冰蓄冷式空气源热泵特点
冰蓄冷空调系统的优点和缺点
冰蓄冷空调系统的优点和缺点:(1)优点:①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的;对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网;对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题;②能使制冷主机的装机容量减少;冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。
对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量.对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担.因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小;③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚.若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾;④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用;⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。
低温空气源热泵(冷水)机组结构特点
低温空气源热泵(冷水)机组结构特点低温空气源热泵(冷水)机组是一种利用低温热源或低温冷源进行热能转换的装置。
它采用冷水作为介质,通过空气源热泵的循环系统将低温热能抽取出来,再传递到高温热源处来进行加热或制冷。
低温空气源热泵(冷水)机组具有以下几个结构特点。
1.循环系统结构简单:低温空气源热泵(冷水)机组的循环系统主要包括蒸发器、压缩机、冷凝器和节流装置等组件。
这些组件通过管道连接在一起,并通过压缩机的工作来实现热能的转换。
整个循环系统的结构相对简单,易于维护和操作。
2.热交换效果好:该机组的热泵循环系统中有蒸发器和冷凝器两个热交换器。
其中,蒸发器用于吸收空气中的低温热量,而冷凝器用于释放高温热能。
由于这两个热交换器的设计合理,所以能够实现高效的热能转换,使得机组的能源利用率较高。
3.适应性较强:低温空气源热泵(冷水)机组的工作温度范围相对较宽,可以适应各种低温热源或冷源的供给。
无论是从空气中抽取低温热源进行加热,还是将高温热源进行制冷,该机组都能较好地适应。
4.维护成本低:低温空气源热泵(冷水)机组相对于其他传统的热能转换设备来说,维护成本较低。
其主要原因是,该机组的循环系统中没有传统锅炉中使用的燃烧设备,减少了对燃料的需求,也减少了对燃料的存储和运输成本。
同时,该机组的循环系统结构简单,排除故障也相对容易。
5.环保节能:低温空气源热泵(冷水)机组在运行过程中无需使用燃料,减少了燃烧产生的气体排放。
该机组利用空气中的热能进行转换,实现了能源的循环利用,提高了能源利用效率,同时减少了对环境的污染。
综上所述,低温空气源热泵(冷水)机组具有循环系统简单、热交换效果好、适应性强、维护成本低以及环保节能等结构特点。
随着环保意识的不断增强,低温空气源热泵(冷水)机组在建筑、工业生产等领域的应用将不断扩大。
冰蓄冷知识点总结
冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。
当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。
2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。
在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。
二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。
2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。
3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。
4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。
5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。
三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。
2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。
3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。
