新苏科版八年级苏科初二下册第二学期月考数学试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新苏科版八年级苏科初二下册第二学期月考数学试卷(含答案)
一、解答题
1.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.
(2)请把这个条形统计图补充完整.
(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.
2.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:四边形ABEC是平行四边形;
(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.
3.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作
AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
4.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形
式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:
最喜爱的节目人数
歌曲15
舞蹈a
小品12
相声10
其它b
(1)在此次调查中,该校一共调查了名学生;
(2)a=;b=;
(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;
(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.
5.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在
△A2B2C2的内部,请直接写出x的值.
6.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.
(1)点B
的坐标为
,直线ON对应的函数表达式为;
(2)当EF=3时,求H点的坐标;
(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.
7.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n1001502005008001000
摸到黑球的次数m233160*********
摸到黑球的频率m
n
0.230.210.300.260.253
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率
是;(精确到0.01)
(2)估算袋中白球的个数.
8.如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.
(1)求证:FG=FH;
(2)当∠A为多少度时,FG⊥FH?并说明理由.
9.如图,在矩形ABCD中,AB=1,BC=3.
(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:
四边形AFPE是菱形;
(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接
..标出菱形的边长.(保留作图痕迹,不写作法)
10.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?
11.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:
(1)本次调查的总人数是人;
(2)请将条形统计图补充完整;
(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;
(4)在扇形统计图中表示观点E的百分比是.
12.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.
13.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.
(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;
(2)在(1)中该菱形的边长是,面积是;
(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.
14.解方程(1)2
2(1)1x x +=+ (2)22310x x ++=(配方法)
15.如图1,△ABC 中,CD ⊥AB 于D ,且BD:AD:CD=2:3:4, (1)试说明△ABC 是等腰三角形; (2)已知ABC
S
=160cm²,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A
运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止,设点M 运动的时间为t(秒), ①若△DMN 的边与BC 平行,求t 的值;
②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.解:(1)200,144.(2)见解析;(3)120名 【分析】
(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出 “艺术鉴赏”部分的圆心角.
(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.
(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案. 【详解】
解:(1)学生总数:50÷25%=200(名)
“艺术鉴赏”部分的圆心角:80
200
×360°=144°
故答案为:200,144.
(2)数学思维的人数是:200-80-30-50=40(名),补图如下:
(3)根据题意得:800×30
200
=120(名),
答:其中有120名学生选修“科技制作”项目.
2.(1)证明见解析;(2)证明见解析.
【分析】
(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;
(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出
FA=FE=FB=FC,AE=BC,得证.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵CE=DC,
∴AB=EC,AB∥EC,
∴四边形ABEC是平行四边形;
(2)∵由(1)知,四边形ABEC是平行四边形,
∴FA=FE,FB=FC.
∵四边形ABCD是平行四边形,
∴∠ABC=∠D.
又∵∠AFC=2∠ADC,
∴∠AFC=2∠ABC.
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形.
【点睛】
此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.
3.(1)详见解析;(2)24
【分析】
(1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;
(2)将菱形ADCF的面积转换成△ABC的面积,再用S△ABC的面积=1
2
AB•AC,结合条件可求得
答案.
【详解】
(1)证明:∵E是AD的中点∴AE=DE
∵AF∥BC
∴∠AFE=∠DBE
在△AEF和△DEB中
AFE DBE
DEB AEF AE DE
∠=∠


