2021年山东省临沂市中考数学真题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年山东省临沂市中考数学真题及答案
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.
2.答题注意事项见答题卡,答在本试卷上不得分.
第Ⅰ卷(选择题
共42分)
一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只
有一项是符合题目要求的.
1.1
2
-的相反数是
(A)1
2
-.
(B)2-.
(C)2.
(D)
12
.2.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着
陆的国家.据测算,地球到火星的最近距离约为55000000km.将数据55000000用科学记数法表示应为(A)5.5×106
.(B)0.55×108
.(C)5.5×107.(D)55×106
.
3.计算3325a a ⋅的结果是
(A)610a .(B)910a .(C)37a .
(D)67a .
4.如图所示的几何体的主视图是
5.如图,AB ∥CD ,∠AEC =40°,CB 平分∠DCE ,则∠ABC 的度数为
(A)10°.
(B)20°.(C)30°.(D)40°.
6.方程256x x -=的根是
(A)17x =,28x =.(B)17x =,28x =-.(C)17x =-,28x =.(D)17x =-,28x =-.
7.不等式
1
13
x x -<+的解集在数轴上表示正确的是
-2
-2
8.计算11
(()a b b a
-÷-的结果是
(A)a
b -.
(B)a b .(C)b
a
-.
(D)
b a
.9.如图,点A ,B 都在格点上,若213
3
BC =
,则AC 的长为..(C).(D)10.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是
(第5题图)
A
B
C
D
E
(A )(B )(C )(D )
00
(第9题图)B
A
C
(A)
12
.(B)
23
.(C)
34
.(D)
56
.11.如图,PA ,PB 分别与⊙O 相切于点A ,B ,∠P =70°,C 为⊙O 上一点,则∠ACB 的度数是
(A)110°.(B)120°.(C)125°.(D)130°.
12.某工厂生产A,B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫1002m 所用的时间,A 型机器人比B 型机器人多用40分钟.两种型号扫地机器人
每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2
m x ,根据题意可列方程为
(A)1001002
.0.53x x =+(B)1002100
.0.53x x +=(C)
1002100
.3 1.5x x
+=(D)
1001002
.1.53
x x =+13.已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,
则
11
a b
<.其中正确的个数是(A)1.
(B)2.
(C)3.
(D)4.
14.实验证实,放射性物质放出射线后,质量将减少,减少的速度开始较快,后来较慢,物
质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象.
据此可计算32mg 镭缩减为1mg 所用的时间大约是(A)4860年.
(B)6480年.
(C)8100年.
(D)9720年.
(第14题图)
18m 时间/年
质量16204860
3240
012m O
014m 0
m
第Ⅱ卷(非选择题
共78分)
注意事项:
1.第Ⅱ卷分填空题和解答题.
2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.
二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:328a a -
=.
16.比较大小:26
5(填“﹥”“﹤”或“=”).
17.某学校八年级(2)班有20名学生参加学校举行的“学
党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是
.
18.在平面直角坐标系中,□ABCD 的对称中心是坐标原点,顶点A ,B 的坐标分别是(1-,
1),(2,1).将□ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是
.
19.数学知识在生产和生活中被广泛应用.下列实例所应用的最主要的几何知识,说法正确
的是
(只填写序号).
①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;
③学校门口的伸缩门由菱形而不是其它四边形组成,应用了“菱形对角线互相垂直且平分”;
④地板砖可以做成矩形,应用了“矩形对边相等”.
(第19题图)
准星
缺口
三、解答题(本大题共7小题,共63分)20.(本小题满分7分)
计算:2
2
11|2|2222⎫⎫+--+⎪⎪⎭⎭.
10290成绩
95100人数
(第17题图)
35850
21.(本小题满分7分)
实施乡村振兴计划以来,我市农村经济发展进入了快车道.为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):
0.690.730.740.800.810.980.930.810.890.690.74
0.99
0.98
0.78
0.80
0.89
0.83
0.89
0.94
0.89
研究小组的同学对以上数据进行了整理分析,得到下表:
(1)表格中:a =,b =,c =,d =;
(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;
(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.
22.(本小题满分7分)
如图,在某小区内拐角处的一段道路上,有一儿童在C 处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A 处驶来.已知CM =3m,CO =5m,DO =3m,∠AOD =70°,汽车从A 处前行多少米,才能发现C 处的儿童(结果保留整数)?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75.)