4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。
四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。
2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。
3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。
4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。
热泵分类及特点
热泵分类及特点热泵是一种能够将低温热源中的热量转移到高温处的装置,它利用热力学原理,通过压缩、膨胀工质的循环运动,实现低温热源的升温。
热泵广泛应用于供暖、制冷、热水和工业生产等领域,具有高效节能、环保安全等优点。
根据热源的不同,热泵可以分为空气源热泵、水源热泵和地源热泵三种类型。
1. 空气源热泵空气源热泵是利用空气中的热能作为热源的一种热泵系统。
它通过空气-制冷剂-工质之间的热交换,将低温的空气中的热量转移到室内,提供供暖、制冷和热水等功能。
空气源热泵具有安装方便、运行稳定、成本低等特点。
然而,由于空气源热泵的热源是空气,受气温变化的影响较大,其制热效果在极寒地区会受到一定限制。
2. 水源热泵水源热泵是利用水体作为热源的热泵系统。
它通过水-制冷剂-工质之间的热交换,将水体中的热量转移到室内,实现供暖、制冷和热水等功能。
水源热泵具有热效率高、稳定性好、节能环保等特点。
然而,水源热泵需要有充足的水源供应,对水质和水温的要求较高,安装和运行成本相对较高。
3. 地源热泵地源热泵是利用地下土壤或地下水作为热源的热泵系统。
它通过地源-制冷剂-工质之间的热交换,将地下的热量转移到室内,实现供暖、制冷和热水等功能。
地源热泵具有稳定可靠、热效率高、节能环保等特点。
由于地下温度相对稳定,地源热泵的制热效果不受气温变化的影响,适用于各种气候条件下的供暖需求。
然而,地源热泵的安装和地下管道的布置较为复杂,需要占用一定的土地面积。
总结起来,空气源热泵适用于气候温和地区,安装和运行成本相对较低;水源热泵适用于有充足水源供应的地区,热效率高但成本较高;地源热泵适用于各种气候条件下,稳定可靠但安装成本较高。
根据实际情况,选择合适的热泵类型可以最大程度地发挥其优点,实现节能环保的供暖、制冷和热水需求。
不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合
不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合水冷系统是一种常用的空调制冷系统,通过循环水来吸收热量,实现空调和制冷效果。
在水冷系统中,冷源系统是核心部分,它提供冷却水来冷却空调设备或制冷设备。
以下是对不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合:1. 螺杆式冷水机组:原理:通过螺杆压缩机将冷媒气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。
优点:高效、稳定、噪音低。
缺点:设备体积较大、初投资较高。
使用场合:商业建筑、工业厂房等大型空调系统。
2. 离心式冷水机组:原理:通过离心式压缩机将冷媒气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。
优点:高效、运行稳定、适用于大范围负荷变化。
缺点:设备体积较大、噪音较高。
使用场合:商业建筑、工业厂房等大型空调系统。
3. 吸收式冷水机组:原理:利用溶液中溶质和溶剂之间的吸收和解吸作用,通过吸收剂吸收冷凝剂的蒸汽,从而降低冷凝剂的压力和温度,实现制冷效果。
优点:无机械运动部件、节能、环保。
缺点:效率较低、初投资较高。
使用场合:商业建筑、工业厂房等大型制冷系统。
4. 祺块化水冷式冷水机组:原理:利用祺块化技术,将冷媒分散在微小的块状结构中,通过块之间的传热和传质来实现制冷效果。
优点:高效、紧凑、可靠。
缺点:初投资较高。
使用场合:商业建筑、工业厂房等大型空调系统。
5. 涡旋式冷水机组:原理:利用涡旋压缩机的离心力将气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。
优点:高效、运行稳定、噪音低。
缺点:初投资较高。
使用场合:商业建筑、工业厂房等大型空调系统。
6. 活塞式冷水机组:原理:通过活塞式压缩机将冷媒气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。
低温空气能热泵优缺点
低温空气能热泵,指的是能够在零下25℃工况下正常运行的空气能设备,目前主要用于我国北方的家庭小区、酒店宾馆、学校商场等场所,主要用于采暖、热水、制冷。
