序列密码算法和分组密码算法的不同
分组密码体制简介
分组密码体制简介分组密码体制也具有简捷、快速的特点,并且容易标准化,使其成为软硬件加密的主流算法。
目前主流的分组密码有:DES、IDEA…… .1.分组密码的特点与序列密码不同,分组密码是将明文序列划分成等长的分组(Block),对每一组用同一加密算法和同一密钥进行加密。
分组密码有其自身的优点,首先分组密码容易被标准化,因为在今天的数据网络通信中,信息通常是被成块的处理和传输的。
其次,使用分组赌东道密码容易实现同步,因为一个密码组的传输错误不会影响到其它的分组,丢失一个密文组不会对随后组的解密产生影响。
这就是说,传输错误不会扩散。
而这些方面恰恰是序列密码的最大缺点。
分组密码与序列密码相比的一个缺点就是算法庞大一些,需要更多的计算资源。
分组密码的另一大缺点是其安全性很难被证明。
尽管“可证明安全性”的研究发展很快,但目前的分组密码大多是“看来安全的”,还没有一个分组密码被证明是真正安全的,至多证明了局部安全性。
这其中的原因是:因商业化而要求分组密码算法的细节全部暴露,因此对分组密码的攻击类型很多,安全性概念也就很多,有人为了统一这些安全性概念,甚至引入了伪随机性和超伪随机性,它们是用概率图灵机来描述的,在实际设计和分析中很难应用。
2.分组密码的设计准则一、安全性准则对以下的安全性的描述总是基于以下的假设:加密体制(包括算法的细节)是公开的;安全性完全依赖于密钥;信道是不安全的,即攻击者可以任意的截取密文;攻击者有时也可以截取一些“废弃”的明文。
(1)分组长度和密钥长度:当明文分组长度为n比特时,至多需要2n个明文-密文对就可以彻底破解密钥。
同理当密钥长度为n比特时,对一个截获的密文,至多需要试验2n个密钥就可以破解了密文。
因此从安全性角度来考虑,明文分组长度的密钥长度因尽可能的大。
(2)混淆性:所设计的密码应使得明文、密文、密钥之间的依赖关系相当复杂,以至于这种依赖关系对密码分析者来说是无法利用的。
密码学分组密码
5. 数据扩展。一般无数据扩展,在采用同态置换和随机化 加密技术时可引进数据扩展。
6. 差错传播尽可能小。
设计分组密码常用的一些方法介绍 1. 代换
将n长的明文分组变换为唯一n长密文分组, 这样的变换是可逆的,称明文分组到密文 分组的可逆变换为代换。
D1(28 位)
8 2 16 1
(56 位) 置换选择 2
k1
(48 位)
循环左移
循环左移
Ci(28 位)
Di(28 位)
置换选择 2 ki
(56 位)
(48 位)
置换选择1和置换选择2
DES解密
和Feistel密码一样,DES的解密和加密使 用同一算法,只是子密钥的使用顺序相 反。
子密钥是独立产生的,可以独立存储。
DES加解密过程
令i表示迭代次数,表示逐位模2求和,f为加密函
数。DES的加密和解密过程表示如下。
加密过程:
L0R0 IP( 64bit输入码 )
பைடு நூலகம்
Li Ri1
i 1,2,,16
Ri Li1 f (Ri1, ki ) i 1,2,,16
64bit密文 IP1(R16L16 )
解密过程:
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
E的作用:
将32比特 的输入膨 胀为48比 特。
则输出为:B = t32 t1 t2 …… t32 t1
选择扩展运算:
12 34 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
分组密码和序列密码的概念
分组密码和序列密码是两种不同的加密方法。
分组密码,也称为块加密,将明文消息编码表示后的数字序列划分成长度为n的组(可看成长度为n的矢量),每组分别在密钥的控制下变换成等长的输出数字序列。
在加密过程中,利用密钥产生一个密钥流,然后利用此密钥流依次对明文进行加密。
如ECB、CBC、CFB、OFB等都是分组加密的算法模式。
序列密码,也称为流加密,利用少量的密钥(制乱元素)通过某种复杂的运算(密码算法)产生大量的伪随机位流,用于对明文位流的加密。
序列密码是以一个元素作为基本的处理单元,具有转换速度快、低错误传播的优点,硬件实现电路更简单。
其缺点是低扩散、插入及修改的不敏感性。
总之,分组密码和序列密码的主要区别在于处理方式、基本单元和优缺点。
