上敷设
地下敷设
低支架
中支架
高支架
直埋
管沟
(四)管道敷设方式
低支架:
热力管道设计及验收规范
热力管道设计及验收规范1. 简介本文档旨在提供热力管道设计及验收的规范,以确保管道的安全和可靠运行。
热力管道是指将热能传输到目标地点的管道系统,包括输热介质、隔热层、管道支架和附件等组成部分。
2. 设计要求- 管道布置应符合建筑结构和功能的要求,尽量避免穿越大门、窗户等敏感区域。
- 管道应具有足够的强度和刚度,以承受压力和温度的变化,并能抵御外力和震动的影响。
- 管道应考虑自来水、电力等管线的交叉及安全间距,以免发生交叉干扰。
- 管道选材应根据传热介质和工作温度确定,材料应符合相关标准和规范。
- 管道应考虑隔热层的安装,以减少能量损失和热辐射。
3. 管道安装- 管道安装应符合相关安装规范和标准,确保管道的连接牢固、密封可靠。
- 管道支架应选用适当的类型和数量,以提供足够的支撑和稳定性。
- 管道应进行试压和泄漏测试,确保管道系统没有渗漏和漏水问题。
- 管道的倾斜度和排气装置应设计合理,以保证介质流动顺畅且无空气堵塞。
4. 管道验收- 管道验收应包括对管道系统的全面检查和试运行。
- 检查内容包括管道布置是否符合设计要求,支架是否牢固,阀门和附件是否正常工作等。
- 试运行应模拟实际工况,测试管道系统的稳定性、温度和压力控制等性能。
- 管道验收合格后,应及时做好验收记录和文件归档工作。
5. 安全措施- 在管道设计和施工中,应遵守相关安全规定和标准,确保施工人员和使用人员的安全。
- 安装过程中应加强现场管理,特别是在焊接、切割和试压等作业环节,严格控制火源和气源。
- 管道系统应配备必要的安全阀、过滤器、排气装置等附件,以确保系统的安全和稳定运行。
以上是热力管道设计及验收的规范要求,请在设计和施工过程中严格遵守,以确保管道系统的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 目的为规范公司内部城市热力管网设计,特制定本规定。
2 范围本规定适用于城市热力网设计。
本次规定暂以蒸汽作为主要供热介质编制,今后将补充热水热力网设计的有关规定。
3 职责由设计部负责组织实施本规定。
4 工程设计基础数据基础数据应为项目所在地资料,以下为镇海炼化所在地资料。
自然条件气温年平均气温:℃极限最高气温:℃(1988年7月20日)极端最低气温:-℃(1977年1月31日)最热月平均气温:℃(7月)最冷月平均气温:℃防冻温度:℃湿度年平均相对湿度:79%月平均最大相对湿度:89% (84年6月)月平均最小相对湿度:60% (73年12月,80年12月,88年11月)气压年平均气压:百帕年极端最高气压:百帕(81年12月2日)年极端最低气压:百帕(81年9月1日)夏季(7、8、9月)平均气压:百帕夏季(7、8、9月)平均最低气压:百帕(72年7月)冬季(12、1、2月)平均气压:百帕冬季(12、1、2月)平均最高气压:百帕(83年1月)降雨量多年平均降雨量:mm年最大降雨量:mm(83年)一小时最大降雨量:mm(81年7月30日6时44分开始)十分钟最大降雨量:mm(81年7月30日7时22分开始)一次最大暴雨量及持续时间:mm(出现在81年9月22日14时16分至23日18时16分)雪历年最大积雪深度:14 cm(77年1月30日)风向全年主导风向:东南偏东;西北;频率10%夏季主导风向:以东南偏东为主冬季主导风向:以西北为主附风玫瑰图风速、风压风速夏季风速(7、8、9月平均):m/s冬季平均风速(12、1、2月平均):m/s历年瞬间最大风速:>40m/s(1980年8月28日NNW、1988年8月7日N)最大台风十分钟平均风速:m/s(1988年8月8日E)30年1遇10分钟平均最大风速:~ m/s(十米高,省气象局)基本风压~(按离海较远取小值,靠近海岸取大值)最大冻土层深度及地温冻土层深度:最大冻土层深度:50mm地温:m最低月平均地温(2月):℃m最高月平均地温(8月):℃m最低月平均地温(3月):℃m最高月平均地温(9月):℃m最低月平均地温(4月):℃m最高月平均地温(10月):℃雷暴日年平均雷电日数:天雾年平均雾日:天年最高雾日:48天(1984年)工程地质地质勘探资料见浙江省勘察设计院初勘资料。
