Decolorization of Aqueous Acid__Red B Solution during the Cathode Process in Abnormal Glow Discharge
地质专业英语词汇
地质专业词汇英语翻译(A-D)a horizon a 层位a lineation a 线理a twin a 双晶aa lava 块熔岩aalenian stage 阿林阶abandon 废弃abandoned mine 废弃的矿山abandoned well 废孔abatis 通风隔墙abdomen 腹部abdominal appendage 腹肢abdominal cavity 腹腔abdominal fin 腹abductor 外展肌abductor muscle 外展肌abernathyite 水砷钾铀矿aberration 象差abichite 光线矿abiogenesis 自然发生abiogeny 自然发生abiotic factor 非生物因素ablation 剥蚀ablation breccia 剥蚀角砾岩ablation moraine 消融碛ablation skin 熔蚀皮ablation till 消融碛ablykite 阿布石abnormal 异常的abnormal interference color异常干涉色abnormal metamorphism异常变质作用abolition 废除abrade 剥蚀abrasion 海蚀abrasion platform 磨蚀台地abrasion surface 浪蚀面abrasion terrace 磨蚀阶地abrasionn test 磨耗试验abrasive 磨料;海蚀的abrazite 多水高岭土absarokite 正边玄武岩absite 钍钛铀矿absolute age 绝对年龄absolute black body 绝对黑体absolute chronology 绝对年代学absolute dating 绝对年代测定absolute geopotential 绝对重力势absolute porosity 绝对孔隙率absolute pressure 绝对压力absolute structure 绝对构造absorbed water 吸附水absorbent 吸收剂absorber 吸收器absorbing well 吸水井absorption 吸收absorption axis 吸收轴absorption border 融蚀缘absorption curve 吸收曲线absorption edge 吸收端absorption factor 吸收率absorption spectrum 吸收光谱absorptive capacity 吸收率absorptivity 吸收性abukumalite 铋磷灰石abundance 丰度abundance of elements 元素丰度abundance of isotopes 同位素丰度abundance ratio of isotopes 同位素相对丰度abysmal deposits 深海沉积物abyss 深海abyssal 深海的abyssal benthic zone 深渊底栖带abyssal deposits 深海沉积物abyssal facies 深海相abyssal hills province 深海丘陵区abyssal injection 深成贯入abyssal rock 深成岩abyssal sediments 深海沉积物acadialite 红菱沸石acadian stage 阿卡德阶acalycine 无花萼的acalycinous 无花萼的acanthite 螺状硫银矿acanthoid 刺状的acaulescent 无茎的acaulous 无茎的acaustobiolite 非燃性生物岩accelerated development 上升发育acceleration 促进accelerometer 加速度计accessory 副的accessory ejecta 早成同源抛出物accessory minerals 副矿物accidental ejecta 异源抛出物accidental inclusion 外源包体accidental species 偶见种accidental xenolith 外源包体acclivity 上坡accompanying mineral 伴生矿物accordance of summit levels 山峰高度一致accordant junction 交合汇流accordion fold 棱角褶皱accretion 附加体accretion gley 结核潜育层accretion theory 吸积理论accretionary lapilli 团积火山砾accumulate 堆积accumulated temperature 积温accumulation 堆积accumulation horizon 聚积层accumulation moraine 堆积冰碛accumulation terrace 堆积阶地accumulation theory of volcano 火山堆积说accumulation till 堆积冰碛accumulative phase 堆积相accuracy 准确度acephalous 无头的acephalous larva 无头幼虫acerous 针状的acetate 醋酸盐acetic acid 醋酸acf diagram acf 图解achavalite 硒铁矿achiardite 坏晶石achirite 透视石achlamydeous 无花被的achlusite 钠滑石achondrite 无球粒陨石achroite 无色电气石achromaite 浅闪石achromatic body 消色物体achromatic lens 消色差透镜achromatism 消色差achromatize 消色acicular 针状的aciculiform 针状的1acid base equilibrium 酸碱平衡acid earth 酸性白土acid humus 酸性腐殖质acid mine drainage 酸性矿水排水acid plagioclase 酸性斜长石acid rock 酸性岩acid soil 酸性土acid solution 酸性溶液acid spring 酸性泉acid treatment of oil payzone 油层酸处理acid treatment of well 井的酸处理acidic lava 酸性熔岩acidification 酸化acidimetry 酸量滴定法acidite 酸性岩acidity 酸度acidizing of well 井的酸处理acidophilous plants 适酸植物acidotrophic lake 酸性营养湖acidulation 酸化acline twin 翻底双晶acmite 锥辉石acotyledon 无子叶植物acotyledonous 无子叶的acoustic basement 声波基底acoustic foundation 声波基底acoustic logging 声波测井acquired character 获得形质acre foot 英亩英尺acrobatholithic 露岩基的acrochordite 球砷锰矿acrospore 顶生孢子actinides 锕系元素actinium 锕actinolite 阳起石actinolite asbestos 阳起石石棉actinolite schist 阳起片岩actinolitic greenschist facies 阳起绿色片岩相actinometer 日射表actinometry 光化测定actinomorphic 辐射对称的actinomorphous 辐射对称的actinomyces 放线菌类actinostele 星状中柱actinouranium 锕铀actinula 辐射幼虫activated adsorption 活化吸附activated carbon 活性炭activated clay 活化粘土activated complex 活化络合物activated water 活化水activation 活化activation analysis 活化分析activation cross section 活化截面activation energy 活化能activation logging 活化测井activation method 活化法activation of platform 地台活化activator 活化剂active fault 活断层active folding 活褶曲作用active glacier 活动冰川active humus 活性腐殖质active hydrogen 活性氢active plate 移动板块active remote sensing 织式遥感active tectonic pattern 活动构造型式active volcano 活火山active water 侵蚀性水activity 活度activity coefficient 活度系数activization 活化作用activization platform block 活化台块actual reserves 实在储藏量actual volume 实际容积actualily 真实actualism 现实论actuopalaeontology 现实古生物学acute 急尖的acute bisectrix 锐角等分线acutifoliate 尖叶的adamant 硬石adamantine 坚硬的adamantine lustre 金刚光泽adamantine spar 刚玉adamellite 石英二长岩adamine 水砷锌矿adamite 水砷锌矿adamsite 暗绿云母adaptability 适应性adaptation 适应adaptive radiation 适应辐射adcumulate 累积岩addition 添加additional phase 加成相adductor 收肌adductor muscle scar 收肌筋痕adelite 砷钙镁石adelogenic 显衡隐晶质的adelpholite 铌铁锰矿adenoid 腺样的adergneiss 脉状片麻岩adhering 粘附性的;附着adhesion 粘附adhesive disk 吸盘adhesiveness 胶糟性adiabat 绝热线adiabatic cooling 绝热冷却adiabatic curve 绝热线adiabatic equilibrium 绝热平衡adiabatic heating 绝热增温adiabatic lapse rate 绝热温度梯度adiabatic process 绝热过程adiabatic state 绝热状态adiabatic temperature gradient 绝热温度梯度adiagnostic 隐微晶质的adigeite 镁蛇纹石adinole 钠长英板岩adipocerite 伟晶腊石adipocire 伟晶腊石adipose cell 脂细胞adit 平峒adjacent rock 围岩adjacent sea 边缘海adjoining rock 围岩adjustment 蝶admimistration 管理admission 收气adobe 灰质粘土adoral 口侧的adsorbent 吸附剂adsorbing material 吸附剂adsorption 吸附adsorption indicator 吸附指示剂adsorptive capacity 吸附能力adular 冰长石adularia 冰长石adult 成体advance 前进adventitious plants 外来植物adventive crater 寄生火口adventive volcano 寄生火山aecidiospore 锈孢子aeciospore 锈孢子2aegirine 霓石aegirine augite 霓辉石aegirite 霓石aenigmatite 三斜闪石aeolian clastics 风成碎屑岩aeolian deposit 风积aeolian landform 风成地形aeolian soil 风积土aeration 充气aeration tissue 通气组织aeration zone 饱气带aerenchyma 通气组织aerial method of geology 航空地质甸方法aerial photography 航空摄影学aerial ropeway 架空死aerial survey 航空测量aerial triangulation 航空三角测量aerify 使呈气态aerobe 需气生物aerocartograph 航空测图仪aerogenous rock 风成岩aerogeography 航空地理学aerogeology 航空地质学aerolite 石陨石aerolith 石陨石aeromagnetic survey 航空磁测aerophotogeological map 航空摄影地质图aerophotogrammetry 航空摄影测量学aerophotography 航空摄影学aerophotography of geology 地质专业航空摄影aeroplankton 大气浮游生物aeroradioactive survey航空放射性测量aerosiderite 铁陨石aerosiderolite 铁石陨石aerosite 深红银矿aerugite 块砷镍矿aeschynite 易解石affiliation 亲缘关系affine deformation 均匀变形affinity 亲和力afflux 汇入after deep 后渊aftereffect 后效aftershock 余震afwillite 桂硅钙石agalite 纤滑石agalmatolite 寿山石agamogony 无配子生殖agate 玛瑙age 龄期age determination 时代鉴定age of cycads 苏铁植物时代age spectra 年龄谱ageing of colloids 胶体熟化agent of erosion 侵蚀力agents of metamorphism 变质营力ageostrophic wind 非地转风agglomerate 集块岩agglomerate lava 集块熔岩agglomeratic 集块岩状的agglomeration 烧结agglutinate 粘合集块岩agglutination 胶着agglutinin 凝集素aggradation 加积aggradation terrace 堆积阶地aggradational plain 堆积平原aggregate 集合体aggregation 聚集aggressive water 侵进水agitation 搅拌agmatite 角砾混合岩agnatha 无颌类agnolite 红硅钙锰矿agnotozoic era 元古代agpaite 钠质火成岩agreement 协议agricolite 闪铋矿agricultural geology 农业地质学agricultural geomorphology农业地貌学agroforestrial geology 农林地质学agrogeology 农业地质学agrohydrologg 农业水文学aguilarite 辉硒银矿aidyrlite 杂硅铝镍矿aikinite 针硫铋铅矿air borne radioactivity 大气放射性air chamber 气室air compressor 空气压缩机air damping 空气制动air drilling 空气钻进air drying 风干air elutriation 空气淘析air flush drilling 空气冲洗钻井air gun 空气枪air hammer 气锤air lift 气动提升机air permeability 透气性air pressure 空气压力air release valve 放气阀air sac 气囊air separating tank 空气分离罐air separator 气力分离器air shrinkage 空气收缩air vent 排气孔air volcano 气火山airborne electromagnetic method 航空电磁法airborne electromagnetics 航空电磁法airborne magnetic prospecting 航空磁法勘探airborne magnetometer 航空地磁仪airborne remote sensing 航空遥感airborne survey 航空甸airial camera 航空摄影机airview 空瞰图airy phase 艾氏相airy's spiral 艾氏螺旋akaustobiolite 非燃性生物岩akaustobiolith 非燃性生物岩akerite 英辉正长岩akermanite 镁黄长石akf diagram akf图解akinete 厚壁孢子akrochordite 球砷锰矿aksaite 阿氏硼镁石ala twin 轴双晶alabandine 硫锰矿alabandite 硫锰矿alabaster 雪花石膏alabastrite 雪花石膏alamosite 铅灰石alar 翼状的alary 翼状的alaskaite 铅泡铋矿alaskite 白岗岩alate 有翼的albedo 反照率albers' equal area projection 亚尔勃斯等积投影albertite 黑沥青albian 阿尔布阶albian stage 阿尔布阶albite 钠长石3albite twin 钠长石双晶albitite 钠长石玢岩albitization 钠长石化albitophyre 钠长斑岩alboranite 紫苏变玄岩aleurolite 粉砂岩aleuropelitic 粉砂泥的aleutite 易辉安山岩alexandrite 翠绿宝石algae 藻类algae control 藻类控制algal ball 海藻饼algal biscuit 海藻饼algal coal 藻煤algal fungi 藻菌类algal limestone 藻灰岩algal reef 藻礁algal structure 藻结构alginite 藻类体algodonite 微晶砷铜矿algology 藻类学algonkian 阿尔冈纪algonkian system 阿尔冈系algovite 辉斜岩aliphatic compound 脂族化合物alizarin 二羟蒽醌alkali 碱alkali alumina metasomatism 碱氧化铝交代alkali basaet 碱性玄武岩alkali earth metal 碱土金属alkali feldspar 碱性长石alkali flat 碱覆盖坪alkali gabbro 碱性辉长岩alkali granti 碱性花岗岩alkali lime index 碱灰质指数alkali metal 碱金属alkali