密码学简答题及计算题
密码学简答题及计算题简答题及计算题1.RSA 算法中n =11413,e =7467,密⽂是5859,利⽤分解11413=101×113,求明⽂。
解:10111311413n p q =?=?=()(1)(1)(1001)(1131)11088n p q ?=--=--=显然,公钥e=7467,满⾜1<e <()n ?,且满⾜gcd(,())1e n ?=,通过公式1mod11088d e ?≡求出1mod ()3d e n ?-≡=,由解密算法mod d m c n ≡得3mod 5859mod114131415d m c n ≡==2.⽤C 语⾔编写欧⼏⾥德算法的程序。
#includeunsigned int Gcd( unsigned int M, unsigned int N ){unsigned int Rem;while( N > 0 ){Rem = M % N;M = N;N = Rem;}return M;}void main(){int temp;int a,b;scanf("%d",&a);scanf("%d",&b);printf("the greatest common factor of %d and %d is ",a,b); printf("%d\n",Gcd(a,b));}3.⽤欧⼏⾥德算法计算gcd (1024,888)。
1024=888*1+136 gcd (888,136)888=136*6+72 gcd (136,72)136=72*1+64 gcd (72,64)72=64*1+8 gcd (64,8)64=8*8+0 gcd (8,0)gcd (1024,888)=84.利⽤欧拉定理可简化⼤指数的幂运算,计算21000 000 mod99gcd(2,99)=1φ(99)=φ(9*11)=φ(32*11)=9*(1-1/3)*11=661000000=16666*60+4021000 000 mod99≡216666*60+40 mod99≡240 mod99≡10244 mod99≡344mod99≡672mod99≡345.设Z2[x]的两个元a(x)=2x4+2,b(x)=x5+2,求gcd[a(x),b(x)]=g(x),并找出s(x),t(x)使g(x)=s(x)a(x)+t(x)b(x)。
密码学基础(一)常见密码算法分类
密码学基础(一)常见密码算法分类对称算法是指一种加密密钥和解密密钥相同的密码算法,也称为密钥算法或单密钥算法。
该算法又分为分组密码算法(Block cipher)和流密码算法(Stream cipher)。
•分组密码算法o又称块加密算法o加密步骤一:将明文拆分为 N 个固定长度的明文块o加密步骤二:用相同的秘钥和算法对每个明文块加密得到 N 个等长的密文块o加密步骤三:然后将 N 个密文块按照顺序组合起来得到密文•流密码算法o又称序列密码算法o加密:每次只加密一位或一字节明文o解密:每次只解密一位或一字节密文常见的分组密码算法包括 AES、SM1(国密)、SM4(国密)、DES、3DES、IDEA、RC2 等;常见的流密码算法包括 RC4 等。
•AES:目前安全强度较高、应用范围较广的对称加密算法•SM1:国密,采用硬件实现•SM4:国密,可使用软件实现•DES/3DES:已被淘汰或逐步淘汰的常用对称加密算法二、非对称密码算法(Asymmetric-key Algorithm)非对称算法是指一种加密密钥和解密密钥不同的密码算法,也称为公开密码算法或公钥算法。
该算法使用一个密钥进行加密,另一个密钥进行解密。
•加密秘钥可以公开,又称为公钥•解密秘钥必须保密,又称为私钥常见非对称算法包括 RSA、SM2(国密)、DH、DSA、ECDSA、ECC 等。
三、摘要算法(Digest Algorithm)算法是指将任意长度的输入消息数据转换成固定长度的输出数据的密码算法,也称为哈希函数、哈希函数、哈希函数、单向函数等。
算法生成的定长输出数据称为摘要值、哈希值或哈希值,摘要算法没有密钥。
算法通常用于判断数据的完整性,即对数据进行哈希处理,然后比较汇总值是否一致。
摘要算法主要分为三大类:MD(Message Digest,消息摘要算法)、SHA-1(Secure Hash Algorithm,安全散列算法)和MAC(Message Authentication Code,消息认证码算法);另国密标准 SM3 也属于摘要算法。