同时低温,空气能热泵还是我国北方“煤改电”工程的主力设备。
和其它能源相比,低温空气能热泵有着很多的优点,也有着一些缺点,那么下面,笔者以纽恩泰低温空气能热泵为例,向大家介绍低温空气能热泵的优缺点。
优点:一、耐低温能力强,运行稳定。
低温空气能热泵不仅能在北方寒冬下工作,遇上台风、暴雨、冰雹等天气,一样可以正常工作,真正实现全年365天,全天24小时制热。
二、环保清洁,安全性高。
低温空气能热泵使用空气能,也就是空气中的免费热能制热,不用燃气、油、煤等燃料,制热时没有明火,不会产生废气排放。
这样的工作原理,不仅能杜绝了火灾、爆炸、中毒等事故发生的可能性,还减少了大气污染物的排放,保护了大气环境。
三、智能化程度高,操作简单。
低温空气能热泵作为一项高科技产品,科技含量充足,智能化程度非常高。
用户在使用时,只需要提前设置好,热泵内的微电脑控制会控制热泵自动运行,精准控温。
整个制热过程,无须任何人工监控,而且操作非常简单,老人、孩子也能轻松学会。
四、节能省电,对电网冲击小。
因为主要使用空气能制热,而非像普通电锅炉、电暖器那样使用电制热,因此低温空气能热泵的制热效率最高400%,是普通电暖器的四倍。
据数据统计,将一吨15度的自来水加热到55度(注:40度热水即可为地暖供热),使用低温空气能热泵制热仅需11度电。
使用低温空气能热泵,不仅能家庭省电,而且对电网的冲击还小,节约了国家改造电网的费用。
缺点:和普通空气能热泵相比,低温空气能热泵因为需要在低温环境下工作,技术含量更高,对热泵的质量要求也越高,因此比普通空气能热泵价格更高。
一台技术达标、质量合格的低温空气能热泵需要近万元,甚至几万元。
对普通老百姓来说,经济负担太大,因此目前低温空气能热泵还是主要应用商用工程场所。
冰蓄冷空调系统原理及其技术
冰蓄冷空调系统原理及其技术
一、冰蓄冷空调系统原理
冰蓄冷空调系统属于利用化学反应,在冰蓄冷机组中形成的蓄冷湿冷
却塔,经冰蓄冷循环贮存介质,利用冰蓄冷机组将热能转换为冷能,冷能
之间转换到室外,以及室内“冷热机组”中,将冷能转换为热能,达到空
调系统调节温度和湿度的作用。
1、冰蓄冷机组:冰蓄冷机组由蒸发器、冷凝器、压缩机、再蒸发器、再凝结器和冰水泵组成,形成冷凝蒸发循环。
蒸发器、冷凝器和再蒸发器
由压差驱动器控制,冰水泵能够把自己的热量储存在冰水中,而且能够把
蓄冷介质的温度低于环境的温度。
2、冰水泵:冰水泵负责将蒸发器冷凝到冰池中的热量用压缩机和热
交换器蒸发,将冷凝器的热量用压缩机和热交换器冷凝,然后将冰池中的
冷凝器的冷凝热量带回室内,以实现调温和调湿的作用。
3、蒸发器、冷凝器、压缩机、再蒸发器和再凝结器:这些都是冰蓄
冷机的重要组成部分,用于将空气加热或冷却。
蒸发器的作用是将冷冻液
冷凝,将热量从空气中蒸发;冷凝器的作用是将冷冻液蒸发,将热量从空
气中冷凝;压缩机的作用是将冷冻液压缩,然后释放出热量。
冰蓄冷的优缺点介绍
冰蓄冷空调的原理和优缺点介绍一、冰蓄冷的技术原理:冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。
在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。
国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。
二、冰蓄冷技术与普通空调相比所具有的优势:1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。
2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。
3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。
B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。
4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。
b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。
c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。
三、冰蓄冷技术与普通空调相比所具有的缺点:1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。
2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。
3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。
4、与普通空调系统相比需增加水管和风管的保温费用。
5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。
电制冷、冰蓄冷、水源热泵三种空调系统各有什么优点和缺点?