olivine basalt 碱性橄榄玄武岩alkali pyroxene 碱性辉石alkali rock series 碱性岩系alkali salt 碱盐alkali soil 碱土alkali syenit 碱性正长岩alkalic rock 硷性岩alkalic ultrabasic rock 碱超基性岩alkalify 碱化alkalimetry 碱量滴定法alkaline amphibolization 碱性角闪石化alkaline earth 碱土族alkaline earth metal 碱土金属alkaline metasomatism 碱性交代作用alkaline pyroxenization 碱性辉石化alkaline rock 硷性岩alkaline rocks 碱性岩类alkaline soil 碱性土alkaline solution 碱性溶液alkaline spring 碱泉alkalinity 碱度alkalipicrite 碱性苦橄岩alkalitrophic lake 碱液营养湖alkalization 碱化作用alkalize 碱化alkaloid 生物碱alkanes 链烷烃allactite 砷水锰矿allagite 绿蔷薇辉石allalinite 浊变辉长岩allanite 褐帘石alleghanyite 粒硅锰矿allemontite 砷锑矿allite 铝铁土allivalite 橄榄钙长岩allobar 变压区allocation 分配allochemical metamorphism 异化变质allochetite 霞辉二长斑岩allochroite 粒榴石allochromatic colour 假色allochromatism 假色allochthone 移置岩体allochthonous 外来的allochthonous coal 异地生成煤allochthonous deposit 移积allochthonous fold 移置性褶曲allochthonous limestone 移置灰岩alloclastic breccia 火山碎屑角砾岩allogenic 他生的allogenic element 他生元素allogenic mineral 他生矿物allogenic succession 他生演替allomerism 异质同晶现象allometamorphism 他变作用allometry 异速生长allomigmatite 他混合岩allomorph 同质异形的allomorphism 同质异晶allomorphous 同质异形的allopalladium 硒钯矿allopatric polymorphism 同质多形allophane 水铝英石allophase metamorphism 他相变质alloskarn 外成夕卡岩allothigenic 他生的allothigenous 他生的allotriomorphic 他形的allotriomorphic granular texture 他形晶粒状结构allotriomorphic structure 他形构造allotriomorphic texture 他形结构allotrope 同素异形体allotropic modification 同素异形体allotropic transformation 同素异晶变化allotropism 同素异形allotropy 同素异形allotype 异模式标本alloy 合金alluvial 冲积的alluvial apron 山麓冲积扇alluvial channel 冲积河道alluvial cone 冲积锥alluvial deposit 冲积层alluvial fan 冲积扇alluvial fan deposit 冲积扇层alluvial ore deposit 冲积矿床alluvial placer 冲积砂矿床alluvial plain 冲积平原alluvial sand ripples 河成砂纹alluvial sand wave 河成沙波alluvial soil 冲积土alluvial terrace 冲积阶地alluvial veneer 冲积表层alluviation 冲积alluvion 冲积层alluvium 冲积层almandine 铁铝榴石almandite 铁铝榴石alnico 铝镍钴合金alnoite 黄长煌斑岩alp 高山alpha quartz 石英alpha ray spectrometer 能谱仪alphitite 岩粉土alpides 阿尔卑斯造山带alpine animals 高山动物alpine belt 高山带alpine orogeny 阿尔卑斯造山运动alpine type peridotite阿尔卑斯式橄榄岩4alpine type vein 阿尔卑斯型矿脉alpinotype orogeny阿尔卑斯型造山作用alpinotype tectonics 阿尔卑斯型构造alsbachite 榴云细斑岩alstonite 碳碱钙钡矿altaite 碲铅矿altar 腋生的altazimuth 经纬仪alteration 蚀变alteration halo 蚀变晕alteration zone 蚀变晕altered aureole 蚀变晕altered mineral 蚀变矿物alternant 交替的alternate phyllotaxis 互生叶序alternately pinnate 互生羽状的alternating 交替alternating layers 互层alternation 互层alternation of beds 互层alternation of generations 世代交替alternative 可选择的altimeter 高度计altitude 高度altitudinal zonality 垂直分布带alum 茂alum shale 茂页岩alum slate 茂板岩alumian 无水矾石alumina 矾土aluminate 铝酸盐aluminite 矾石aluminum 铝alumochromite 铝铬铁矿alunite 茂石alunitization 茂石化alunogen 毛矾石alurgite 锰云母alveolar 蜂窝状alvite 铪锆石amagmatic 非岩浆活动的amalgam 汞齐amalgamation 混汞作用amarantite 红铁矾amazonite 天河石amazonitization 天河石化ambatoarinite 碳酸锶铈矿amber 钙铝榴石amberite 灰黄琥珀ambient 外界的ambiguity 多义性amblygonite 磷铝石ambrite 灰黄琥珀ambulacral foot 管足ambulacral system 步带系ambularcral zone 步带ameba 变形虫amendment 修正;校正americium 镅amesite 镁绿泥石ametaboly 无变态amethyst 紫水晶amherstite 反条正长闪长岩amianthus 石棉amino acid metabolism 氨基酸代谢aminobenzoic acid 氨基苯酸ammonioborite 水铵硼石ammonites 菊石类amorphous 非晶质的amorphous graphite 无定型石墨amorphous silica 无定形硅氧amosite 铁石棉amount 总计amount of evaporation 蒸发量amount of precipitation 降水量amount of throw 纵距ampangabeit 铌链铁铀矿ampelite 黄铁炭质页岩amphibia 两栖类amphibious plants 两栖植物amphibole 闪石amphibolite 闪岩amphibolite facies 角闪岩相amphibolization 闪石化作用amphigene 白榴石amphigenite 白榴熔岩amphiprotic 两性的ampholyte 两性电解质amphoteric 两性的amphoteric electrolyte 两性电解质amphoteric element 两性元素amphoteric ion 两性离子amphoteric oxide 两性氧化物amphoterite 无粒古橄陨石amplexicaul 抱茎的amplifier for photocurrents光电僚大器amplitude 振幅amplitude correction 振幅校正amplitude spectrum 振幅谱amygdale 杏仁孔amygdaloid 杏仁岩amygdaloidal 杏仁状的amygdaloidal structure 杏仁状构造amygdule 杏仁孔anabatic wind 谷风anabolism 合成代谢anaboly 后加演化anaclinal 逆向的anadiagenesis 前进成岩作用anaerobe 厌气微生物anaerobic bacteria 嫌气细菌anaerobiosis 嫌气生活anagenesis 前进演化anal fin 臀鳍anal gland 肛腺analbite 单斜钠长石analcime 方沸石analcimite 方沸岩analcimolith 方沸岩analcite 方沸石analog 相似体analogous organ 同功瀑analogue 相似体analogy 类似analysis by sedimentation 沉积分析analytic standard 分析标准analytical balance 分析天平anamesite 中粒玄武岩anamigmatism 深溶混合岩化anamorphic zone 合成变质带anamorphism 合成变质anapaite 三斜磷钙铁矿anaseism 背震中anastomose 网结anastrophen 倒装法anatase 锐钛矿anatectic magma 深熔岩浆anatectite 深熔混合岩anatexis 深熔作用anauxite 富硅高岭石anchieutectic 近底共融的anchimetamorphism 近变质作用anchimonomineralic 近单矿物的anchor ice 底冰ancient channel 古河道ancient elephant 古大象ancient landform 古地形5ancylite 菱锶铬矿andalusite 红柱石andersonite 水碳钠钙铀矿andesine 中长石andesite 安山岩andesite line 安山岩线andorite 锑铅银矿andradite 钙铁榴石anemoclastics 风成碎屑岩anemophilous plant 风媒植物anemophily 风媒anemousite 三斜霞石angara flora 安加拉植物群angara shield 安加拉古陆angaraland 安加拉古陆angarides 安加拉古陆angiospermous 被子的angiosperms 被子植物angle of contact 接触角angle of draw 陷落角angle of incidence 入射角angle of inclination 倾斜角angle of internal friction 内摩擦角angle of reflection 反射角angle of refraction 折射角angle of repose 休止角angle of strike 走向角度angle of subsidence 陷落角anglesite 硫酸铅矿angrite 钛辉无球粒陨石angular 有角的angular discordance 斜交不整合angular unconformity 钭文不整合angularity 有角angustifoliate 狭叶的anhedral 他形的anhydration 脱水anhydride 无水物anhydrite 硬石膏anhydrite formation 硬石膏层anhysteretic remanent magnetiazation 非滞后剩余磁化animal charcoal 动物煤animal debris 动物残余animal theory 动物成因论animikie system 安尼迷基系animikite 铅银砷镍矿anisian 安尼阶anisodesmic structure 蛤稳变异构造anisometric 非等轴的anisophyllous 不等叶的anisotrophism 蛤异性anisotropic 非均质的anisotropic fabric 蛤异性组构anisotropy 蛤异性anisotropy of crystals 晶体蛤异性ankaramite 钭长辉石岩ankaratrite 橄霞玄武岩ankerite 铁白云石anna aannabergite 镍华annealing recrystallization 退火重结晶作用annelids 环节动物annerodite 铌钇铀矿annite 羟铁云母annivite 铋铜矿annual 年刊annual amount of precipitation 年降水量annual plant 一年生植物annual ring 年轮annular 环状的annulation 环annulus 体环anomalous electric field 异常电场anomalous extinction 异常消光anomalous interference color 异常干涉色anomalous lead 异常铅anomalous upheaval 异常隆起anomaly 异常anomite 褐云母anonymous 不具名的anorogenic period 非造山期anorogenic time 非造山期anorthite 钙长石anorthitite 钙长岩anorthoclase 歪长石anorthosite 斜长岩antagonism 对抗作用antarctic 南极antarctica 南极大陆antecedent 先行的antecedent precipitation index 前期降雨指标antecedent river 先成河antecedent valley 先成谷anteclise 台背斜antegenetic river 原生河antenna 触角antennule 第一触角anther 药antheridium 精子囊antholite 直闪石anthophyllite 直闪石anthozoa 珊烘类anthracite 无烟煤anthracite coal 无烟煤anthraconite 沥青灰岩anthraxolite 碳沥青anthraxylon 纯木煤anthropogenic factor 人为因素anthropogeography 人类地理学anthropoid 类人猿anthropoid apes ape 类人猿anthropology 人类学anthropophyte 人为植物anthropostratigraphy 人类地层学antibonding electron 反键电子anticathode 对阴极anticlinal 背钭的anticlinal axis 背斜轴anticlinal bend 背斜弯曲anticlinal dome 背斜隆起anticlinal fault 背斜断层anticlinal fold 背斜anticlinal limb 背斜翼anticlinal mountain 背斜脊anticlinal ridge 背斜脊anticlinal theory 背斜理论anticlinal trap 背斜圈闭anticlinal valley 背斜谷anticlinal zone 背斜带anticline 背斜anticlinorium 复背斜anticlise 台背斜anticlockwise 反时针方向的anticoincidence 反符合antidune 反沙丘antiferromagnetism 反铁磁性antifluorite structure 反萤石结构antiform 背斜型构造antiformal syncline 背斜型向斜antigorite 叶蛇纹石antimonite 辉锑矿antimony 锑antimony bloom 锑华6antipathy 不相容antipertite 反纹长石antiseismic 抗震的antiseptic 防腐剂antistress mineral 反应力矿物antisymmetrization 反对称化antithetic fault 反向断层antlerite 块铜矾antofagastite 水氯铜矿anulus 体环apachite 闪辉响岩apatite 磷灰石aperiodicity 非周期性aperture 孔apex 背斜顶apex of shell 壳顶aphanic 显衡隐晶质的aphaniphyric 隐晶斑状aphanite 隐晶岩aphanitic texture 隐晶结构aphanitic variolitic texture 隐晶球颗结构aphotic zone 无光带aphrosiderite 铁华绿泥石aphthalose 钾芒硝aphthitalite 钾芒硝aphthonite 银铜矿aphyric 无斑隐晶质的apical disk 顶系apical system 顶系apjohnite 锰茂aplite 细晶岩aplitic 细晶状的aplitic facies 细晶岩相aplitic texture 细晶岩构造aplogranite 淡色花岗岩apoandesite 脱玻安山岩apobasalt 脱玻玄武岩apogee 远地点apogranite 变花岗岩apolar adsorption 非极性吸附apomagmatic 外岩浆的apomagmatic deposit 外岩浆矿床apophyllite 鱼眼石apophyse 岩枝apophysis 岩枝apospory 无孢生殖apparent 外观上的apparent density 视密度apparent dip 视倾斜apparent heave 视横断距apparent resistivity 视电阻率apparent resistivity curve 视电阻率曲线apparent resistivity map 视电阻率图apparent specific gravity 表观比重apparent velocity 视速度apperance of crystal 结晶外貌apple coal 软煤applied geochemistry 应用地球化学applied geology 应用地质学applied geomorphology 应用地形学applied geothermics 应用地热学applied geothermy 应用地热学applied palaeontology 应用古生物学applied seismology 应用地震学appraisement 评价apron reef 石中住裙礁aptian 