或由业主提供工程所在地的地质勘测资料。
需提供项目界区的工程地质详勘报告。
地震基本烈度及设计规定本区域地震基本烈度为6度,重要设施按7度设防。
新建土建工程抗震按<<构筑物抗震设计规范>>GB50191-93执行。
总图数据绝对高度系统选用吴淞海平面标高。
5 应遵循的主要设计规范设计与施工标准(规范)城市热力网设计规范CJJ34-2002工业设备及管道绝热工程设计规范GB 50264-97工业金属管道工程施工及验收规范GB 50235-97现场设备、工业管道焊接工程施工及验收规范GB 50236-98工业设备及管道绝热工程施工及验收规范GBJ 126-89火力发电厂汽水管道应力计算技术规定SDGJ6城镇直埋供热管道工程技术规程CJJ/T81-98采用的主要管道器材标准(规范)无缝钢管材料标准输送流体用无缝钢管GB/T 8163-1999石油裂化用无缝钢管GB 9948-88输送流体用不锈钢无缝钢管GB/T 14976-94石油化工企业无缝钢管SH3405-96焊接钢管材料标准低压流体输送用镀锌焊接钢管GB/T 3091-93流体输送用不锈钢焊接钢管GB 12771-91流体输送用螺旋焊缝钢管CJ/T3022-93管件标准钢制对焊无缝管件GB/T12459-2005连接件标准钢制管法兰SH 3406-96凸面对焊钢制管法兰JB/T凹凸面对焊钢制管法兰JB/T榫槽面对焊钢制管法兰JB/T环连接面对焊钢制管法兰JB/T管法兰用石棉橡胶板垫片SH3401-96管路法兰用石棉橡胶板垫片JB/T 87-94管法兰用金属环垫SH3403-96管路法兰用金属环垫JB/T 89-94管法兰用缠绕式垫片SH3407-96管路法兰用缠绕式垫片JB/T 90-94管法兰用紧固件SH3404-96弹簧标准可变弹簧支吊架GB10182-88恒力弹簧支吊架GB10181-886 设计设计计算原则热力网的热负荷计算宜采用经核实的建筑物设计热负荷。
如无建筑物设计热负荷资料时,民用建筑的采暖、通风、空调及生活热水热负荷,可按照《城市热力网设计规范》CJJ34-2002中条规定计算。
工业企业热负荷,业主提供有关数据时,可有关设计数据进行。
未提供时,也可按CJJ34-2002中条规定计算。
管道应力分析计算采用CAESARⅡ(版)计算软件。
安全阀的计算采用《压力容器安全技术监察规程》(99版)附件五的要求计算,机泵的选型计算按《泵与原动机选用手册》的规定进行。
供热介质的选择对民用建筑物的采暖、通风、空调及生活热水热负荷供热的城市热力网应采用水作为供热介质。
同时对生产工艺热负荷和采暖、通风、空调及生活热水热负荷供热的城市热力网供热介质按下列原则确定:当生产工艺热负荷为主要热负荷,且必须采用蒸汽供热时,应采用蒸汽作供热介质。
当以水为供热介质能够作为生产工艺需要,且技术经济合理时,应采用水作为供热介质。
当采暖、通风、空调热负荷为主要负荷,生产工艺又必须采用蒸汽供热,经技术经济比较认为合理时,可采用水和蒸汽两种供热介质。
城市热力网形式热水热力网宜采用闭式双管制。
蒸汽热力网的蒸汽管道,宜采用单管制。
热用户的蒸汽凝结水原则上应回收并设置凝结水管道。
当凝结水回收率较低时,是否设置凝结水管道,应进行技术经济比较。
热力网的水力计算热力网的水力计算首先应根据CJJ34-2002中条的要求确定设计流量。
蒸汽管网水力计算时,应按设计流量进行设计计算,再按最小流量进行校核计算,保证在任何可能的工况下满足最不利用户的压力和温度要求。
蒸汽热力网应根据管线起点压力和用户需要压力确定的允许压力降选择管道直径。
热水热力网支干线、支线应按允许压力降确定管径,但供热介质流速不应大于s,支干线比摩阻不应大于300Pa/m。
蒸汽热力网供热介质的最大允许设计速度:过热蒸汽DN>200mm,80m/sDN≤200mm,50m/s饱和蒸汽DN>200mm,60m/sDN≤200mm,35m/s以热电厂为热源的蒸汽热力网,管网起点压力应采用供热系统技术经济计算确定的汽轮机最佳抽(排)汽压力。
以区域锅炉房为热源的蒸汽热力网,在技术条件允许的情况下,热力网主干线起点压力宜采用较高值。
蒸汽热力网凝结水管道设计比摩阻可取100Pa/m。
热力网的布置与敷设城市热力网的布置应在城市规划的指导下进行。
热力网管道的位置应符合下列规定城市道路上的热力网管道应平行于道路中心线,并宜设在车行道以外的地方,同一条管道应只沿街道的一侧敷设。
穿过厂区的城市热力网管道应敷设在易于检修和维护的位置。
通过非建筑区的热力网管道应沿公路敷设。
热力网管道选线时宜避开土质松软地区,地震断裂带、滑坡危险地带以及高地下水位区等不利地段。
热力网管道的敷设城市街道及居住区内的热力网管道宜采用地下敷设。
热水管道地下敷设时,应优先采用直埋敷设。
采用管沟敷设时,应该首选不通行管沟敷设。
穿越不允许开挖检修的地段时,应采用通行管沟敷设。
工厂区的热力网管道,宜采用地上敷设。
蒸汽管线尽量架空敷设,必须埋地时应选用管中管的形式。
局部埋地可采用套管。
采用直埋敷设时,应选用保温性能良好,防水性能可靠,保护管耐腐蚀的预制保温管直埋敷设。
热力管线采用管沟敷设时,有关尺寸应符合CJJ34-2002表的规定。
热力管线与建筑物、构筑物、道路、铁路、电缆、架空电线及其他管道的最小间距,应符合CJJ34-2002表的规定。
热力网管线穿越一些特殊地段时的敷设要求,应符合CJJ34-2002第的有关规定。
在人员通行处管道底部的净高不宜小于2m,在不影响交通的地区,应采用低支架,管道保温结构下表面距地坪距离不应小于米。
埋深以管道不受损害为原则,并考虑最大冻土深度和地下水位等影响。
管顶距地面不宜小于;在室内或室外有混凝土地面的区域,管顶距地面不宜小于。
通行机械车辆的通道下,不小于或采用套管保护,套管管顶距地表不小于。
套管的直径宜比被保护管大二级。
被保护管在套管范围内不应有焊缝。
管道穿越铁路应采用涵洞或者套管,套管距轨顶不应小于。
埋地管道有阀门者应设阀井。
大型阀门的阀井应考虑操作和检修人员能到井下作业。
小型阀门的阀井可只考虑人员在阀井外操作阀门的可能性。
阀井内应设排水点。
采用管沟敷设时,沟底应有不小于2%的坡度,在低处设排水点。
管沟内应预先埋设型钢支架,支架顶面距沟底不小于,对于管底装有排液阀者,管沟与管底之间净空应能满足排液阀的安装与操作。
管沟内有隔热层的管道应设管托。
沟内管间距应比架空管道适当加大。
地上敷设管道与地下敷设管道的连接处,地面不得积水,连接处应设防止积水的混凝土结构或套管,且应高出地面米以上。
当管道运行时有垂直位移且对邻近支座的荷载影响较大时,应采用弹簧支座或弹簧吊架。
当管线采用高低自然补偿时,高架上应采用弹簧支座或弹簧吊架,若采用刚性支座,应设防止管线失稳的限位或导向措施。
蒸汽管线的支管应尽量靠近固定点引出,方形补偿器上不得引出支管。
在靠近方形补偿器的直管上引出时,支管不应妨碍主管的变形或位移。
阀门安装方法所有阀门必须布置在便于操作、维修的地方,其最适当的安装高度是距操作面米左右;当阀门中心高于操作面米时,集中布置的阀组或频繁操作的单个阀门应设操作平台,不经常操作的单个阀,可设链轮,也可利用活动平台,但小于DN40的阀不设链轮;阀门手轮低于操作平台时,可采用阀门延伸杆。
仪表元件的安装调节阀、容积式流量计等,应设置在操作方便,易于维修的地面或平台上;当管道上温度仪表、压力仪表的位置可自由选定时,原则上距操作面的高度不大于米。
安装在设备上各种仪表(如温度计、压力计、液面计等)应设置操作平台或梯子。
调节阀的安装调节阀应尽量靠近与其有关的指示仪表并尽量接近测量元件附近安装,调节阀公称直径小于管道直径时,大小头应紧靠调节阀安装;调节阀设有手动装置时,应确认膜头的上方或横向的空间,调节阀的安装位置应使手动装置便于操作。
角式调节阀需根据介质流向(有上进下出和下进上出两种)确定角阀形式,并设置于无障碍的地方。
对压差较高的调节阀,应采取措施防止噪音和振动。
流量计仪表差压式流量计的孔板既可设在水平管上也可设在立管上,需根据介质情况决定。
差压式流量计的孔板和容积式流量计的转子,其上下游的直管长度应满足自控专业要求。
差压式流量计的取压方向,对蒸汽、热水来说采用水平取压方式。
水平取压受限制时;如是蒸汽可用斜上式,如是热水可用斜下式。