流密码与分组密码
流密码和分组密码按照密钥的特征不同,密码体制分为对称密码体制和非对称密码体制。
按照对明文消息加密方式的不同,密码体制分为流密码(Stream Cipher )和分组密码(Block Cipher )[1]。
非对称密码体制均为分组密码[2]。
1 流密码流密码也称为序列密码。
在流密码中,明文以序列的方式表示,称为明文流。
在对明文流进行加密时,先由种子密钥生成一个密钥流。
然后,利用加密算法把明文流和密钥流加密,产生密文流。
流密码每次只对明文中的单个bit 位进行加密变换,加密过程所需的密钥流由种子密钥通过密钥流生成器产生。
流密码的主要原理是通过随机数发生器产生性能优良的伪随机序列(密钥流),使用该序列加密明文流(逐bit 位加密),得到密文流。
由于每一个明文都对应一个随机的加密密钥,因此流密码在理论上属于无条件安全的密码体制(一次一密密码)[3]。
流密码的基本加密过程,如图1所示。
图1 流密码的加密过程设明文流为:12i m m m m = ,密钥流由密钥流发生器f 产生:(,)i i z f k σ=,这里i σ是加密器中的存储器在时刻i 的状态,f 是由种子密钥k 和i σ产生的函数。
设最终得到的密钥流为:12i k k k k = ,加密结果为:121212()()()i i k k k i c c c c E m E m E m == ,解密结果为:121212()()()i k k k i i m D c D c D c m m m == 。
用流密码进行保密通信的模型,如图2所示:图2 流密码保密通信图2 分组密码分组密码也称为块密码。
当加密一条长消息(明文)时,首先,将明文编码表示为二进制序列;然后,将其分成若干个固定长度的组(最后一组长度不够时还得进行填充,如补0);最后,再对逐个分组依次进行加密操作。
分组长短决定着密码的强度。
从算法的安全性考虑,分组长度不能太短,应该保证加密算法能够应付密码分析;从实用性考虑,分组长度又不能太长,要便于操作和运算。
密码学
一、选择题1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。
A、Shannon B、Diffie C、Hellman D、Shamir2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。
A、加密算法B、解密算法C、加解密算法D、密钥3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。
A无条件安全B计算安全C可证明安全D实际安全4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。
A、唯密文攻击B、已知明文攻击C、选择明文攻击D、选择密文攻击5、字母频率分析法对(B )算法最有效。
A、置换密码B、单表代换密码C、多表代换密码D、序列密码6、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。
A仿射密码B维吉利亚密码C轮转密码D希尔密码7、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。
A置换密码B单表代换密码C多表代换密码D序列密码8、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。
A、1949B、1972C、1977D、20019、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。
A、AES B、DES C、IDEA D、RC610、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。
A、2 B、4 C、8 D、1611、差分分析是针对下面(A)密码算法的分析方法。
A、DES B、AES C、RC4 D、MD512、AES结构由一下4个不通的模块组成其中(A )是非线性模块。
(完整版)北邮版《现代密码学》习题答案