阿普第阶aptian stage 阿普第阶aqua regia 王水aquamarine 海蓝宝石aquatic 水生的aquatic animals 水栖动物aqueduct 沟渠aqueous deposit 水成沉积aqueous rock 水成岩aqueous soil 水成土aqueous solution 水溶液aquiclude 隔水层aquifer 含水层aquifer loss 含水层损失aquifer storage 合水层储水aquifer test 含水层试验aquiferous 含水的aquifuge 不透水层aquitanian stage 阿启坦阶aquitard 弱含水层arachnidea 蛛形类araeoxene 钒铅锌矿aragonite 文石arakawaite 磷锌铜矿aramayoite 硫铋锑银矿arandisite 硅锡矿arborescent 被状arc of compression 褶皱弧arc of folding 压缩弧arch 背斜archaean era 太古代archaeocyte 原始细胞archaeogeology 考古地质学archaeopteris flora 古蔽属植物群archaeopteryx 始祖鸟属archaeozoic 太古代的archaian 太古代的archbend 褶皱头部archean 太古代archean greenstone belt 太古代绿岩带arched structure 隆起构造archegone 颈卵器archegonium 颈卵器archeomagnetism 太古磁性archeophytic era 太古植物代archeozoic era 太古代archetype 原始型archipelagic apron 群岛沿边漫坡海底archipelago 群岛arcogenesis 地穹运动arcogeny 地穹运动arctic 北极圈arctic air mass 北极气团arctic front 北极锋arctic plants 北极植物arctic subregion 北极亚区arctoalpine 北极高山的arcuate 弓形的arcuate delta 弓形三角洲ardealite 磷石膏ardennite 锰硅铝矿area 分布区area of artesian flow 自廉区area of influence 影响区域areal eruption 区域喷溢arenaceous 砂屑的arenaceous rock 砂质岩arenaceous texture 砂质结构arenes 粗砂arenopelitic 砂泥质的arenose 粗砂质的arfvedsonite 钠钙闪石argentiferous 含银的argentite 辉银矿argentobismutite 硫银铋矿argentojarosite 辉银黄钾铁矾argentopyrite 含银黄铁矿argil 白粘土argillaceous 泥质的argillaceous limestone 泥质灰岩argillite 泥岩7argillization 泥化argon 氩argyrodite 硫银锗矿arid basin 干燥盆地arid landform 干旱地形arid peneplain 干旱准平原arid zone 干旱带aridity coefficient 干燥系数aridity index 干燥指数ariegite 尖榴辉岩arithmetical averaging grade 算术平均品位arithmetical averaging thickness 算术平均厚度arizonite 红钛铁矿arkite 白榴霞斑岩arkose 长石石英岩arkosic sandstone 长石石英岩armangite 砷锰矿armored cone 熔壳火山锥armored fishes 甲胄鱼纲aromatic base crude oil 芳香基原油arrangement 配置arroyo 干谷arsenate 砷酸盐arsenic 砷arseniopleite 红砷铁矿arseniosiderite 钙砷铁矿arsenite 砷华arsenoclasite 水砷锰石arsenolite 砷华arsenomiargyrite 砷辉锑银矿arsenopyrite 毒砂arterite 层混合岩artesian aquifer 自廉层artesian basin 自廉盆地artesian ground water 自霖下水artesian pressure head 承压水位artesian spring 自联artesian water 自廉artesian well 自廉arthropoda 节肢动物artic front 北极峰articulation 关节artificial 人为的artificial classification 人为分类artificial crystal 人造晶体artificial diamond 人造金刚石artificial discharge 人工排泄artificial earth's satellite 人造地球卫星artificial earthquake 人为地震artificial ground water 人工地下水artificial hypocenter 人工震源artificial mineral 人造矿物artificial radio element 人工放射元素artificial radioactivity 人工放射性artificial recharge 人工补给artificial satellite 人造卫星artificial seismic source 人工震源artificial selection 人工淘汰artinite 纡维菱镁矿artinsk stage 阿丁斯克阶artinskian 阿丁斯克阶asbestos 石棉asbestus 石棉asbolane 钴土矿asbolite 钴土矿ascending development 上升发育ascension theory 上升说ascent curve 上升曲线aschaffite 云英钭煌岩ascharite 硼镁石aschistic 岩浆同质的aschistic dike 未分异岩脉aschistic dyke 未分异岩脉aschistite 未分异岩ascon type 单沟型ascospore 子囊孢子ascus 子囊aseismic 无震的asexual generation 无性世代asexual reproduction 无性生殖ash bed 火山灰层ash cloud 灰云ash cone 火山灰丘ash content of coal 煤灰分ash fall 降落灰ash flow 火山灰流ash free 无灰分的ash shower 降落灰ash structure 火山灰构造ashgillian stage 阿石极阶ashing 灰化asmanite 陨鳞石英asparagolite 黄绿磷灰石asparagus stone 黄绿磷灰石asperite 玻质英安岩asphalt 地沥青asphalt sealing trap 沥青塞圈闭asphaltenes 沥青质asphaltic base crude oil 沥青基原油asphaltic pyrobitumen 焦性沥青asphaltite 沥青岩asphaltum 地沥青aspite 盾状火山asporous 无孢子的assay 试金assay balance 试金天平assay map 采样平面图assaying 试料分析assessment well 估价井assimilate 同化assimilation 岩浆的同化作用associate 使联合associate species 伴生种associate structure 伴生构造associated mineral 伴生矿物associated ore 伴生矿association 联合association of elements 元素的共生组合assyntite 钛辉方钠正长岩assypite 钠橄辉长岩astable 不稳定的astatic 无定向的astatic magnetometer 无定向磁力仪astaticism 无定向性astatine 砹astatisation 无定向化asteroid 小行星asthenosphere 软力astian stage 阿斯蒂阶astite 红柱角页岩astrakhanite 白钠镁矾astroblem 古陨挥astrogeology 天体地质学astrophyllite 星叶石asymmetric 不对称的asymmetric carbon atom 不对称碳原子asymmetric dispersion 不对称色散asymmetric fold 不对称褶皱asymmetrical 不对称的asymmetrical anticline 不对称背斜asymmetrical crystal monochromator不对称结晶单色仪asymmetrical ridge 不对称山脊8asymmetry 非对称asynchronous 异步的atacamite 氯铜矿atatschite 线玻正斑岩atavism 返祖ataxic mineral deposit 不成层矿床ataxite 角砾斑杂岩ataxitic 角砾斑杂状的atectonic 非构造的atelestite 砷酸铋矿atlantic ocean 大误atlantic suite 大误岩套atlasspat 纤维石atmoclast 气碎岩atmoclastic rock 气碎岩atmoclastics 气碎岩atmogenic metamorphism 气生变质atmometer 蒸发表atmophile element 亲气元素atmosphere 大气圈atmospheric pressure 气压atmospheric rock 气成岩atmospheric weathering 大气风化atmospheric window 大气窗口atmospheric windows 大气窗口atoll 环礁atoll lake 环礁湖atoll texture 环礁结构atomic binding 原子键atomic bond 原子键atomic disintegration 原子衰变atomic energy level 原子能级atomic mass unit 原子质量单位atomic ratio 原子比atomic size 原子大小atomic spectrum 原子光谱atomic unit 原子单位atomic volume 原子体积atomistics 原子论atrio 火口原atrio lake 火口原湖atriopore 围鳃腔atrium 围鳃腔attenuation 衰减attenuation constant 衰减常数attenuation factor 衰减常数attraction 引力attribute 属性attrition 磨损attritus 碎集煤atypical 非典型的aubrite 顽火辉石无球粒陨石auerlite 磷钍矿augelite 光彩石augen structure 眼状构造augengneiss 眼环片麻岩auger 螺旋钻auger drill 螺旋钻augite 辉石augitite 辉石岩aulacogene 古断槽aureole 接触圈aurichalcite 绿铜锌矿auriferous 含金的auriferous conglomerate 含金砾岩auripigment 雌黄aurora 极光auroral zone 极光地带australite 澳洲似黑曜岩authigene 自生的authigenesis 自生作用authigenic 自生的authigenic element 自生元素authigenic mineral 自生矿物authigenous 自生的auto injection 自注入autobreccia 同生角砾岩autobreccited lava 同生角砾岩熔岩autocatalysis 自动催化autochthone 原地岩体autochthonous 原地的autochthonous coal 原地生成煤autochthonous deposit 原地沉积autochthonous fold 原地褶皱autochthonous granite 原地花岗岩autochthonous limestone 原地灰岩autoclases 自碎autoclast 自碎岩autoclastic 自碎的autoclastic rock 自碎岩autoclave 压热器高压锅autocorrelation function 自相关函数autogenic succession 自发演替autogeny 自生autogeosyncline 自地槽autointrusion 自侵入autolith 同源包体autometamorphism 自变质作用autometasomatism 自交代作用automolite 铁锌晶石automorphic 自形的autopneumatolysis 自气化作用autoradiography 自动射线照相术autotrophism 自养autotrophy 自养autotype 自型autunite 钙铀云母auversian stage 奥伯斯阶auxiliary curve 辅助曲线auxiliary fault 副断层auxiliary joint 副节理auxiliary mineral 副矿物available relief 有效起伏available water 可利用的水avalanche 雪崩avalanche breccia 岩崩角砾岩aven 落水洞aventurine 砂金石average life 平均寿命avezacite 钛铁辉闪脉岩avicennite 褐铊矿aviolite 堇云角页岩avogadrite 氟硼钾石awaruite 铁镍矿axe stone 软玉axial 轴的axial angle 光轴角axial colour 轴色axial distribution analysis 轴向分布分析axial plane 轴面axial plane cleavage 轴面劈理axial plane folding 轴面褶皱axial plane foliation 轴面叶理构造axial plane schistosity 轴面片理axial ratio 轴率axial section 轴向剖面axial skeleton 轴骨axial trace 轴迹axillary 腋生的axillary bud 腋芽axinite 斧石axinitization 斧石化axiolite 椭球粒axiolith 椭球粒axiolitic 椭球粒状的axis 轴axis of rotation 旋转轴9axis of rotatory reflection 回转反射轴axis of symmetry 对称轴axis plane 轴面azeotrope 共沸混合物azeotropy 共沸性azilian age 阿齐尔时代azimuth 方位角azimuthal equal area projection 等积方位投影azimuthal equidistant projection 等距方位投影azimuthal orthomorphic 正形方位投影azimuthal projection 方位投影azimuthal quantum number 方位角量子数azoic era 无生代azurite 蓝铜矿babel quartz 塔状石英babingtonite 铁灰石bacillite 杆雏晶束back 背back deep 次生优地槽back flow 逆流back radiation 逆辐射back reflection camera 逆反射照相机back swamp 河漫滩沼泽backfill 充填background value 背景值backland 腹地backpressure 回压backshore 后滨backwash 回流backwashing method 回哩backwater 回水bacteria 细菌bacterial analysis 细菌分析bacterielles fossil 细菌化石baculite 杆菊石bad land 恶劣地baddeleyite 斜锆石badenite 镍铋砷钴矿baectuite 白头岩bag of ore 矿袋bagrationite 铈黑帘石bahiaite 橄闪紫苏岩baikalite 易裂钙铁辉石bailer 簧头;捞砂筒bajocian 巴柔阶bakerite 纤硼钙石baking coal 粘结煤balance 平衡balance resources 表内储量balanced filter 衡均滤波器balas 玫红尖晶石ball clay 球土ball diorite 球状闪长岩ball granite 球状花岗岩ball ironstone 球状铁矿石ball mill 球磨机ball porphyry 球状斑岩ball structure 球状构造ball texture 球状结构ballas 工业用球面金刚石balling 球团balsam 香胶baltic shield 波罗的地盾banakite 粗绿岩banatite 正辉英闪长岩band 带;夹层banded 带状的banded agate 带状玛瑙banded clay 带状粘土banded coal 条带状煤banded gneiss 带状片麻岩banded hematite quartzite 带状赤铁矿石英岩banded iron ore deposit 条带状铁矿床banded lode 带状脉banded migmatite 带状混合岩banded ore 带状矿石banded structure 带状构造banded vein 带状矿脉banding 层状bandy 带状的bandylite 氯硼铜石bank 岸bank erosion 沙滩侵蚀bank gravel 采石坑砾石bank run gravel 采石坑砾石bank side 河岸斜坡banket 含金砾岩层baotite 包头矿bar 沙洲bar theory 砂州说barb 羽支barbed drainage 倒钩水系统barbierite 钠正长石barchane 新月形砂丘baric topography 气压形势baricalcite 重解石barite 重晶石barium 钡barium anorthitite 钡斜长岩barium feldspar 钡长石bark 胜barkevikite 棕闪石barkhan 新月形砂丘barlte 天青重晶岩barn 靶恩barolite 天青重晶岩barometric altimeter 气压测高计barotolerancy 耐压性barranca 峡谷barranco 峡谷barrandite 磷铝铁石barremian 巴列姆阶barren bed 哑层barren layer 废石层barren of coal 不含煤的barren rock 无矿岩barren sand 无油砂层barrier 堡坝barrier reef 堡礁barrier spring 堡坝泉barrow 矸石场barthite 砷锌铜矿bartonian 巴尔顿阶barylite 硅钡铍矿barysil 硅铅矿barysilite 硅铅矿barysphere 重圈baryte 重晶石barytocalcite 钡解石barytocelestine 钡天青石barytocelestite 钡天青石basal complex 基底杂岩basal conglomerate 底砾岩basal granule 基粒basal sandstone 基底砂岩basal structure 基底构造basalt 玄武岩basalt eclogite transformation 玄武岩榴辉岩转化basaltic 玄武岩的basaltic andesite 玄武安山岩basaltic augite 玄武辉石basaltic hornblende 玄闪石10。