分组频数0.65≤x <0.7020.70≤x <0.7530.75≤x <0.801
0.80≤x <0.85a 0.85≤x <0.9040.90≤x <0.9520.95≤x <1.00
b
统计量平均数中位数众数数值
0.84c
d
A
B
C
D O
M (第22题图)
2号楼
23.(本小题满分9分)
已知函数3
, 1,3, 11,
3
, 1.x x y x x x x
⎧±-⎪⎪
=-±±⎨⎪⎪±⎩(1)画出函数图象;
列表:
x ……y
…
…
描点,连线.得到函数图象.
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x 1,y 1),(x 2,y 2)是函数图象上的点,若x 1+x 2=0,证明:y 1+y 2=0.24.(本小题满分9分)
如图,已知在⊙O 中, AB = BC =
CD ,OC 与AD 相交于点E .求证:(1)AD //BC ;
(2)四边形BCDE 为菱形.
≤
≥(第24题图)
C
D
O
E
A
B
<<y O x
4
2
62
4-2
-4
-6
-2-4
25.(本小题满分11分)
公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速.减速后甲车行驶的路程s (单位:m)、速度v (单位:m/s)与时间t (单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至9m/s 时,它行驶的路程是多少?
(2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?
26.(本小题满分13分)
如图,已知正方形ABCD ,点E 是BC 边上一点,将△ABE 沿直线AE 折叠,点B 落在点F 处,连接BF 并延长,与∠DAF 的平分线相交于点H ,与AE ,CD 分别相交于点G ,M ,连接HC .
(1)求证:AG =GH ;
(2)若AB =3,BE =1,求点D 到直线BH 的距离;
(3)当点E 在BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?
试卷类型:A
参考答案及评分标准
说明:解答题给出了部分解答方法,考生若有其它解法,应参照本评分标准给分.
15.5
3043.5568t (s)
1456
16
8t (s)
23(第25题图)
s (m)v (m/s)
OO
(第26题图)
D
B
M
A
H
G E
F
C
一、选择题(每小题3分,共42分)题号1234567891011121314答案
D
C
A
B
B
C
B
A
B
D
C
D
A
C
二、填空题(每小题3分,共15分)15.2(2)(2)a a a +-;16.<;17.95.5;18.(4,1)-;19.①③.
三、解答题
20.解:2
2
11||22⎫⎫+--⎪⎪
⎭⎭1111
)
2222
=+-+-················································3分
(1)=+-···············································································
5分=·····························································································
7分
21.解:(1)a =5,b =3,c =0.82,d =0.89.··················································4分
(2)14
30021020
⨯
=(户),因此,家庭人均收入不低于0.8万元的大约有210户.··························6分(3)因为样本的中位数是0.82,0.83>0.82,
所以可以估计梁飞家的人均收入超过村里一半以上的家庭.····················7分
22.解:由题意,3
sin 0.65
COM ∠=
=,因此∠COM ≈37°.∵∠DOB 与∠COM 为对顶角,
∴∠DOB ≈37°.·······················································································2分在Rt△DOB 中,∵tan∠DOB =
BD
DO
,∴BD=DO ·tan∠DOB ≈3×0.75=2.25.·····························································4分在Rt△DOA 中,∵tan∠DOA =
AD DO
∴AD=DO ·tan∠DOA ≈3×2.75=8.25.·····························································6分∴AB=AD -BD =8.25-2.25=6(m).
因此,汽车前行约6米,才能发现儿童.························································7分23.解:(1)列表:
x …4-3-2-1-1234…y
…
0.75
-1
- 1.5
-3
-3
1.5
1
0.75
…
·························2分
描点,画出如图所示图象.·····································································5分
y 11.5
O x
-1
-4-3-22
3
4
-3
3
-1.5(2)由图象可知,当1x =-时,函数取得最小值,=3y -最小;当1x =时,函数取
得最大值,=3y 最大.·························································································7分
(3)方法一:∵x 1+x 2=0,∴x 2=-x 1.当x 1≤-1时,x 2≥1,y 1=13x ,y 2=2
3x ,12121212
3()
330x x y y x x x x ++=
+==.当x 1≥1时,x 2≤-1,同理可知y 1+y 2=0····················································8分当-1<x 1<1时,-1<x 2<1,y 1=3x 1,y 2=3x 2,
121212333()0y y x x x x +=+=+=.
综上所述,若x 1+x 2=0,则y 1+y 2=0.···························································9分方法二:
因为该函数的图象关于原点中心对称,由x 1+x 2=0,得12x x =-,可知点(x 1,y 1)与
点(x 2,y 2)关于原点对称,所以y 1=-y 2,即y 1+y 2=0.············································9分24.证明:(1)如图24-1,连接BD .
∵ AB CD =,
∴ADB DBC ∠=∠···················2分∴AD ∥BC.······························3分(2)如图24-2,连接OB ,OD ,∵ BC
CD =,∴BC CD =.·······················································································4分
图24-1
B
D
O
E
A
C
方法一:
∵OB =OD ,BC =CD ,∴OC 垂直平分BD .