电制冷、冰蓄冷、水源热泵三种空调系统各有什么优点和缺点?1.常规电制冷空调系统目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点。
优点:①系统简单,占地比其他形式的稍小;②效率高,COP(制冷效率)一般大于5.3;③设备投资相对于其他系统少。
缺点:①冷水机组的数量与容量较大,相应地其他用电设备数量、容量也增加,加大了维护、维修工作量。
②总用电负荷大,增加了变压器配电容量与配电设施费。
③所使用电均为高峰电,不享受峰谷电价政策,运行费用高。
④在拉闸限电时出现空调不能使用的状况。
2003/2004年夏季就因此出现空调主机减半运行情况,造成大部分中央空调达不到使用效果。
⑤运行方式不灵活,在过渡季节、节假日或休息时间个别区域供冷,需要开主机运行,形成大马拉小车,浪费了机组的配置能力,增加了运行费用。
⑥对于大型区域供冷系统较难实现较好的供冷(供水温度不能降低),管网的投资大、输送能耗高、空调品质差。
2.冰蓄冷空调系统冰蓄冷空调是在常规水冷冷水机组系统的基础上减小制冷主机容量、增加蓄冰装置,利用夜间低谷低价电力时段将冷量通过冰的形式储存起来,白天需要供冷时释放出来。
该技术在20世纪30年代开始应用于美国。
从美国、日本、韩国、中国台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。
比如,韩国明令超过2 000㎡的建筑,必须采用冰蓄冷或煤气空调,日本超过5 000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。
很多国家都采取了奖励措施来推广这种技术,比如韩国转移1kW高峰电力,一次性奖励2 000美金,美国一次性奖励500美金等等。
中国也加大对蓄能技术的推广力度,国家计委和经贸委特下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。
全国采用蓄能技术的空调系统大幅度增加,2001年10月举办APEC会议的10万㎡上海科技城,浙江大学紫金港新校区13万㎡,广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。
冰蓄冷装置
冰蓄冷装置原理:在非空调使用时间或利用电力负荷低谷时的电力运转制冷机,将冷能以显热或潜热的方式储存起来,在用电高峰期把储存的冷量释放出来,以满足空调需要冷量的全部或其中的一部分,从而达到转移高峰电力负荷的目的。
特点:1、不用高峰电,减缓电厂和配电设施的建设和投资。
2、由于电的差价,降低空调运行费用。
3、冷冻水水温可降到1—4℃,实现大温差,低温送风空调。
4、空气湿度相对较低,可提高空气品质。
5、具有应急冷源,提高空调可靠性。
注:如蓄冰温度低于0℃,管道保温厚度要加厚,防结露。
蓄冰装置的分类:1、按是否使用载冷剂可分为制冷剂直接蒸发式和载冷剂循环式。
2、按结冰方式不同分为静态制冰和动态制冰3、按融冰方式不同分为内融冰、外融冰、内外同时融冰。
4、按制冷剂流程不同分为密闭式和开放式。
5、按蓄冰形式不同分为不完全冰结式、完全冰结式、制冰滑落式、封装容器式(包括冰球式)、冰泥式、直接蒸发制冰系统:1、静态制冰系统:最常见的是将金属盘管浸在水槽中,制冷剂直接在盘管内循环吸收水热量,使水温降低,在盘管外表面形成冰层。
融冰时温度较高的空调回水直接进入保温冰槽,直接和盘管外冰接触,换热效果好,取冷速度快,其水温可达1℃左右,直接供空调末端用水,故不需要二次换热。
2、动态制冰系统①板冰机:又称制冰滑落式装置。
制冰机(蒸发装置)在水(冰)槽上方,用水泵将冰槽的水自上向下洒在制冰机的板状蒸发器表面上,使其结成薄冰层5—9mm(不宜太厚),用制冰机四通阀换向,将高温气态制冷剂通入蒸发器中放热,使冰靠自重滑落到冰槽里。
注:制冰时间一般为10—30分,蒸发器通入高温气态制冷剂时间一般为20—30秒。
②冰晶式蓄冷装置:略载冷剂循环式制冰系统(目前空调用的较广泛为此种方式)1、盘管式蓄冰装置:载冷剂为体积浓度25%乙烯乙二醇水溶液,盘管浸在水槽中,制冷剂直接在盘管内循环吸收水热量,使水温降低,在盘管外表面形成冰层。
融冰方式为外融冰和内融冰两种。
冰蓄冷的原理特点应用