惠州24年小学六年级上册Y卷英语第4单元期末试卷
惠州24年小学六年级上册英语第4单元期末试卷考试时间:80分钟(总分:120)A卷考试人:_________题号一二三四五总分得分一、综合题(共计100题)1、听力题:The Earth's surface is constantly undergoing ______.2、What is the term for a young swan?a. Cygnetb. Goslingc. Ducklingd. Chick答案:a3、What do we call a vehicle that flies?A. CarB. TrainC. BoatD. Airplane答案:D4、填空题:The owl uses its ______ (耳朵) to locate prey.5、 (World) Health Organization was established in 1948. 填空题:The ____6、听力题:The ______ keeps planets in orbit.7、填空题:A garden can have both ______ (花卉) and vegetables.8、What is the process of water changing from a gas to a liquid called?A. EvaporationB. CondensationC. PrecipitationD. Sublimation答案:B9、听力题:I found a ___ (shell) on the beach.10、听力题:A process in which energy is released as heat is called a ______ process.11、What is 2 + 2?A. 3B. 4C. 5D. 612、填空题:I can’t wait to try out my new __________ (玩具名).13、填空题:The __________ (历史的流派) reflect diverse viewpoints.14、填空题:The __________ (历史的记忆保留) ensures continuity.15、听力题:The process of hydrolysis can affect the stability of ______.16、ts have _____ (刺) for protection. 填空题:Some pla17、填空题:The antelope is known for its light and ______ (敏捷) body.18、填空题:The ocean is ________ (宽广).19、填空题:A __________ (溶液) is a homogeneous mixture of two or more substances.20、听力题:The ______ is known for her contributions to literature.21、What is 2 + 2?A. 3B. 4C. 5D. 6答案:B22、填空题:My friend has a pet _____ (鹌鹑).23、填空题:________ (植物保育) is necessary for future.24、听力题:The __________ is essential for studying earth sciences.25、填空题:My friends are _______ (支持我的).26、听力题:The ______ is known for its gentle nature.27、填空题:My brother loves to eat __________. (零食)28、填空题:I like to paint ______ pictures.29、填空题:I love to create new __________ (名词) with my __________ (玩具名).30、听力题:A squirrel gathers ______ for the winter.31、听力题:The door is ___ (open).32、What do we call the liquid that we drink?A. WaterB. SandC. AirD. Food33、听力题:She has a _____ (cat/dog) at home.34、选择题:What is the name of the famous explorer who sailed across the Pacific?A. Ferdinand MagellanB. Christopher ColumbusC. Vasco da GamaD. James Cook35、听力题:The chemical formula for acetamide is _______.36、填空题:A _____ (海豚) can leap out of the water gracefully.37、What do we call the act of looking after children?A. ParentingB. BabysittingC. ChildcareD. Nurturing答案:A38、选择题:Which animal is known for its ability to fly?A. ElephantB. FishC. BirdD. Turtle39、听力题:The ______ is famous for her acting skills.40、听力题:I enjoy ________ in the summer.41、听力题:A buoyant object will float on ______.42、听力题:The cake is _____ (sweet/sour) and tasty.43、填空题:The first people to fly were the _______ brothers. (莱特)44、填空题:I love to watch ______ with my family.45、What is the term for the study of celestial objects?A. AstronomyB. CosmologyC. AstrophysicsD. Meteorology46、填空题:A _____ (植物保护行动) can mobilize community support.47、听力题:He rides a ________ (horse) in the field.48、What do you call the story of someone's life?A. NovelB. BiographyC. FantasyD. Poem答案:B49、What do you call a baby bear?A. CubB. CalfC. KitD. Pup50、填空题:My favorite game is ______ (捉迷藏) with my friends. It is so ______ (有趣).51、What is the largest organ in the human body?A. HeartB. LiverC. SkinD. Lungs答案:C52、填空题:A ____(traffic congestion) decreases urban mobility.53、听力题:My dad makes the best ____ (sandwiches).54、填空题:My _____ (花园) is my favorite place.55、听力题:I like to _____ (draw/color).56、填空题:The ________ is very colorful and cheerful.57、填空题:I saw a _______ (狐狸) in my backyard last night.58、What is the term for a young panda?a. Cubb. Kitc. Pupd. Hatchling答案:a59、填空题:The _____ (兔子) is known for its long ears.60、填空题:I ride my _______ (自行车) to school.61、听力题:I collect _____ (邮票).62、What is the process of turning a solid into a liquid?A. FreezingB. MeltingC. BoilingD. Evaporating答案: B. Melting63、填空题:The __________ is a natural feature that rises above the surrounding land. (山)64、Which animal is known for its ability to change color?A. ChameleonB. ElephantC. TigerD. Bear65、What is the term for the changing of seasons?A. RotationB. RevolutionC. CycleD. Pattern答案:C66、听力题:The chemical formula for -bromobutanoic acid is ______.67、听力题:The stars are ___ (twinkling) in the sky.68、What is 10 + 5?A. 13B. 14C. 15D. 1669、What is 3 x 4?A. 10B. 11C. 12D. 1370、填空题:A ______ (蟋蟀) makes music at night.71、听力题:A _______ is a chemical reaction that occurs in living organisms.72、选择题:What is the name of the famous musician known as the "King of Pop"?A. Elvis PresleyB. Michael JacksonC. PrinceD. Madonna73、填空题:The _______ (The Treaty of Paris) ended the American Revolutionary War.74、听力题:The ______ is known for her musical talent.75、听力题:His favorite food is ________.76、听力题:The capital city of Vietnam is __________.77、填空题:The __________ is a large area of land known for its ancient history. (中东)78、填空题:My _____ (花盆) is full of soil.79、听力题:The chihuahua is a small ______ dog.80、Which animal is known for its long neck?A. ElephantB. GiraffeC. LionD. Zebra答案:B81、填空题:He is a good _______ (学生).82、What is the primary color of the sun?A. BlueB. YellowC. WhiteD. Red答案:B83、填空题:The ______ (小鸡) pecks at the ground for food.84、What do we call the first meal of the day?A. LunchB. DinnerC. BreakfastD. Snack答案:C85、填空题:My grandpa tells great ____.86、填空题:A ________ (植物生态观察项目) informs conservation.87、What do you call a group of stars?A. GalaxyB. UniverseC. ClusterD. Solar System88、听力题:A chemical reaction can change the ______ of a substance.89、听力题:They play outside in the ___ (summer/winter).90、What is the smallest country in the world?A. MonacoB. Vatican CityC. San MarinoD. Liechtenstein答案:B91、听力题:I can ________ (jump) very high.92、填空题:The ________ was a major event that led to the founding of the United Nations.93、填空题:The pyramids were built as _____ for the pharaohs.94、听力题:He is wearing a cool ___. (jacket)95、听力题:The ______ is known for its strength.96、填空题:The industrial revolution began in _______. (英国)97、填空题:The ______ (小鳄鱼) lives in swamps.98、What is the capital of Algeria?a. Algiersb. Oranc. Constantined. Annaba答案:a99、听力题:Some _______ are edible and used in cooking.100、听力题:Kinetic energy is energy of ______ (motion).。
BECO MiniCap
Technical Data Sheet Laboratory-Scale Depth FiltrationBECO MiniCap TM ACFDisposable Filter Unit with BECO CARBON TMActivated Carbon Depth Filter SheetsBECO MiniCap ACF disposable filter units withBECO CARBON activated carbon depth filtersheets are ready-to-use for the filtration of smallvolumes for laboratory applications, scale-uptrials, and sample preparation.The depth filter sheets of BECO MiniCap ACFdisposable filters have a high adsorptive capacitydue to the use of immobilized activated carbon andare used for decolorization as well as for theremoval of undesired by-products or for taste andodor correction.The specific advantages of the BECO MiniCap ACFrange:- The disposable filter unit is autoclavable and thereis no cleaning effort required.- Due to the dust-free handling, the application is simple and clean.- BECO MiniCap ACF disposable filter units with activated carbon types of different porosity meetthe requirements of a broad range of applications. -Filtration-active and adsorptive properties are ideally combined in the BECO MiniCapACF 07.10.-The adsorption performance in the BECO MiniCap ACF 02 and ACF 03 is maximized through acarbon content of up to 1000 g/m² and the lowendotoxin content ensures high product safety. AValidation Guide for the activated carbon depthfilter sheet of BECO MiniCap ACF 03 is availableon request.Application Examples-Decolorization and removal of organic impurities from active pharmaceutical ingredients (API)solutions:-Decolorization of antibiotic solutions-Protein and endotoxin removal-Purification of blood plasma products-Treatment of contrast media-Decolorization of natural extracts and cosmetics -Removal of unwanted by-products from food or dietary supplements, e.g., decolorization ofglucose, enzyme and vitamin solutions-Correction of taste and color of beverages (Spirits, fruit juices, hard seltzer etc.)