∠=∠

⎪=

∴△AEF≌△DEB(AAS)
∴AF=DB
∵D是BC的中点
∴BD=CD=AF
∴四边形ADCF是平行四边形∵∠BAC=90°,
∴AD=CD=1
2 BC
∴四边形ADCF是菱形;
(2)解:设AF到CD的距离为h,
∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8
∴S菱形ADCF=CD•h=1
2
BC•h=S△ABC=
1
2
A B•AC=
1
6824
2
⨯⨯=.
【点睛】
本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.
4.(1)50;(2)8,5;(3)108°;(4)240人.
【分析】
(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,
(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,
(3)先计算“歌曲”所占的百分比,用360°去乘即可,
(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【详解】
(1)12÷24%=50人
故答案为50.
(2)a=50×16%=8人,
b=50﹣15﹣8﹣12﹣10=5人,
故答案为:8,5.
(3)360°×15
50
=108°
答:“歌曲”所在扇形的圆心角的度数为108°;
(4)1200×10
50
=240人
答:该校1200名学生中最喜爱“相声”的学生大约有240人.
【点睛】
考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.
5.(1)图见解析;(2)图见解析;(3)x的值为6或7.
【分析】
(1)分别作出B、C的对应点B1,C1即可解决问题;
(2)分别作出A、B、C的对应点A2、B2、C2即可解决问题;
(3)观察图形即可解决问题.
【详解】
(1)作图如下:△AB1C1即为所求;
(2)作图如下:△A2B2C2即为所求;
(3)P点如图,x的值为6或7.
【点睛】
本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.
6.(1)(3,2),
1
2
y x
;(2)H(16,11);(3)
44
15
,证明见解析.
【分析】
(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.
(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣
3),由点G在直线ON上,可得e﹣3=1
2
(e+5),解得e=11即可解决问题.
(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,
FG=5m,则G(a+5m,a﹣3m),由点G在直线y=1
2
x上,可得a﹣3m=
1
2
(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.
【详解】
解:(1)∵A的坐标为(3,3),
∴直线OM的解析式为y=x,
∵正方形ABCD的边长为1,
∴B(3,2),
∴C(4,2)
设直线ON的解析式为y=kx(k≠0),
把C的坐标代入得,2=4k,解得k=1
2

∴直线ON的解析式为:y=1
2 x;
故答案是:(3,2),1
2
y x
; (2)∵EF =3,EF :FG =3:5. ∴FG =5,
设矩形EFGH 的宽为3a ,则长为5a ,
∵点E 在直线OM 上,设点E 的坐标为(e ,e ), ∴F (e ,e ﹣3),G (e +5,e ﹣3), ∵点G 在直线ON 上, ∴e ﹣3=
1
2
(e +5), 解得e =11, ∴H (16,11).
(3)s 1:s 2的值是一个常数,理由如下:
如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .
设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ), ∵点G 在直线y =1
2
x 上, ∴a ﹣3m =
1
2
(a +5m ), ∴a =11m ,
∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),
∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =
12×11m ×11m +12(8m +11m )•5m •12﹣1
2
×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,
∴12S S =224415m m =44
15
. ∴s 1:s 2的值是一个常数,这个常数是44
15
. 【点晴】
本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.
7.(1)0.25;(2)3个.
【分析】
(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可.
【详解】
解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
(2)设袋中白球为x个,
1
1x
=0.25,解得x=3.
答:估计袋中有3个白球,
故答案为:(1)0.25;(2)3个.
【点睛】
本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
8.(1)见解析;(2)当∠A=90°时,FG⊥FH.
【分析】
(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;
(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.
【详解】
(1)证明:∵AB=AC.
∴∠ABC=∠ACB,∵DE∥BC,
∴∠ADE=∠ABC,∠AED=∠ACB,
∴∠ADE=∠AED,
∴AD=AE,
∴DB=EC,
∵点F、G、H分别为BE、DE、BC的中点,
∴FG是△EDB的中位线,FH是△BCE的中位线,
∴FG=1
2
BD,FH=
1
2
CE,
∴FG=FH;
(2)解:延长FG交AC于N,
∵FG是△EDB的中位线,FH是△BCE的中位线,
∴FH∥AC,FN∥AB,
∵FG⊥FH,
∴∠A=90°,
∴当∠A=90°时,FG⊥FH.
【点睛】
本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
9.(1)见解析;(2)见解析
【分析】
(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;
(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.
【详解】
(1)证明:如图①
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠2,
∵EF垂直平分AP,
∴AF=PF,AE=PE,
∴∠2=∠3,
∴∠1=∠3,
∴AE=AF,
∴AF=PF=AE=PE,
∴四边形AFPE是菱形;
(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个
点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,
则可得12+(3-x)2=x2,
解得x=5
3