冰蓄冷的原理特点应用原理介绍冰蓄冷是一种利用冰的物理特性来实现热能储存和释放的技术。
其原理基于冰的相变过程,即固态的冰在吸收热量的过程中会发生熔化,吸收的热量将用于将冰转化为水,而在释放热量的过程中,水会重新结晶为冰,从而释放出热量。
特点1.高储能密度:冰蓄冷系统能够在较小的体积内储存大量的热能,这使得冰蓄冷技术在需要高储能密度的领域具有优势。
例如,在建筑空调中的应用,冰蓄冷系统能够在低峰时段制冷并储存冷能,然后在高峰时段释放冷能,从而降低能源消耗。
2.高效节能:冰蓄冷系统利用低价电能制冷,在低峰时段制冷储存冷能,然后在高峰时段释放冷能供应空调系统使用,从而减少了高峰时段对电网的负荷需求,实现了电能的合理分配和利用,提高了能源利用效率。
3.稳定可靠:冰蓄冷系统采用稳定的物理过程,不涉及化学反应和移动部件,因此具有较高的可靠性。
而且,冰的相变过程有较大的潜热,可以在短时间内释放大量的热量,满足突发热负荷需求。
4.环保节能:冰蓄冷系统利用低价电能在低峰时段制冷,不仅降低了电能成本,还减少了电网的负荷需求。
同时,冰的制冷过程不会产生有害气体,对环境无污染。
应用领域1.建筑空调系统:冰蓄冷技术广泛用于大型建筑物的空调系统中。
它可以在夜间利用低价电能制冷并储存冷能,然后在白天高峰时段释放冷能供应空调系统使用,从而实现能源的高效利用,降低运营成本。
2.医疗领域:冰蓄冷技术在医疗领域也有应用。
例如,在手术中需要大量冷却的情况下,可以利用冰蓄冷系统提供大量的冷能,确保手术过程中的温度控制和患者的安全。
3.工业领域:一些工业过程需要控制温度,而冰蓄冷技术则可以用于提供稳定的制冷能力。
例如,在食品加工过程中需要进行冷却的情况下,可以利用冰蓄冷系统提供稳定的制冷能力,确保产品的质量和安全。
4.太阳能热利用系统:太阳能热利用系统中,冰蓄冷技术可以用于储存太阳能的热量。
例如,在太阳能集热系统中,可以用太阳能加热水,然后将热水通过冰蓄冷系统储存为冰,夜间或需要的时候再释放热能供应给建筑空调系统等。
最新冰蓄冷空调系统原理及应用
冰蓄冷空调系统原理及应用冰蓄冷空调系统原理及应用1、冰蓄冷空调系统原理及主要特点冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽内冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽内的冷能释放出来,满足空调用冷的需要。
因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。
冰蓄冷空调系统具有以下主要特点:(1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧张;(2)冰水主机的容量减少,节省增容费用;(3)总用电设施容量减少,可减少基本电费支出;(4)利用低谷段电价的优惠可减少运行电费;(5)冰水温可低至1~4℃,减少空调设备风管的费用;(6)冷却水泵、冷冻水泵、冷却塔容量减少;(7)电力高压侧及低压侧设备容量减少;(8)室内相对湿度低,冷却速度快,舒适性好;(9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小;(10)充分利用24h有效时间,减少了能量的间歇耗损;(11)充分利用夜间气温变化,提高机组产冷量;(12)投资费用与常规空调相当,经济效益佳。
冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。
当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。
2系统的组成及制冰方式分类2.1系统组成冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。
冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。
另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。
2.2制冰方式分类根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。