-Decolorization and removal of organic impurities from chemicals, organic solvents and syntheticoils, e.g., removal of …off-flavor“ and unwanted by-products from silicone oils Selection Guide for BECO MiniCap ACF Disposable Filter Units with BECO CARBON Activated Carbon Depth Filter SheetsThe activated carbon of the BECO MiniCap ACF filter is a microporous, inert material with a very large inner surface of up to 2000 m²/g of activated carbon. The activated carbon used can be divided into different porosity ranges:Macroporous (∅ >50 nm)Decolorization of dark discolorations (brown to yellow) and for the separation of large molecules(e.g., protein separation).Mesoporous (∅ 2-50 nm)Decolorization of medium discoloration (yellow to yellowish) and impurities, as well as for correcting the taste of food.Microporous (∅ <2 nm)Decolorization of light discolorations (yellowish to whitish-gray), for odor correction and for the separationof smaller molecules (e.g., endotoxins).Physical DataThis information is intended as a guideline for the selection of BECO MiniCap disposable filter units. The water throughput is a laboratory value characterizing the different BECO CARBON activated carbon depth filter sheets. It is not the recommended flow rate.22ACF 07.10 19607 15 >11.6 (80) 34.7 (1415) - 420 ACF 02 19602 2.5 >11.6 (80) 6.75 (275) < 0.125 1000 ACF 03 19603 5 >11.6 (80) 7.4 (300) < 0.125 1000* 100 kPa = 1 bar** Endotoxin content analysis after rinsing with 1.23 gal/ft² (50 l/m²) of WFI (Water for Injection)Technical Data3.3 in² (21.2 cm²)2.9 in (74 mm)Polypropylene according to FDA CFR § 177.1520Hose connections 0.24–0.47 in (6–12 mm) in diameter44 psi (300 kPa/3 bar) at 77°F (25°C)0.44 fl oz (13 ml)4.40.17 fl oz (5 ml)0.08–0.14 gal/h (85–145 gfd)5–8 ml/min (150–250 l/m²/h)0.05–2.6 gal (0.2–10 l)Ordering InformationF071C300 BECO MiniCap ACF 07.10 kit*F002C300 BECO MiniCap ACF 02 kit*F003C300 BECO MiniCap ACF 03 kit** One package contains three individually packed BECO MiniCap disposable filter units. The carton label shows the following information: article description, article, and lot numbers.Compliance NoticeBECO CARBON activated carbon depth filter sheets meet the requirements of the Regulation (European Commission) 1935/2004 and the LFGB standard (German Food, Commodity and Feed Act) as well as the test criteria of FDA (U.S. Food and Drug Administration) Directive 21 CFR § 177.2260.The polypropylene components comply with regulation (EU) 10/2011 and meet the requirements of FDA,21 CFR § 177.1520.BECO CARBON ACF 03 and the polypropylene components of the BECO MiniCap ACF 03 disposable filter unit also meet the requirements of the USP Class VI tests.For further details on individual components and materials see the declaration of conformity.ComponentsBECO CARBON activated carbon depth filter sheets are made from particularly pure materials. Finely fibrillated cellulose fibers and cationic charge carriers are used. The materials for each filter type in particular are as follows:-BECO CARBON ACF 07.10(S):acid-washed, steam-activated carbon and high-quality diatomaceous earth-BECO CARBON ACF 02:chemically activated carbon-BECO CARBON ACF 03:acid-washed, steam-activated carbonInstruction for CorrectDepending on the filtered liquids, the operating temperature should not exceed 176°F (80°C). Please contact Eaton regarding filtration applications at higher temperatures.Sterilization (optional)The wetted BECO MiniCap ACF disposable filter units can be sterilized one time in an autoclave as follows: Preparation: Rinsing with minimum of 1.7 fl oz (50 ml)for optimum wettingTemperature: M ax.250 °F (121 °C)Duration: Approx. 30 minutesRinsing: After sterilizing with 3.4 fl oz (100 ml)/1.23 gal/ft² (50 l/m²) at 1.25 times theflow rate Filter Preparation and FiltrationUnless already completed after sterilization, Eaton recommends pre-rinsing the closed filter with 3.4 fl oz (100 ml)/1.23 gal/ft² (50 l/m²) of water or in exceptional cases with product appropriate solution at 1.25 times the flow rate prior to the first filtration. Depending on the application, this usually equals a rinsing time of 10 to 20 minutes.Only in exceptional cases which, for example do not allow rinsing with water, product or product appropriate solution should be circulated for 10 to 20 minutes and disposed after rinsing.Test the entire filter for leakage at maximum operating pressure.Filtration SpeedAdsorption processes are decisively affected by the contact time between the product and the adsorbing substance. The adsorption performance can thus be controlled by the speed of filtration. Slow filtration speeds 0.08 – 0.14 gal/h (85 – 145 gfd)/5 – 8 ml/min (150 – 250 l/m²/h) respectively extended periods of contact result in optimum utilization of the adsorption capacity.Inlet and Differential PressureTerminate the filtration process once the limit of adsorption capacity or the maximum permitted inlet or differential pressure of 43.5 psi (300 kPa, 3 bar) is reached. A higher inlet and differential pressure could damage the depth filter sheet material.SafetyWhen used and handled correctly, there are no known unfavorable effects associated with this product. Further safety information can be found in the relevant Material Safety Data Sheet, which can be downloaded from our website.Waste DisposalDue to their composition, BECO MiniCap ACF disposable filter units can be disposed of as harmless waste. Comply with relevant current regulations, depending on the filtered product.StorageBECO MiniCap ACF disposable filter units must be stored in a dry, odor-free, and well-ventilated place, ideally in their original packaging.Do not expose the BECO MiniCap ACF disposable filter units to direct sunlight.BECO MiniCap ACF disposable filter units are intended for immediate use and should be used within 36 months after production date.Quality Assurance According to DIN EN ISO 9001 The Quality Management System of Eaton Technologies GmbH has been certified according to DIN EN ISO 9001.This certification verifies that a fully functioning comprehensive Quality Assurance System covering product development, contract controls, choice of suppliers, receiving inspections, production, final inspection, inventory management, and shipment has been implemented.Extensive quality assurance measures incorporate adherence to technical function criteria and chemical purity and quality recognized as safe under the German legislation governing the production of foods and beverages.All information is given to the best of our knowledge. However, the validity of the information cannot be guaranteed for every application, working practice and operating condition. Misuse of the product will result in all warrantees being voided.Subject to change in the interest of technical progress.North America44 Apple StreetTinton Falls, NJ 07724Toll Free: 800 656-3344 (North America only)Tel: +1 732 212-4700Europe/Africa/Middle EastAuf der Heide 253947 Nettersheim, Germany Tel: +49 2486 809-0 Friedensstraße 4168804 Altlußheim, Germany Tel: +49 6205 2094-0An den Nahewiesen 2455450 Langenlonsheim, Germany Tel: +49 6704 204-0 Greater ChinaNo. 7, Lane 280,Linhong RoadChangning District, 200335Shanghai, P.R. ChinaTel: +86 21 2899-3687Asia-Pacific100G Pasir Panjang Road#07-08 Interlocal CentreSingapore 118523Tel: +65 6825-1620For more information, pleaseemail us at ********************or visit /filtration© 2023 Eaton. All rights reserved. All trademarks andregistered trademarks are the property of their respectiveowners. All information and recommendations appearing inthis brochure concerning the use of products describedherein are based on tests believed to be reliable. However,it is the user’s responsibility to determine the suitability forhis own use of such products. Since the actual use byothers is beyond our control, no guarantee, expressed orimplied, is made by Eaton as to the effects of such use orthe results to be obtained. Eaton assumes no liabilityarising out of the use by others of such products. Nor is theinformation herein to be construed as absolutely complete,since additional information may be necessary or desirablewhen particular or exceptional conditions or circumstancesexist or because of applicable laws or governmentregulations.EN1 A 4.2.8.503-2023。