《现代密码学习题》答案第一章1、1949年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。
A、ShannonB、DiffieC、HellmanD、Shamir2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( D)决定的。
A、加密算法B、解密算法C、加解密算法D、密钥3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。
A无条件安全B计算安全C可证明安全D实际安全4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。
A、唯密文攻击B、已知明文攻击C、选择明文攻击D、选择密文攻击5、1976年,和在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。
6、密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的保密系统的通信理论和公钥密码思想。
7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。
8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。
9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。
10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。
第二章1、字母频率分析法对(B )算法最有效。
A、置换密码B、单表代换密码C、多表代换密码D、序列密码2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。
A仿射密码B维吉利亚密码C轮转密码D希尔密码3、重合指数法对(C)算法的破解最有效。
A置换密码B单表代换密码C多表代换密码D序列密码4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。
密码学
1.密码体制分类:1)对称密码体制(密钥必须完全保密、加密与解密密钥相同,或可由其中一个很容易推出另一个,又称秘密密钥、单钥、传统密码体制,包括分组密码和序列密码)优点:加解密速度较快,有很高的数据吞吐率;使用的密钥相对较短;密文的长度与明文长度相同;缺点:密钥分发需要安全通道;密钥量大,难于管理;难以解决不可否认问题。
2)非对称密码体制(使用两个密钥,一个是对外公开的公钥,一个是必须保密的私钥,不能由公钥推出私钥,又称双钥或公开密钥密码体制)优点:密钥的分发相对容易;密钥管理简单;可以有效地实现数字签名。
缺点:与对称密码体制相比,非对称密码体制加解密速度较慢;同等安全强度下,非对称密码体制要求的密钥位数要多一些;密文的长度往往大于明文长度。
2.AES与DES对比:1)相似处:二者的圈(轮)函数都是由3层构成:非线性层、线性混合层、子密钥异或,只是顺序不同;AES的子密钥异或对应于DES中S盒之前的子密钥异或;AES的列混合运算的目的是让不同的字节相互影响,而DES中F函数的输出与左边一半数据相加也有类似的效果;AES的非线性运算是字节代换,对应于DES中唯一的非线性运算S盒;行移位运算保证了每一行的字节不仅仅影响其它行对应的字节,而且影响其他行所有的字节,这与DES中置换P相似。
2)不同之处:AES的密钥长度(128位192位256位)是可变的,而DES的密钥长度固定为56位;DES是面向比特的运算,AES是面向字节的运算;AES的加密运算和解密运算不一致,因而加密器不能同时用作解密器,DES 则无此限制。
3.Hash函数:也称散列、哈希、杂凑函数等,是一个从消息空间到像空间的不可逆映射;可将任意长度的输入经过变换得到固定长度的输出;是一种具有压缩特性的单向函数。
性质:1)H可应用于任意长度的消息2)H产生定长的输出3)对任意给定的消息x,计算H(x)较容易,用硬件和软件均可实现4)单向性5)抗弱碰撞性6)抗强碰撞性应用:数字签名;生成程序或者文档的数字指纹;用于安全传输和存储口令特点:1)输入数字串与输出数字串具有唯一的对应关系;输入数字串中2)任何变化会导致输出数字串也发生变化;从输出数字串不能够反求出输入数字串。