此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。
冰蓄冷的优缺点介绍
冰蓄冷空调的原理和优缺点介绍一、冰蓄冷的技术原理:冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。
在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。
国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。
二、冰蓄冷技术与普通空调相比所具有的优势:1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。
2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。
3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。
B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。
4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。
b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。
c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。
三、冰蓄冷技术与普通空调相比所具有的缺点:1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。
2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。
3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。
4、与普通空调系统相比需增加水管和风管的保温费用。
5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。
空气调节知识:不同形式冰蓄冷系统的特点、容量计算及节能分析.doc
空气调节知识:不同形式冰蓄冷系统的特点、容量计算及节能分析l.相对于全负荷蓄冷,部分负荷蓄冷是冰蓄冷系统经常采用的一种类型,这种类型由于空调冷负荷是由制冷主机和蓄冰装置共同承担,投资相对较低,经济有效,应优先采用。
2.并联系统的冰蓄冷形式,管路简单,易充分发挥冷机和蓄冰装置的出率,但二者间冷负荷的分配和调节控制复杂,造成供液温度较难恒定,适用于供、回水温差不过大的常规空调水系统。
串联系统因取冷溶液可经过冷机和蓄冰装置的两次换热,故可获得较低的供液温度,适用于大温差的空调水系统,亦为降低空调水泵的输送能效比和采用低温送风的空调形式提供了充分的技术条件。
3.在串联系统中,当蓄冰装置处在上游时,回液先经过蓄冰装置,较高的回液、出液温度与冰的低温形成较大的换热对数温差,故装置可获得较高的融冰速率,与处在系统下游时相比,可减少装置的换热面积,形成投资价格的优势。
但应该指出,冰是在较低蒸发温度下制成,用于系统高温端,未能充分利用冰低温的物理特性,这是蓄冰装置取得较大融冰速率的代价。
因而,处在下游的主机,由于较低的进液、供液温度,蒸发温度随之降低,会引起制冷效率的下降。
但主机处在下游的优点是,因主机供液温度的恒定容易控制,故对上游蓄冰装置供冷性能的稳定要求较低,适用的蓄冰装置种类更宽泛,而对整个系统而言,供冷的稳定性仍可得到保证。
此外,当双工况主机采用多级离心机型时,由于调节性能好,仍可保持较高的COP值,使上述矛盾得到缓解。
根据系统的特点,建议空调供水温度不宜过低(4℃),温差可适度加大(6~8℃)。
4.在串联系统中,当双工况主机处在上游时,回液先经过主机,因较高的回液、出液温度,主机可获得较高的COP值。
蓄冰装置位于系统下游的低温端,可充分利用冰低温的物理特性,因此适用于大温差(8~10℃)的空调水系统。
为保证整个系统供冷的量和质的稳定,因而对蓄冰装置融冰性能有较高的技术要求。