基于PMS的Cr(VI)-染料复合废水协同处理效果及机理
基于PMS的Cr(VI)-染料复合废水协同处理效果及机理闫松; 张成武; 李天一; 秦传玉【期刊名称】《《中国环境科学》》【年(卷),期】2019(039)008【总页数】6页(P3271-3276)【关键词】染料废水; 复合污染; 过一硫酸盐; Cr(VI); 协同处理【作者】闫松; 张成武; 李天一; 秦传玉【作者单位】吉林大学地下水资源与环境教育部重点实验室吉林长春 130012; 吉林大学新能源与环境学院吉林长春 130012【正文语种】中文【中图分类】X703印染废水成分复杂,不仅含有大量难降解的偶氮染料,还有以氯化钠为主的无机盐[1]以及滚筒剥铬产生的含铬物质,是典型的含盐含铬有机废水.对于Cr(VI)或染料废水的单独处理技术已经相对成熟,而对于Cr(VI)-染料复合污染的协同处理研究报道较少,相对于生物法[2-4]及物理吸附法[5-6]耗时长、处理效果差等缺点,化学法展现出了见效快且效果好等优点;有学者利用零价铁还原Cr(VI)同时零价铁与氧气反应在有配体存在下生成高活性自由基降解染料,但该方法成本较高且容易生成大量铁泥[7-8];利用光催化二氧化钛也可以同时降解染料及Cr(VI)[9-10],但Cl-会竞争TiO2表面的活性吸附位点从而影响光催化氧化,且会改变TiO2的空间结构使TiO2失活[11-13].因此寻找一种低成本且在Cl-存在下仍可以有效处理Cr(VI)-染料复合污染的方法具有重要意义.近年来有文献报道Cl-可以活化过一硫酸盐(PMS)产生活性物质降解污染物[14-16];同时过渡金属离子如Fe2+、Co2+、Mn2+、Ce3+等[17-18]可以活化PMS产生硫酸根自由基(SO4·—),Cr(VI)作为一种过渡金属已被报道可以活化H2O2产生羟基自由基(×OH)[19],而PMS与H2O2具有相似的结构且氧化还原电位相近(分别为+1.82V(PMS)和+1.77V (H2O2))[20],因此考虑Cr(VI)是否具有活化PMS降解污染物的潜力,从而通过在含盐含铬染料废水中添加PMS达到同时去除染料和Cr(VI)的目的.本文通过添加氯化钠、重铬酸钾、代表性偶氮染料AO7来模拟含盐含铬染料废水,加入PMS研究该体系协同处理偶氮染料AO7及Cr(VI)的可行性、影响因素及反应机理.过硫酸氢钾(KHSO5×0.5KHSO4×0.5K2SO4),金橙II(上海阿拉丁生化科技股份有限公司);重铬酸钾(99.8%,天津市光复科技发展有限公司);氯化钠,氢氧化钠,硫酸,磷酸(分析纯,北京化工厂);二苯碳酰二肼(分析纯,国药集团化学试剂有限公司);叔丁醇,硫酸铵(化学纯,国药集团化学试剂有限公司);乙醇(分析纯,天津天泰精细化学品有限公司);甲醇(分析纯,西陇科学股份有限公司).HZK-210电子天平(福州华志科学仪器有限公司), YSI pH100pH计(美国黄泉仪器有限公司), HJ- 6A数显恒温磁力搅拌器(金坛市医疗仪器厂), EVOLUTION 201紫外分光光度计(Thermo Fisher Scientific - Shanghai), SPECTRONIC 200E可见分光光度计(Thermo Fisher Scientific - Shanghai), Thermo TSQ三重串联四级杆质谱仪.所有实验通过使用250mL锥形瓶在室温(25±2)℃下进行;向特定浓度的AO7水溶液中依次加入一定量的重铬酸钾及氯化钠,置于磁力搅拌器上搅拌,转速控制在500r/min左右;加入所需量的PMS进行反应,在反应期间不控制pH值;在特定的时间间隔取出样品并立即分析.每组实验重复三次,最终结果取平均值.Cr(VI)浓度测定采用二苯碳酰二肼分光光度法 [21]; AO7浓度测定采用直接分光光度法,于484nm处有特征吸收峰;AO7中间产物采用LC-MS测定,采取手动进样,洗脱液为乙腈,流速为0.2mL/min,采用负离子扫描模式在m/z为40~200范围内获得MS光谱.应用Excel2010、OriginPro8.0进行数据分析处理与作图.对比不同组分体系中AO7的降解率及Cr(VI)的去除率,结果如图1所示.PMS单独降解AO7在120min内效率仅为3.2%,几乎不降解;PMS/Cr(VI)、PMS/Cl-以及PMS/Cr(VI)/Cl-体系均可以降解AO7, 120min时降解率分别达到58.8%、88.9%及97.9%;反应结束后Cr(VI)转化为毒性更低的Cr(III),PMS/ Cr(VI)及PMS/Cr(VI)/Cl-体系Cr(VI)去除率可分别达到35.9%及22.1%.由上述结果可知,PMS与Cl-反应可以有效降解AO7,Cr(VI)同时存在可以提高AO7的降解效率,且Cr(VI)自身可以达到一定程度的去除.2.2.1 Cl-浓度对体系降解的影响分别选取浓度为5.6,14,28mmol/L 的Cl-进行实验,结果如图2所示.随着Cl-浓度增加,AO7降解效率逐渐升高,120min时AO7降解率分别达到56.5%、88.9%及99.1%;虽然28mmol/L的Cl-体系降解效率较高,但其在60min已接近反应完全,不方便后续研究,因此选取14mmol/L作为实验Cl-浓度进行后续研究.2.2.2 初始pH值对体系降解的影响有文献报道碱可以直接活化PMS产生活性物质降解污染物[22],为避免碱性条件干扰体系降解AO7的实验结果,仅探究酸性条件下初始pH值的变化对于体系降解AO7的影响,结果如图3所示.初始pH值在4.5及6.5的条件下AO7的降解率仍能达到97.9%,因此酸性条件下PMS/Cl-体系对AO7的降解效率基本不受初始pH值的影响.2.2.3 HClO掩蔽剂对体系降解的影响 Wang等 [23]考察Cl-对Co2+/PMS体系降解AO7的研究中发现较高浓度的Cl-可以活化PMS生成活性氯与AO7反应,且有研究表明NH4+不能被SO4·—和×OH 氧化,但是可以与HClO发生反应生成活性较低的NH2Cl、NHCl2和NCl3[24-26],因此选用硫酸铵作为HClO掩蔽剂进行掩蔽实验,结果如图4所示.不添加掩蔽剂时体系降解效率为88.9%;添加15mmol/L硫酸铵后体系降解效率降低至43.5%;添加150mmol/L硫酸铵后体系降解效率降低至3.4%,与PMS单独降解效率相近.因此说明该体系中AO7的降解是HClO的作用.2.3.1 初始pH值对体系降解的影响当PMS溶于水时显酸性,pH值可以达到3以下,为考察酸性条件在体系降解AO7中的作用,将PMS/Cr(VI)体系与酸性条件下单独Cr(VI)降解AO7进行对比,并调节不同初始pH值探究其对体系降解效果的影响,结果如图5所示.初始pH值为2.5时Cr(VI)可以单独降解AO7,降解效率与PMS/Cr(VI)体系降解效率相近,说明PMS/Cr(VI)体系降解AO7是由于PMS溶于水创造的酸性条件使得Cr(VI)具有强氧化性进而直接氧化AO7;随着pH值的升高AO7的降解率逐渐降低,pH值为4.5时AO7几乎不降解,表明PMS/Cr(VI)降解AO7的反应仅在3以下时效果较好.2.3.2 自由基掩蔽剂对体系降解的影响为验证Cr(VI)是否能够活化PMS产生活性自由基,使用叔丁醇作为×OH掩蔽剂,乙醇作为×OH及SO4·—的共同掩蔽剂进行掩蔽实验,结果如图6所示.2种掩蔽剂对于体系降解均无明显影响,说明Cr(VI)并不能活化PMS产生活性自由基,结合2.3.2实验结果可以说明AO7的降解是酸性条件下Cr(VI)的强氧化性导致的.徐蕾[27]等人研究发现,在常温条件下Cl-可以与PMS发生非自由基反应生成活性氯,其反应方程如下:本研究中2.2.3实验结果验证了这一机理,同时2.3实验结果表明,Cr(VI)不能活化PMS产生活性自由基,而是由于PMS/Cl-体系创造的酸性条件使得Cr(VI)具有强氧化性,在氧化AO7的同时实现自身向低毒性Cr(III)的转化.由于在PMS/Cr(VI)/Cl-体系中Cr(VI)与活性物质HClO均能降解AO7,因此可以通过计算两部分对AO7降解的贡献占比来确定体系中起主要作用的活性物质.计算过程如下:通过PMS/ Cr(VI)体系中AO7降解及Cr(VI)去除量计算得出单位浓度Cr(VI)消耗对应的AO7降解量,再通过PMS/Cr(VI)/Cl-体系中Cr(VI)的消耗量计算得出对应的AO7降解量,AO7的降解总量除去因Cr(VI)氧化降解的量剩余为HClO 氧化降解的量;计算结果如下:PMS/ Cr(VI)/Cl-体系降解AO7的反应中,HClO氧化降解的部分占70.8%,Cr(VI)氧化降解的部分占29.2%.综上所述,PMS/Cr(VI)/Cl-体系中AO7的降解是由于Cl-与PMS反应产生氧化性物质HClO以及PMS投加创造的酸性条件使得Cr(VI)具有强氧化性的共同作用,其中起主导作用的是HClO;Cr(VI)的转化是由自身与AO7发生氧化还原反应导致的. 为探究PMS/Cr(VI)/Cl-体系降解AO7的途径进行中间产物的测定,测定结果见表1,根据测定结果推测的AO7降解途径见图7.如图7所示,反应中AO7的-N=N-优先被打开从而使染料脱色,AO7被分解为对氨基苯磺酸钠及1-氨基-2-萘酚;随后对氨基苯磺酸钠可以被氧化成对苯酚及1,2,4苯三酚,同时磺基脱下形成甲基磺酸;1-氨基-2-萘酚可以被氧化形成1-硝基-2-萘酚及2-萘酚,随后萘环被破坏生成多种苯系物;沿着对氨基苯磺酸钠及1-氨基-2-萘酚2条路径氧化最终均生成苯系物,且苯环无法进一步被打开.为探究体系降解AO7的矿化程度在反应前后进行TOC测定,测定结果反应前后TOC无明显变化,说明体系降解AO7无法达到矿化,与中间产物测定结果相同. 3.1 单独PMS在120min内对AO7基本无降解,PMS/Cr(VI)、PMS/Cl-以及PMS/Cr(VI)/Cl-体系均可以有效降解AO7,120min时降解率分别达到58.8%、88.9%及97.9%;PMS/Cr(VI)以及PMS/Cr (VI)/Cl-体系中Cr(VI)去除率分别可达到35.9%及22.1%.3.2 初始pH值对PMS/Cl-体系降解AO7无明显影响.PMS/Cr体系在降解AO7的同时Cr(VI)自身可以转化为Cr(III);随着pH值降低AO7及Cr(VI)去除率逐渐升高,pH值在3以下反应效果较好.3.3 PMS/Cr(VI)/Cl-体系中AO7的降解主要是强氧化性物质HClO以及Cr(VI)的共同作用,其中起主导作用的是HClO;Cr(VI)的转化是由自身与AO7发生氧化还原反应导致的.3.4 反应过程中AO7的-N=N-键首先被破坏从而使染料脱色,且随着反应进行萘环可以被破坏但苯环无法被进一步打开,体系反应前后TOC值不变,不能达到矿化.【相关文献】[1] 郭建博.高盐染料废水的生物降解及介提强化作用研究 [D]. 大连:大连理工大学, 2005. Guo JB. Biodegradation of hyper-salinity dye wastewaters and the accelerating effect of redox mediators [D]. Dalian: Dalian University of Technology, 2005.[2] 张禄艳,王竞,吕红,等.高盐条件下染料酸性橙7的生物降解特性 [J]. 中国环境科学, 2009,29(6):640-645. Zhang LY, Wang J, Lv H, et al. Biodegradation characteristics of Acid Orange 7under hypersaline conditions [J]. China Environmental Science, 2009,29(6):640-645.[3] Liu W, Liu C, Liu L, et al. Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain Bacillus circulans BWL1061 [J]. Ecotoxicology and Environmental Safety, 2017,141: 9-16.[4] Hussain S, Quinn L, Li J, et al. Simultaneous removal of malachite green and hexavalent chromium by Cunninghamella elegans biofilm in a semi-continuous system [J]. International Biodeterioration & Biodegradation, 2017,125:142-149.[5] Anwar F, Hussain S, Ramzan S, et al. Characterization of Reactive Red-120Decolorizing Bacterial Strain Acinetobacter junii FA10Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium [J]. Water, Air, & Soil Pollution,2014,225:1-16.[6] 方伟.改性石墨烯/聚吡咯复合材料对水中Cr(VI)及刚果红的吸附研究 [D]. 广州:华南理工大学, 2018. Fang W. Research on Adsorption of hexavalent chromium and CongoRed in aqueous solutions onto modified graphene/pyrrole composite materials [D]. Guangzhou: South China University of Technology, 2018.[7] Kyzas G Z, Lazaridis N K, Kostoglou M. On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan [J]. Journal of Colloid And Interface Science, 2013,407:432-441.[8] Fu F, Han W, Tang B, et al. Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity [J]. Chemical Engineering Journal, 2013,232:534-540.[9] Kim S A, Kamala-Kannan S, Oh S, et al. Simultaneous removal of chromium(VI) and Reactive Black 5using zeolite supported nano- scale zero-valent iron composite [J]. Environmental Earth Sciences, 2016,75:1-8.[10] Xie W, Zhang M, Liu D, et al. Photocatalytic TiO2/porous BNNSs composites for simultaneous LR2B and Cr (VI) removal in wool dyeing bath [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017,333:165-173.[11] Djellabi R, Ghorab M, Sehili T. Simultaneous Removal of Methylene Blue and Hexavalent Chromium From Water Using TiO2/Fe(III)/ H2O2/Sunlight [J]. CLEAN-SOIL AIR WATER, 2017:45.[12] Suzuko Y, Atsushi Y, Hiroyuki A. Photocatalytic degradation of chloroform in the gas phase on the porous TiO2 pellets: effect of Cl- accumulated on the catalyst surface [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005,169(2):191-196.[13] Cardoso J C, Lizier T M, Zanoni M V B. Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine [J]. Applied Catalysis B: Environmental, 2010,99(1/2):96-102.[14] Vogtenhuber D, Podloucky R, Redinger J. Ab initio study of atomic Cl- dsorption on stoichiometric and reduced rutile TiO2 (110) surfaces [J]. Surface Science, 2000,(454-456):369-373.[15] 古振川,高乃云,安娜,等.Cl-/PMS体系降解甲氧苄啶的效能与机理 [J]. 中国环境科学, 2018,38(3):977-984. Gu Z C, Gao N Y, An N, et al. Efficiency and mechanism of trimethoprim degradation in Cl-/PMS system [J]. China Environmental Science,2018,38(3):977-984.[16] 张珂,许芬,陈家斌,等.丙酮/氯离子协同活化过一硫酸盐降解酸性橙 [J]. 中国环境科学, 2018,38(11):4159-4165. Zhang K, Xu F, Chen JB, et al. Acetone and chloride ion synergistically activate peroxymonosulfate to decolorize acid orange [J]. China Environmental Science, 2018,38(11):4159-4165.