∴EB =ED .································5分∴BEC DEC ∠=∠.又∵AD ∥BC ,∴BCE DEC ∠=∠.∴BEC BCE ∠=∠.
∴BC =EB .·····························································································7分∴BC =CD =ED =EB .····················································································8分∴四边形BCDE 是菱形.···········································································9分方法二:
∵OB =OD ,BC =DC ,OC =OC ,∴△OBC ≌△ODC .
∴∠BCO =∠DCO .··················································································5分又∵AD ∥BC ,∴∠DEC =∠BCE .∴∠DCO =∠DEC .
∴DE =DC .·····························································································7分∴DE =BC .
∴四边形BCDE 是平行四边形.·································································8分∴四边形BCDE 是菱形.···········································································9分
C
D
O
E
A
B 图24-2
25.解:(1)由题意,设2s at bt =+,v =mt +16.
∵抛物线过点(2,30),(4,56),
∴4230,
16456.
a b a b +=⎧⎨
+=⎩··················································································1分解得1,216.
a b ⎧
=-⎪⎨⎪=⎩·····················································································2分
∴s 与t 的函数关系式为21
162
s t t =-+.·····················································3分
∵直线过点(8,8),∴8m +16=8.∴m =-1.
∴16v t =-+.·······················································································4分当9v =时,169t -+=,∴7t =,··························································5分
当7t =时,21
716787.52
s =-⨯+⨯=.
因此,当甲车减速至9m/s 时,行驶的路程是87.5m.·································7分(2)方法一:设两车距离为w ,则
21
1020(16)2
w t t =+--+.
整理得:
()2
1622
y t =
-+.·················································································8分∵
1
2
>0,∴w 有最小值.当6t =时,·························································································9分w 最小= 2.
所以当甲车减速行驶6秒时,两车距离最近,最近距离为2米.····················11分方法二:
由题意知,当甲车速度减至10m/s 时,两车距离最近.
当10
v=时,1610
t-+=,∴6
t=.·························································8分此时,甲车行驶的路程为:
2
1616678(m)
2
s=-⨯+⨯=,····································································9分乙车行驶的路程为10660(m)
⨯=,
∴两车相距6020782(m)
+-=.
因此,当甲车减速行驶6秒时,两车相距最近,最近距离是2米.·················11分26.证明:(1)如图26-1.
∵点B,F关于AE对称,
∴AE⊥BF,BAG FAG
∠=∠.···································································1分∵AH平分∠DAF,
∴DAH FAH
∠=∠.
∴
1145
22
GAH GAF FAH BAF DAF
∠=∠+∠=∠+∠=︒.································2分
∴AG HG
=.·······················································································3分
(2)连接DH .
由题意可知AD =AB =AF ,
在△ADH 和△AFH 中,
,,,AD AF DAH FAH AH AH =⎧⎪
∠=∠⎨⎪=⎩
∴△ADH ≌△AFH .
∴DH=FH ,45AHD AHG ∠=∠=︒.∴90DHB ∠=︒.
∴DH 的长即为点D 到直线BH 的距离.······················································4分∵AB =3,BE =1,
∴AE =
==.·······················································5分
∵BG ⊥AE ,
∴AB BE BG AE ⋅=
==
·······························································6分
∴AG ===.···········································7分方法一:
连接BD
,BD =∵GH =AG ,
∴BH =BG+GH =BG+AG .∴
+=
.····································································8分
∴DH ==.∴点D 到直线BH
····························································9分方法二:
∵GF =BG ,AG =GH ,
图26-1
D
A
B
G E
F
H
M
C
∴DH =FH=GH -GF=AG -BG .···································································8分∴
=
∴点D 到直线BH
····························································9分(3)不变.
如图26-2,过点C 作CN ⊥BH ,垂足为N .∵90BAG ABG ∠+∠=︒,90CBN ABG ∠+∠=︒,
∴=BAG CBN ∠∠.
在△ABG 和△BCN 中,BAG CBN AGB BNC AB BC ∠=∠⎧⎪
∠=∠⎨⎪=⎩
,,
,∴△ABG ≌△BCN .
∴AG =BN ,BG =CN .·················································································10分又∵AG =GH ,
∴BN =GH .···························································································11分∴BG +GN =GN +NH .∴BG =NH .
∴CN =NH .···························································································12分∴45BHC ∠=︒.
所以,当点E 在BC 边上运动时,∠BHC 的大小不变.··································13分
图26-2
A
B
G H
E
F
M C
D
N。