同时,位于下游的蓄冰装置因较低的进液、供液温度,会造成融冰速率的下降,相对于蓄冰装置在上游的系统,会增加蓄冰装置融冰换热的面积或容量,进而影响投资造价。
超低温空气源热泵工艺特点
超低温空气源热泵工艺特点
超低温空气源热泵是一种利用超低温环境下的空气作为热源的热泵系统。
它具有以下几个工艺特点:
1. 制冷效果好:超低温空气源热泵可以在极低温度下工作,通常可达到-30℃以下,因此可以有效地实现低温制冷。
这对于需要在极寒环境下工作的工业生产和特殊环境下的冷链物流是非常有益的。
2. 高效节能:超低温空气源热泵利用空气中的热能进行制冷或供热,无需额外的燃料消耗,因此具有很高的能源利用率。
相比传统的燃气锅炉或电阻加热器,它能够节省大量能源,降低能源消耗和运行成本。
3. 安全环保:超低温空气源热泵不需要使用燃料燃烧,避免了燃气泄漏、一氧化碳中毒等安全隐患。
同时,它也不会产生有害气体和废水排放,对环境友好,符合可持续发展的要求。
4. 应用广泛:超低温空气源热泵可以广泛应用于工业制冷、冷链物流、农业温室、商业建筑等领域。
例如,它可以用于冷库、冷藏车、冷冻食品加工等需要低温环境的场合,也可以用于温室花卉种植、蔬菜大棚等农业生产。
5. 系统稳定可靠:超低温空气源热泵采用先进的控制技术和稳定的制冷循环系统,能够自动调节工作状态,保持系统的稳定性和可靠
性。
同时,它还具有智能化的监控和诊断功能,可以实时监测和预警系统运行状态,及时发现和解决故障问题。
总的来说,超低温空气源热泵具有制冷效果好、高效节能、安全环保、应用广泛和系统稳定可靠等工艺特点。
随着技术的不断发展和完善,相信超低温空气源热泵将在各个领域得到更广泛的应用,为人们的生产生活带来更多的便利和效益。
空气源热泵工作特点
空气源热泵工作特点空气源热泵是一种利用空气作为热源的热泵系统,通过循环工作流程将低温热量转移到高温热源,实现供热或供冷的设备。
它具有以下几个工作特点。
空气源热泵具有广泛的适用性。
由于它的热源是空气,因此无需额外的地热井或水源等设备,可以在任何地区使用。
而传统的地源热泵或水源热泵则需要地下水或地下土壤等特定条件。
这使得空气源热泵在城市或非农村地区更加适用。
空气源热泵具有较高的能效。
热泵系统的性能系数COP是衡量其能效的重要指标,表示每消耗1单位的能量,可以产生多少单位的热量。
空气源热泵的COP通常在2.5至4之间,即每消耗1单位的电能,可以产生2.5至4单位的热量。
相比之下,传统的电暖气的COP只有1。
因此,空气源热泵在供暖领域具有很高的节能效果。
第三,空气源热泵具有灵活的运行方式。
它既可以提供供热,也可以提供供冷。
在供热模式下,空气源热泵通过吸热器从室外空气中吸收热量,然后通过压缩机将热量提升到室内供暖。
在供冷模式下,空气源热泵通过反向工作流程,将室内热量抽出并释放到室外,实现室内的冷却效果。
这种灵活的运行方式使得空气源热泵可以满足不同季节和不同地区的需求。
第四,空气源热泵具有简单的安装和维护。
相比其他热泵系统,空气源热泵的安装和维护成本较低。
由于无需地下管道或井水,安装过程更加简单快速。
此外,空气源热泵的维护也相对简单,只需要定期清洁和更换过滤器即可。
这使得空气源热泵成为家庭和小型商业建筑的理想选择。
空气源热泵具有环保的特点。
由于主要使用空气作为热源,因此空气源热泵不会产生废气、废水或噪音污染。
相比传统的燃煤锅炉或电暖器,它具有更低的碳排放和环境影响。
此外,空气源热泵还可以与太阳能电池板等可再生能源系统配合使用,进一步降低对传统能源的依赖。
空气源热泵具有广泛的适用性、高能效、灵活的运行方式、简单的安装和维护以及环保的特点。
随着能源需求的增加和环境保护意识的提高,空气源热泵将在未来得到更广泛的应用。
制冷机和热泵的异同点
制冷机和热泵的异同点制冷机和热泵是两种常见的热力设备,它们在功能和原理上有一些相似之处,但也有一些不同之处。
本文将从工作原理、应用领域、能源效率和环境影响等方面对制冷机和热泵进行比较和分析。
一、工作原理:1. 制冷机:制冷机是一种将热能从低温区域转移到高温区域的设备,其工作原理基于制冷循环。
制冷循环主要包括蒸发器、压缩机、冷凝器和节流阀等组件。
制冷剂在蒸发器中吸收低温热量,经过压缩机增压后,释放高温热量到冷凝器中,然后通过节流阀降压,重新进入蒸发器循环。