[17] 谈超群,董雨婕,钟毅杰,等.新型氯离子活化过氧单硫酸盐的非自由基系统去除水中扑热息痛的研究 [J]. 四川大学学报(自然科学版), 2018,55(4):819-826. Tan C Q, Dong Y J, Zhong Y J, et al. Acetaminophen degradation with non-radical based reactive oxidants generated by chloride activated peroxymonosulfate system [J]. Journal of Sichuan University (NaturalScience Edition), 2018,55(4):819-826.[18] Liang C J, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. I Activated by ferrous ion with and without a persulfate-thiosulfate redox couple [J]. Chemosphere, 2004,55(9): 1213-1223.[19] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science and Technology, 2003,37(20):4790-4797.[20] Asadi A, Dehghani MH, Rastkari N, et al. Comparison of potentiality of Zinc oxide nanoparticles and hydrogen peroxide in removal of hexavalent chromium from polluted water [J]. Journal of Birjand University of Medical Sciences, 2012,19:277-285.[21] GB/7467-87 水质六价铬的测定二苯碳酰二肼分光光度法 [S]. GB/7467-87 Water quality-Determination of chromium(VI) - 1,5diphenylcarbohydrazide spectrophotometric method [S].[22] Betterton E A, Hoffmann M R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate [J]. Environmental Science and Technology, 1990,24(12):1819-1824.[23] 葛勇建,蔡显威,林翰,等.碱活化过一硫酸盐降解水中环丙沙星 [J]. 环境科学,2017,38(12):5116-5123. Ge Y J, Cai X W, Lin H, et al. Base activation of peroxymonosulfate for the degradation of ciprofloxacin in water [J]. Environmental Science, 2017,38(12):5116-5123.[24] Wang Z H, Yuan R X, Guo Y G, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis [J]. Journal of Hazardous Materials, 2011,190(1–3):1083-1087.[25] Deborde M, Gunten U V. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review [J]. Water Research, 2008,42(1/2):13-51.[26] Yang S Y, Wang P, Yang X, et al. Degradation efficiencies of azo dye Acid Orange7by the interaction of heat,UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide [J]. Journal of Hazardous Materials,2010,179:552-558.[27]徐蕾,袁瑞霞,郭耀广,等.氯离子对钴/单过氧硫酸盐体系降解2,4,6-三氯苯酚的影响 [J]. 武汉大学学报理学版, 2013,59(1):51- 56. Xu L, Yuan R X, Guo Y G, et al. Effects of chloride ions on degradation of 2,4,6-trichlorophenol by Co(II)/peroxymonosulfate (Co/PMS) system [J]. Journal of Wuhan University (Natural Science Edition), 2013,59(1):51-56.。
USP42-NF37硫酸软骨素钠盐
Printed on: Wed Dec 18 2019, 14:08:10 pmPrinted by: L YCurrently O cial as of: 18-Dec-2019O cial as of 1-Jan-2018DocId: GUID-CBC50321-4A1E-42DC-AB47-4A7C9EE59805_3_en-USPrinted from: https:///uspnf/document/GUID-CBC50321-4A1E-42DC-AB47-4A7C9EE59805_3_en-US?highlight=Chondroitin%20Sulfate%20Sodium © 2019 USPCChondroitin Sulfate SodiumChondroitin, hydrogen sulfate, sodium salt[9082-07-9].DEFINITION Chondroitin Sulfate Sodium is the sodium salt of the sulfated linear glycosaminoglycan obtained from bovine, porcine, or avian cartilages of healthy and domestic animals used for food by humans. Chondroitin Sulfate Sodium consists mostly of the sodium salt of the sulfate ester of N -acetylchondrosamine (2-acetamido-2-deoxy-β-D -galactopyranose) and D -glucuronic acid copolymer. These hexoses are alternately linked β-1,4 and β-1,3 in the polymer. Chondrosamine moieties in the prevalentglycosaminoglycan are monosulfated primarily on position 4 and less so on position 6. It contains NL T 90.0% and NMT 105.0% of chondroitin sulfate sodium, calculated on the dried basis.[N OTE — Chondroitin Sulfate Sodium is extremely hygroscopic once dried. Avoid exposure to the atmosphere, and weigh promptly.]IDENTIFICATION•A. I NFRARED A BSORPTION 〈197K 〉•B. I DENTIFICATION T ESTS —G ENERAL 〈191〉, SodiumSample solution:0.5 g in 10 mL of waterAcceptance criteria:Meets the requirements•C. D ISACCHARIDE C OMPOSITION :The chromatogram of the enzymatically digested Sample solution as obtained in the test for Limit of Nonspeci c Disaccharides shows three main peaks corresponding to dehydrated glucuronic acid-[1→3]-chondrosamine-4- sulfated (ΔDi-4S), dehydrated glucuronic acid-[1→3]-chondrosamine-6- sulfated (ΔDi-6S), and nonsulfated dehydrated glucuronic acid-[1→3]-chondrosamine (ΔDi-0S) in the enzymatically digested Standard solution . By peak-area response, ΔDi-4S is the most abundant, followed by ΔDi-6S, with ΔDi-0S being the least abundant of the three. The ratio of the peak response of the ΔDi-4S to the ΔDi-6S is NL T 1.0.•D. S PECIFIC R OTATION :Meets the requirements for Optical Rotation 〈781S 〉, Speci c Rotation in Speci c TestsCOMPOSITION•C ONTENT OF C HONDROITIN S ULFATE S ODIUMStandard solutions:1.5, 1.0, and 0.5 mg/mL of USP Chondroitin Sulfate Sodium RS in waterSample solution:Transfer 100 mg of dried Chondroitin Sulfate Sodium to a 100-mL volumetric ask, dissolve in 30 mL of water, and dilute with water to volume.Diluent:Weigh about 297 mg of monobasic potassium phosphate, 492 mg of dibasic potassium phosphate, and 250 mg of polysorbate 80, and transfer to a 1-L beaker.Dissolve in 900 mL of water, and adjust with potassium hydroxide or phosphoric acid to a pH of 7.0 ± 0.2. Dilute with water to 1 L, and mix thoroughly.Titrimetric system(See Titrimetry 〈541〉.)Mode:Photometric titrationTitrant:1 mg/mL of cetylpyridinium chloride in water. Degas before use.Endpoint detection:Turbidimetric with a photoelectric probeAnalysisSamples:Standard solutions , Sample solution , and DiluentTransfer 5.0 mL each of the Standard solutions and the Sample solution to separate titration vessels, and add 25 mL of Diluent to each. Stir until a steady reading is obtained with a phototrode either at 420, 550, or 660 nm. Set the instrument to zero in absorbance mode. Titrate with Titrant using the phototrode to determine the endpoint turbidimetrically. From a linear regression equation, calculated using the volumes of Titrant consumed versus concentrations of the Standard solutions ,determine the concentration of chondroitin sulfate sodium in the Sample solution .Calculate the percentage of chondroitin sulfate sodium in the portion of Chondroitin Sulfate Sodium taken:Result = (C /C ) × 100C = concentration of chondroitin sulfate sodium in the aliquot of the Sample solution , obtained from the regression equation (mg/mL)C = concentration of Chondroitin Sulfate Sodium in the Sample solution (mg/mL)Acceptance criteria:90.0%–105.0% on the dried basisIMPURITIES•R ESIDUE ON I GNITION 〈281〉:20.0%–30.0% on the dried basis•C HLORIDE AND S ULFATE 〈221〉, Chloride :NMT 0.50%; a 0.10-g portion shows no more chloride than corresponds to 0.7 mL of 0.020 N hydrochloric acid.•C HLORIDE AND S ULFATE 〈221〉, SulfateSample solution:Dissolve 200 mg in 40 mL of water. Add 10 mL of a 30-mg/mL solution of cetylpyridinium chloride, pass through a lter, and use a 25-mL portion of the ltrate.Acceptance criteria:NMT 0.24%; the Sample solution shows no more sulfate than corresponds to 0.25 mL of 0.020 N sulfuric acid.•E LECTROPHORETIC P URITY[C AUTION —Voltages used in electrophoresis can readily deliver a lethal shock. The hazard is increased by the use of aqueous buffer solutions and the possibility of working in damp environments. The equipment, with the possible exception of the power supply, should be enclosed in either a grounded metal case or a case made of insulating material. The case should have an interlock that deenergizes the power supply when the case is opened, after which reactivation should be prevented until activation of a reset switch is carried out. High-voltage cables from the power supply to the apparatus should preferably be a type in which a braided metal shield completely encloses the insulated central conductor, and the shield should be grounded. The base of the apparatus should be grounded metal or contain a grounded metal rim that is constructed in such a way that any leakage of electrolyte will produce a short that will deenergize the power supply before the electrolyte can ow beyond the protective enclosure. If the power supply contains capacitors as part of a lter circuit, it should also contain a bleeder resistor to ensure discharge of the capacitors before the protective case is opened. A shorting bar that is activated by opening the case may be considered as an added precaution. Because of the potential hazard associated with electrophoresis,laboratory personnel should be completely familiar