所以菱形的边长为5
3

【点睛】
本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.
10.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.
【分析】
根据在这几种灯中,每种灯时间的长短,即可得出答案.
【详解】
因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.
【点睛】
本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.11.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.
【分析】
(1)根据选A的人数和所占的百分比,可以求得本次调查的总人数;
(2)根据(1)中的结果,可以求得选C的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;
(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.
【详解】
解:(1)本次调查的总人数是:2300÷46%=5000(人),
故答案为:5000;
(2)选用C的学生有:5000×30%=1500(人),
补充完整的条形统计图如图所示;
(3)在扇形统计图中表示观点B的扇形的圆心角度数为:360°×
250
5000
=18°,
故答案为:18;
(4)在扇形统计图中表示观点E的百分比是:
200
5000
×100%=4%,
故答案为:4%.
【点睛】
本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.
12.t=2
【分析】
当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,由EF∥AB,BF∥AE可得出四边形ABFE为平行四边形,利用平行四边形的性质可得出关于t的一元一次方程,解之即可得出结论.
【详解】
解:当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,
∵EF∥AB,BF∥AE,
∴四边形ABFE为平行四边形,
∴BF=AE,即t=6﹣2t,
解得:t=2.
答:当t=2秒时,EF∥AB.
【点睛】
本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t的一元一次方程是解题的关键.
13.(1)见解析;(2,6;(3)3
【分析】
(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.
(2)利用勾股定理,菱形的面积公式计算即可.
(3)画出满足条件的菱形即可判断.
【详解】
解:(1)如图,菱形AEBF即为所求.
(2)AE
,菱形AEBF的面积=
1
2
×6×2=6,
,6.
(3)如图备用图可知:可以画3个菱形,故答案为3.
【点睛】
本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.
14.(1)11x =-,212x =-
;(2)11x =-,212
x =- 【分析】
(1)移项,提取公因式1x +,利用因式分解法求解即可;
(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.
【详解】
(1)22(1)1x x +=+, 移项得:2
2(1)10()x x -++=,
提取公因式1x +得:121)()(0x x ++=,
可得:10x +=或210x +=, 解得:12112
x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +
=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭
⎝⎭,即231()416x +=, 开方得:3144
x +=±, 解得:1211
2x x =-=-,. 【点睛】
本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.
15.(1)证明见详解;(2)①5或6;②9或10或
496
. 【分析】
(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;
(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;
②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-8;分别得出方程,解方程即可.
【详解】
(1)证明:设BD=2x,AD=3x,CD=4x,
则AB=5x,
在Rt△ACD中,AC=5x,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:由(1)知,AB=5x,CD=4x,
∴S△ABC=1
2
×5x×4x=160cm2,而x>0,
∴x=4cm,
则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.
由运动知,AM=20-2t,AN=2t,
①当MN∥BC时,AM=AN,
即20-2t=2t,
∴t=5;
当DN∥BC时,AD=AN,
∴12=2t,
得:t=6;
∴若△DMN的边与BC平行时,t值为5或6.
②存在,理由:
Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形
Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,
∴DE=1
2
AC=10
当DE=DM,则2t-8=10,
∴t=9;
当ED=EM,则点M运动到点A,∴t=10;
当MD=ME=2t-8,
如图,过点E作EF垂直AB于F,
∵ED=EA,
∴DF=AF=1
2
AD=6,
在Rt△AEF中,EF=8;
∵BM=2t,BF=BD+DF=8+6=14,
∴FM=2t-14
在Rt△EFM中,(2t-8)2-(2t-14)2=82,
∴t=49
6

综上所述,符合要求的t值为9或10或49
6

【点睛】
此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.。

相关文档
最新文档