密码学简答题汇总
一、简述序列密码算法和分组密码算法的不同。
答:分组密码是把明文分成相对比较大的快,对于每一块使用相同的加密函数进行处理,因此,分组密码是无记忆的,相反,序列密码处理的明文长度可以小到1bit,而且序列密码是有记忆的,另外分组密码算法的实际关键在于加解密算法,使之尽可能复杂,而序列密码算法的实际关键在于密钥序列产生器,使之尽可能的不可预测性。
二、简述密码体制的原则:答:(1)密码体制既易于实现又便于使用,主要是指加密算法解密算法都可高效的实现;(2)密码体制的安全性依赖于密钥的安全性,密码算法是公开的;(3)密码算法没有安全弱点,也就是说,密码分析者除了穷举搜索攻击外再也找不到更好的攻击方法;(4)密钥空间要足够大,使得试图通过穷举搜索密钥的攻击方式在计算机上不可行。
三、公钥密码体制与对称密码体制相比有什么有点和不足?答:优点:(1)密钥的分发相对容易;(2)密钥管理简单;(3)可以有效地实现数字签名。
缺点:(1)与对称密码体制相比,费对称密码体制加解密速度比较慢;(2)同等安全强度下,费对称密码体制要求的密钥位数要多一些;(3)密文的长度往往大于明文长度。
四、对DES和AE S进行比较,说明两者的特点和优缺点。
解答:答:DES:分组密码,Feist结构,明文密文64位,有效密钥56位。
有弱密钥,有互补对称性。
适合硬件实现,软件实现麻烦。
安全。
算法是对合的。
AES:分组密码,SP结构,明文密文128位,密钥长度可变≥128位。
无弱密钥,无互补对称性。
适合软件和硬件实现。
安全。
算法不是对合的。
五、简述密码算法中对称、非对称算法各自的优缺点,及分析如何将两者进行结合应用。
答:对称密码体制的基本特征是加密密钥与解密密钥相同。
对称密码体制的优缺点:(1)优点:加密、解密处理速度快、保密度高等。
(完整版)现代密码学简答题及计算题
第七章 简答题及计算题⑴公钥密码体制与对称密码体制相比有哪些优点和不足?答:对称密码一般要求: 1、加密解密用相同的密钥 2、收发双方必须共享密钥安全性要求: 1、密钥必须保密 2、没有密钥,解密不可行 3、知道算法和若干密文不足以确定密钥 公钥密码一般要求:1、加密解密算法相同,但使用不同的密钥2、发送方拥有加密或解密密钥,而接收方拥有另一个密钥 安全性要求: 1、两个密钥之一必须保密 2、无解密密钥,解密不可行3、知道算法和其中一个密钥以及若干密文不能确定另一个密钥⑵RSA 算法中n =11413,e =7467,密文是5859,利用分解11413=101×113,求明文。
解:10111311413n p q =⨯=⨯=()(1)(1)(1001)(1131)11088n p q ϕ=--=--=显然,公钥e=7467,满足1<e <()n ϕ,且满足gcd(,())1e n ϕ=,通过公式1mod11088d e ⨯≡求出1mod ()3d e n ϕ-≡=,由解密算法mod d m c n ≡得3mod 5859mod114131415d m c n ≡==⑶在RSA 算法中,对素数p 和q 的选取的规定一些限制,例如:①p 和q 的长度相差不能太大,相差比较大; ②P-1和q-1都应有大的素因子;请说明原因。
答:对于p ,q 参数的选取是为了起到防范的作用,防止密码体制被攻击①p ,q 长度不能相差太大是为了避免椭圆曲线因子分解法。
②因为需要p ,q 为强素数,所以需要大的素因子 ⑸在ElGamal 密码系统中,Alice 发送密文(7,6),请确定明文m 。
⑺11Z 上的椭圆曲线E :236y x x =++,且m=3。
①请确定该椭圆曲线上所有的点;②生成元G=(2,7),私钥(5,2)2B B n P ==,明文消息编码到(9,1)m P =上,加密是选取随机数k=3,求加解密过程。
计算机信息安全技术课后习题答案
第一章计算机信息安全技术概述1、计算机信息系统安全的威胁因素主要有哪些?(1)人为无意失误(2)人为恶意攻击(3)计算机软件的漏洞和后门2、从技术角度分析引起计算机信息系统安全问题的根本原因。