with electrophoresis equipment before using it.]Barium acetate buffer:Dissolve 25.24 g of barium acetate in 900 mL of water. Adjust with acetic acid to a pH of 5.0, and dilute with water to 1000 mL.Staining reagent:Dissolve 1 g of toluidine blue in 1000 mL of 0.1 M acetic acid.Standard solution A:30 mg/mL of USP Chondroitin Sulfate Sodium RS in waterU UStandard solution B:Dilute 1 mL of Standard solution A with water to 50 mL.Sample solution:30 mg/mL of Chondroitin Sulfate Sodium in waterAnalysis:Fill the chambers of an electrophoresis apparatus suitable for separations on cellulose acetate membranes (a small submarine gel chamber or one dedicated to membrane media) with Barium acetate buffer . Soak a cellulose acetate membrane, 5–6 cm × 12–14 cm, in Barium acetate buffer for 10 min, or until evenly wetted, then blot dry between two sheets of absorbent paper. Using an applicator suitable for electrophoresis, apply equal volumes (0.5 µL) of Standardsolution A , Standard solution B , and Sample solution to the brighter side of the membrane held in position in an appropriate applicator stand or on a separating bridge in the chamber. Ensure that both ends of the membrane are dipped at least 0.5–1.0 cm deep into the buffer chambers. Apply a constant 60 V (6 mA at the start) for 2 h.[N OTE —Perform the application of solutions and voltage within 5 min because further drying of the blotted paper reduces sensitivity.]Place the membrane in a plastic staining tray, and with the application side down, oat or gently immerse in Staining reagent for 5 min. Then stir the solution gently for 1 min. Remove the membrane, and destain in 5% acetic acid until the background clears. Compare the bands. [N OTE —Document the results by taking a picture within 15 min of completion of destaining.]Acceptance criteria:The electropherogram from the Sample solution exhibits a major band that is identical in position to the band from Standard solution A . The band from Standard solution B is clearly visible at a mobility similar to the band from Standard solution A . Any secondary band in the electropherogram of the Sample solution is not more intense than the band from Standard solution B . NMT 2% of any individual impurity is found. [N OTE —Document the results by taking a picture within 15 min of completion of destaining.]•L IMIT OF P ROTEINSolution A:20 mg/mL of sodium tartrate dihydrateSolution B:10 mg/mL of cupric sulfateSolution C:20 mg/mL of anhydrous sodium carbonate in 0.1 M sodium hydroxideDilute Folin-Ciocalteu reagent:Dilute Folin-Ciocalteu phenol TS with water (1:5). Prepare immediately before use.Alkaline cupric tartaric reagent:Mix 1 mL each of Solution A and Solution B , and to the mixture slowly add 100 mL of Solution C with stirring. Use within 24 h, and discard afterward.Standard solution:36 µg/mL of bovine serum albumin certi ed standard in waterSample solution:Transfer a portion of Chondroitin Sulfate Sodium, equivalent to 60 mg of the dried substance, to a 100-mL volumetric ask, and dissolve in and dilute with water to volume.Instrumental conditions(See Ultraviolet-Visible Spectroscopy 〈857〉.)Analytical wavelength:750 nmBlank:WaterAnalysisSamples:Standard solution , Sample solution , and BlankAdd 2.0 mL of freshly prepared Alkaline cupric tartaric reagent to test tubes containing 2.0 mL of the Standard solution , 2.0 mL of the Sample solution , or 2.0 mL of the Blank . After 10 min, add 1.0 mL of Dilute Folin-Ciocalteu reagent to each test tube, and mix immediately and vigorously. After 30 min, measure the absorbance of the Standard solution and Sample solution against the Blank .Acceptance criteria:NMT 6.0% on the dried basis; the absorbance of the Sample solution is NMT the absorbance of the Standard solution .CONTAMINANTS•M ICROBIAL E NUMERATION T ESTS 〈2021〉:The total bacterial count does not exceed 10 cfu/g, and the total combined molds and yeasts count does not exceed 10 cfu/g.•A BSENCE OF S PECIFIED M ICROORGANISMS 〈2022〉:It meets the requirements of the tests for absence of Salmonella species and Escherichia coli .SPECIFIC TESTS•L IMIT OF N ONSPECIFIC D ISSACCHARIDESSolution A:Water adjusted with 0.1 N hydrochloric acid to a pH of 3.5Solution B:1 M sodium chloride adjusted with 0.1 N hydrochloric acid to a pH of 3.5Mobile phase:See Table 1.Table 1Time (min)Solution A (%)Solution B (%)0.010004.5100021.0613921.11000Buffer solution:50 mM tris(hydroxymethyl)aminomethane and 60 mM sodium acetate, adjusted with diluted hydrochloric acid to a pH of 8.0Blank:WaterChondroitinase AC solution:Use appropriate chondroitinase AC that is capable of cleaving the N -acetylhexosaminide linkage in chondroitin 4- sulfate and chondroitin 6-sulfate, yielding Δ-unsaturated disaccharides (ΔDi-0S, ΔDi-4S, and ΔDi-6S). The working concentration of the chondroitinase AC in Buffer solution must be su cient for a complete digestion and meet the enzyme suitability requirement that follows.[N OTE —If Chondroitinase AC from Arthrobacter auresens is used, 0.2 Units/mL in Buffer solution is a typical working concentration; if Chondroitinase AC fromFlavobacterium heparium is used, 3 Units/mL in Buffer solution is a typical working concentration. The working enzyme concentration may be increased if a complete digestion could not be achieved. The working enzyme aliquots should be stored at −20° when not in use for a period of time to avoid a decrease in the enzyme activity.A working enzyme solution is typically stable for 4 days when stored at 4°.]Enzyme suitability:Dilute the digested Standard solution and digested Blank (see Analysis section) (1 in 10), and measure the absorbance at 230 nm in 1-cm path cells.Make correction with the diluted Blank .Calculate the absorptivity of USP Chondroitin Sulfate Sodium RS :Result = A /(C × D × d )A = absorbance of the diluted and digested Standard solutionC = concentration of USP Chondroitin Sulfate Sodium RS in the Standard solution (mg/mL)D = dilution factor of digested Standard solution (1/5)1232434d = dilution factor for the UV measurement (1/10)Enzyme suitability requirement:The absorptivity of the digested USP Chondroitin Sulfate Sodium RS is NL T 8 AU · mL · mg · cm .Standard solution:2.4 mg/mL of dried USP Chondroitin Sulfate Sodium RS in waterSample solution:Transfer about 250 mg of dried (105° for 4 h) Chondroitin Sulfate Sodium to a 100-mL volumetric ask, and dissolve in and dilute with water to volume.System suitability solution:Add 1 volume of Standard solution to 1 volume of Sample solution .Chromatographic system(See Chromatography 〈621〉, System Suitability .)Mode:LCDetector:UV 230 nmColumn:4.6-mm × 25-cm; 5-µm packing L14Flow rate:1 mL/minInjection volume:25 µL[N OTE —The Injection volume may be decreased to improve the peak shape of the analytes.]System suitabilitySamples:Standard solution , Sample solution , and System suitability solution (prepared as directed for Samples in the Analysis )[N OTE —The relative retention times for the ΔDi-0S, ΔDi-6S, and ΔDi-4S peaks are 0.80, 0.97, and 1.0, respectively.]Suitability requirementsChromatogram similarity:The chromatogram of the Standard solution is similar to that of the reference chromatogram provided with USP Chondroitin Sulfate Sodium RS .Resolution:NL T 1.0 between the ΔDi-4S and ΔDi-6S peaks, Standard solutionRecovery factor:NL T 95% of the USP Chondroitin Sulfate Sodium RS added to the Sample solution[N OTE —This test is intended to demonstrate the absence of enzyme inhibition by impurities in the articles being tested. Performance of this test is required only for the articles being tested not meeting the Acceptance criteria . The Recovery factor can be calculated as follows:Result = {[(2 × Σr ) − Σr ]/Σr } × 100Σr = sum of the peak areas of ΔDi-0S, ΔDi-4S, and ΔDi-6S from the System suitability solutionΣr = sum of the peak areas of ΔDi-0S, ΔDi-4S, and ΔDi-6S from the Sample solutionΣr = sum of the peak areas of ΔDi-0S, ΔDi-4S, and ΔDi-6S from the Standard solution]AnalysisSamples:Blank , Standard solution , Sample solution , and System suitability solutionIn four separate vials, combine 4 volumes (e.g., 800 µL) of Chondroitinase AC solution with 1 volume (e.g., 200 µL) each of Standard solution , