一次函数平移规律

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数平移规律
规律为:左右平移,x左加右减;上下平移,b上加下减。

平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

举例
1、一次函数图像在x轴上的左右平移。

向左平移n个单位,解析式
y=kx+b变化为y=k(x+n)+b;向右平移n个单位解析式y=kx+b变化为y=k(x-n)+b。

口诀:左加右减(对于y=kx+b来说,对括号内x符号的增减)(此处n为正整数)。

2、一次函数图像在y轴上的上下平移。

向上平移m个单位解析式y=kx+b 变化为y=kx+b+m;向下平移m个单位解析式y=kx+b变化为y=kx+b-m。

口诀:上加下减(对于y=kx+b来说,只改变b)(此处m为正整数)。

扩展资料
关于一次函数平移变化的规律可以通过待定系数法和相似三角形来予以证明。

在运用待定系数法证明中,因为平移前后两条直线平行,所以K相等,只要根据与x轴的交点坐标的变化,再将变化后的与x轴交点坐标代入到平移后的解析式中即可求得b和b1的关系为向左平移b1=kn+b,向右平移b1=-kn+b。

在运用相似三角形证明中,在平面直角坐标系中,一次函数图像平移后的两条直线平行,这两条直线分别与x轴和y轴形成了一组相似三角形,通过相似三角形对应边成比例,即可求出交点坐标间的关系。

这样也可以证明平移规律。

其实无论是运用待定系数法证明或者运用相似三角形证明,都是在研究一次函数的图像与x轴、y轴的交点坐标的变化。

我们研究一次函数的图像平移其实就是研究与x轴、y轴的交点坐标的变化,进而研究解析式的变化,图像性质的变化。

这也就是所说的关键点。

相关文档
最新文档