(1)计算机外部安全(2)信息在计算机系统存储介质上的安全(3)信息在传输过程中的安全3、信息安全的CIA指的是什么?Confidenciality 隐私性,也可称为机密性,是指只有授权的用户才能获取信息Integrity 完整性,是指信息在传输过程中,不被非法授权和破坏,保证数据的一致性Availability 可用性,是指信息的可靠度4、简述PPDR安全模型的构成要素及运作方式PPDR由安全策略,防护,检测和响应构成运作方式:PPDR模型在整体的安全策略的控制和指导下,综合运用防护工具的同时,利用检测工具了解和评估系统的安全状态,通过适当的安全响应将系统调整在一个相对安全的状态。
防护,检测和响应构成一个完整的、动态的安全循环。
5、计算机信息安全研究的主要内容有哪些?(1)计算机外部安全(2)信息在计算机系统存储介质上的安全(3)信息在传输过程中的安全6、计算机信息安全的定义是什么?计算机信息安全是研究在特定的应用环境下,依据特定的安全策略,对信息及信息系统实施防护,检测和恢复的科学7、信息安全系统中,人、制度和技术之间的关系如何?在信息安全系统中,人是核心。
任何安全系统的核心都是人。
而技术是信息安全系统发展的动力,技术的发展推动着信息安全系统的不断完善。
信息安全系统不仅要靠人和技术,还应该建立相应的制度以起到规范的作用。
只有三者的完美结合,才有安全的信息安全系统第二章密码技术一、选择题1.下列(RSA算法)算法属于公开密钥算法。
2.下列(天书密码)算法属于置换密码。
3.DES加密过程中,需要进行(16)轮交换。
二、填空题1.给定密钥K=10010011,若明文为P=11001100,则采用异或加密的方法得到的密文为01011111 。
密码学第五章习题
4.6习题一.判断题1~5二.选择题1~5 ACBDE6~10 BCA三.填空题1. vernam算法2.驱动部分组合部分3.如何将一小段的比特串(密钥)扩展成足够长的密钥4.同步和自同步5. 移位寄存器反馈函数6.参数n 种子密钥7.2的n次方减1 n8.奇数互素本原的四.简答题(1)简述序列密码算法和分组密码算法的不同。
(2)密钥序列生成器是序列密码算法的核心,请说出至少5点关于密钥序列生成器的基本要求。
①种子密钥K的长度足够大,一般应在128位以上;②KG生成的密钥序列{ki}具极大周期;③{ki}具有均匀的n元分布;④利用统计分析方法由{ki}提取关于KG结构或K的信息在计算上不可行;⑤混乱性,即{ki}的每一比特位均与K的大多数比特有关;⑥扩散性,即K 的任一比特的改变要引起{ki }在全貌上的变化;⑦序列密钥{ki }不可预测,密文和相应明文的部分信息,不能确定整个{ki }。
(3)已知序列密码的密文串1010110110和相应的明文串010*******,而且还已知密钥流是使用3级线性反馈移位寄存器产生的,试破译该密码系统。
解:由()12341423,,,1f a a a a a a a a =⊕⊕⊕,初态为 ()()1234,,,1,1,0,1a a a a =。
线性递归可得:511101a =⊕⊕⊕=611101a =⊕⊕⊕=701111a =⊕⊕⊕=811110a =⊕⊕⊕=910111a =⊕⊕⊕=1011101a =⊕⊕⊕=可以得到输出序列为()1101111011,周期为5p =。
(4)简述RC4算法的实现过程。
RC4算法的原理很简单,包括初始化算法和伪随机子密码生成算法两大部分。
假设S-box 长度和密钥长度均为n 。
先来看看算法的初始化部分(用类C 伪代码表示):for (i=0; i<n; i++) {s[i]=i;}j=0;for (i=0; i<n; i++){j=(j+s[i]+k[i])%n;swap(s[i], s[j]);}在初始化的过程中,密钥的主要功能是将S-box搅乱,i 确保S-box的每个元素都得到处理,j保证S-box的搅乱是随机的。
现代密码学课后题整理
目录chap 1 (3)信息安全中常用的攻击分别指什么?分别使用什么密码技术能抵御这些攻击? (3)简述密码学和信息安全的关系。
(3)简述密码发展史。
(3)公钥密码体制与对称密码体制相比有哪些优点和不足? (3)简述密码体制的原则。
(4)简述保密系统的攻击方法。
(4)chap 2 (4)多表代换密码体制的分析方法 (4)Kasiski测试法 (4)重合指数法 (5)chap 3 (5)欧拉定理 (5)费马定理 (5)Blum整数 (5)chap 4 (5)分组密码的设计应满足的要求是什么? (5)简述分组密码设计的准则。