2. 热泵:热泵是一种能够利用外部环境热能提供供热和制冷的设备,其工作原理基于热力循环。
热泵通过蒸发器吸收外部环境中的低温热量,经过压缩机增压后,释放高温热量到热水或空气中,以实现供热或制冷的目的。
二、应用领域:1. 制冷机:制冷机主要应用于冷库、冷藏车、空调等场所,用于降低温度并保持低温环境。
它可以将热量从一个区域转移到另一个区域,实现冷却效果。
2. 热泵:热泵主要应用于供热和制冷领域。
在供热方面,热泵可以通过吸收外部环境中的低温热量,提供热水、采暖或工业过程中的热能;在制冷方面,热泵可以通过反转工作循环,将热量从室内排出,实现制冷效果。
三、能源效率:1. 制冷机:制冷机的能源效率通常通过制冷系数(COP)来衡量,COP越高表示能源利用效率越高。
一般情况下,制冷机的COP在2至5之间,即每消耗1单位的电能,可以产生2至5单位的制冷量。
2. 热泵:热泵的能源效率也是通过COP来衡量,但与制冷机不同的是,热泵的COP通常大于1。
这是因为热泵可以利用外部环境中的热能,使得单位能量产生的热量大于消耗的能量。
一般情况下,热泵的COP在2至6之间,即每消耗1单位的电能,可以产生2至6单位的供热量。
四、环境影响:1. 制冷机:制冷机在工作过程中会产生废热和制冷剂的排放,对环境造成一定的影响。
特别是一些传统制冷剂,如氟利昂,不仅对臭氧层有破坏作用,还对全球变暖有贡献。
试论低温空气源热泵供热原理及特点
试论低温空气源热泵供热原理及特点摘要:空气源热泵是把丰富的空气作为系统的低温热能,利用逆卡诺原理,消耗少量的电能,将空气中大量的低温热能转变为高温热能的节能、高效、环保的热泵技术。
近些年来,空气源热泵技术凭借其来源广泛、机组的安装位置可变、占空间少等优点,其应用范围得到不断的扩张。
但是在夜间或极端天气的情况下,空气源热泵系统不但无法满足负荷的需求,而且系统自身也无法保证安全稳定的运行。
本文主要对低温低温空气源热泵供热原理及特点进行了一定的阐述。
关键词:低温;空气源;热泵;供热原理;特点引言:节能技术的产生给我国各行各业带来新的冲击,部分行业需要结合新型技术展开相应工作,提升部分系统运转效率,降低系统运转过程中对环境的污染程度。
在我国供热系统运转过程中,工作者运用部分不可再生性能源完成供热过程。
为了有效减少供热过程对不可再生性能源的利用率,有关部门需要适当结合低温空气源热泵供热系统完成供热工作,提高供热效率,减少供热过程中对不可再生性能源的使用情况。
在供热过程中结合新型节能技术完成系统运转工作,能够提高业内人士对新型节能技术的熟悉程度。
1、空气源热泵技术依靠电能的拖动,迫使热量从低位热源向高位热源流动的装置就是热泵。
就像水泵把水从低水头压送到高水头,还有气泵(气体压缩机),把气体从低压区送到高压区,它们和热泵的原理是一样的,都是输送能源的机械。
热泵技术作为一项节能环保高效的技术,是因为它能够把不能为人们直接利用的低品位热能通过热泵技术转换为可以让人们直接利用的高位能,比如可以把空气、太阳能、土壤、井水河水以及工业废水等低品位热能,通过热泵技术将它们转化为高位能,直接为人们所利用,并通过利用这些转化来的高位能进行工作作业,来有效的减少煤炭、燃气、电能以及石油这类有限的高位能,以此实现节约环保的目的,并有利于我国高位能资源的可持续利用。
矿物资源越来越匮乏,环境污染越来越严重的情况下,合理有效的将低位能转化为高位能的热泵技术也将更广泛的得到应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冰蓄冷式空气源热泵特点
冰蓄冷式空气源热泵是一种结合了空气源热泵技术和冰蓄冷技术的空调系统,其特点是:
1. 能源高效:利用夜间低价谷电时段制冷蓄冰,白天释冷满足空调需求,有效利用峰谷电价差降低运行成本。
2. 负荷平衡:通过蓄冰过程转移电力高峰时段的空调负荷,有助于电网负荷调度和稳定。
3. 环保减排:空气源热泵从空气中提取低位热能转换为高位热能,既实现冬季供热、夏季供冷,又减少了化石能源消耗和温室气体排放。
4. 灵活性强:系统可根据实际需求调整供冷量,适应性强,尤其适用于负荷波动大的场合。
5. 经济实用:通过合理配置,能够降低初期投资及运行费用,尤其在电价峰谷差明显的地区经济效益显著。