(6)简述DES算法中S盒的特点。
(6)DES算法具有互补性,而这个特性会使DES在选择明文攻击下所需的工作量减半。
简要说明原因。
(6)为什么二重DES并不像人们想象的那样可提高密钥长度到112bit,而相当57bit?请简要说明原因。
(6)简述利用差分分析攻击DES算法的基本过程。
(7)简述线性攻击的基本原理。
(7)简述AES算法的正变换矩阵比逆变换矩阵简单的原因。
(7)简述AES的子密钥生成过程。
(7)简述DES与AES的相同之处和不同之处。
(7)简述设计分组密码的工作模式应遵循的基本原则。
(8)chap 5 (8)简述序列密码算法和分组密码算法的不同 (8)密钥序列生成器是序列密码算法的核心,请说出至少5点关于密钥序列生成器的基本要求 (8)chap 6 (9)MD5在MD4基础上做了哪些改进,其改进目的是什么? (9)简述利用生日攻击方法攻击Hash函数的过程 (9)chap 7 (9)与RSA密码体制和ElGamal体制相比,简述ECC密码体制的特点。
(9)Chapter 8 (9)1简述数字签名的特点。
(9)2为什么对称密码体制不能实现消息的不可否认性? (10)4 计算不考 (10)5 ElGamal、Schnorr、DSA这3种签名方案的联系与区别。
请阐述分组密码与序列密码的区别。
请阐述分组密码与序列密码的区别。
分组密码与序列密码是两种不同的加密技术,它们用于保证数据在传输过程中不被未
经授权的用户访问。
分组密码是一种非对称加密算法,也称为对称加密,它可以用来加密任意长度的数据,这种方法将数据以固定的字节长度进行分组,然后每个分组采用相同的算法进行加密,在
处理过程中使用的是同一套密钥,这样就可以保证加密的安全性。
而序列密码是一种更加复杂的加密方法,它采用了一种无秘密(no-secret)的算法,即:用秘密信息(称为伪随机项)来替代加密中使用的明确信息。
伪随机项可以使解密者
无法确定未知信息,使得加密不可能破解。
序列密码是一种按顺序加密每个明文字节,通
过移位操作而不同加密过程或者伪随机密钥向量来生成密文,使得密文不可读也不可识别,且加密和解密过程中采用的是同一套密钥,它比分组密码的安全性更高,它的加密过程相
对比较复杂。
总而言之,分组密码和序列密码的主要区别在于用以加密的方法不同:分组密码是按
照块的方式进行加密的,而序列密码是以字节的方式加密的,而且后者使用的密钥更长更
复杂,所以它的安全性更高。
请阐述分组密码与序列密码的区别。
请阐述分组密码与序列密码的区别。
分组密码和序列密码是两种主要的密码系统,它们用于保护信息免受未经授权的访问。
本文讨论了这两种不同的密码系统之间的差异,并指出其优缺点。
分组密码是一种使用密钥对信息进行加密和解密的算法。
它将消息划分为固定大小的组,通常称为“块”,然后用密钥将这些块加密。
分组密码还可以提供数据完整性检查,以便检测恶意修改信息。
它还支持并行处理,因此可以在多个处理器或芯片上同时解密和加密信息。
序列密码是一种流密码,它使用“轮”或“节”来加密消息流。
它将消息流拆分成若干短片段,然后在片段之间插入密钥,以形成一个安全的消息流。
由于每个片段都会受到不同的加密,因此序列密码的安全性更高。
分组密码和序列密码有以下共同点:都需要一个密钥,以及一种方法来将密码映射到消息上。
但是,这两种类型的密码也有一些显著的区别。
首先,分组密码用于加密块,而序列密码用于加密流。
另外,分组密码支持并行处理,而序列密码则不支持。
此外,序列密码有更高的安全性,因为它每次加密都会受到不同的加密。
分组密码和序列密码各有优缺点。
分组密码支持并行处理,因此适用于数据传输。
但是,它的安全性较低,因为每个块都使用相同的密码加密。
另一方面,序列密码具有更高的安全性,但它不支持并行处理,因此不适用于时间敏感的应用程序。
综上所述,分组密码和序列密码是两种不同类型的密码系统,它们各有优缺点,应根据应用程序要求进行选择。
分组密码适用于数据传输,因为它支持并行处理,但是它的安全性较低。
而序列密码则具有更高的安全性,但不支持并行处理,所以不适用于时间敏感的应用程序。
流密码和分组密码的概念和区别
流密码和分组密码的概念和区别
流密码和分组密码都是对称加密算法,它们的主要区别在于加密方式不同。
流密码是将明文逐位与密钥进行异或运算得到密文,其加密过程是连续的、逐位进行的。
通常使用伪随机数生成器来产生密钥流,生成的密钥流长度和明文长度相等。
由于流密码可以实现高速加密和解密,因此广泛应用于网络通信、无线电通信等领域。
分组密码是将明文按照固定长度分组,每个分组经过一系列变换后得到密文。
通常采用分组加密标准(如DES、AES等)来实现,它们通过多轮迭代的置换和代换操作将明文分组转换为密文分组。
分组密码具有更强的安全性,可以防止被攻击者通过分析单个字节来推断出明文信息。
因此,流密码和分组密码在加密方式上存在本质区别,根据应用场景和安全需求的不同,需要选择合适的加密算法。
分组密码与流密码的分析设计与比较
分组密码与流密码的分析设计与比较1引言随着科技的发展,信息安全在现代电子通信等方面发挥着越来越重要的作用密码编码学是应对各种信息安全威胁的最有效的方法。
所谓密码编码学,是指生成高强度、有效的加密或认证算法。
欲传送的原始信息叫做明文,对其进行可逆的数字变换后的信息称为密文。
发送者通过加密算法对明文进行加密,得到密文,这个过程称为加密。
接收者收到经过处理的密文后,通过解密算法,还原成明文,这一过程称为解密。
密码系统所采取的基本工作模式叫做密码体制,主要分为两大类:对称密钥密码体制与非对称密钥密码体制。
对称密钥密码体制中的加密密钥与解密密钥相同,需要安全可靠的密钥传递信道,通信双方需保管好密钥。
非对称密钥密码体制中加密与解密分别有一个对应的密钥,发送者查询接收者公开的公钥对明文进行加密,接收者收到密文后再利用只有自己知道的私钥进行解密。
对称密钥密码体制又分为两大类,分别是分组密码与流密码。
所谓分组密码,就是按照算法设计者预先设定的长度把明文分割成块,再对每一分组进行加密解密的算法。
而对比特进行运算、采用"一次一密"的算法,则称为流密码。
2分组密码2.1 概论所谓分组密码,其明文分为若干个数据块,加密后得到的密文仅与给定的密钥算法和密钥有关,与被处理的明文数据块在整个明文中所处的位置无关。
较典型的分组密码算法有DES算法、IDEA算法、AES算法等。
算法设计者事先设定好分块的长度,算法将明文按照该长度进行分组,再在这些定长的分组上进行运算。
在分组密码的设计中,加密与解密的处理是建立在块的基础上。
算法把明文分成设定的大小,通常为64 bit或128 bit,再对每个块单独编码。
2.2 设计原则创立了经典信息论的数学家C.E.Shannon在1949年时发表了一篇名为"《保密系统的通信理论》的论文。
在这篇论文中,Shannon提出了如何设计分组加密的组合密码系统。
其中,设计分组密码需要依据两个一般原则,分别是混淆原则和扩散原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序列密码算法和分组密码算法的不同
序列密码算法和分组密码算法的主要区别在于加密的方式。
具体来说,它们的不同点如下:
1. 加密方式:
- 序列密码算法:序列密码算法是逐位或逐字符地对待加密数据进行处理,也就是说,它是按顺序对数据中的每个元素进行加密。
常见的序列密码算法有凯撒密码、仿射密码、Vigenère 密码等。
- 分组密码算法:分组密码算法将待加密的数据分成固定长度的数据块,然后对每个数据块进行加密处理。
常见的分组密码算法有DES、AES等。
2. 加密速度:
- 序列密码算法:因为序列密码算法是逐个处理数据的,所以每个字符或位都需要进行相应的加密操作,因此速度较慢。
- 分组密码算法:分组密码算法是按数据块进行加密的,对每个数据块进行加密操作的时间相对较短,速度较快。
3. 安全性:
- 序列密码算法:由于序列密码算法是逐个处理数据的,因此在一些情况下,可以通过分析其中特定的模式或规律来猜测出加密算法或破解出密钥,从而降低了安全性。
- 分组密码算法:分组密码算法通过将数据分组,并对每个数据块进行加密处理,使得攻击者很难通过分析直接猜测出加密算法或破解出密钥,提高了安全性。
4. 密钥管理:
- 序列密码算法:序列密码算法通常使用相对简单的密钥,密钥的管理相对容易。
- 分组密码算法:分组密码算法通常使用较长的密钥,密钥的管理相对复杂。
总体来说,分组密码算法在安全性和加密效率方面优于序列密码算法,因此在实际应用中更为常见和广泛使用。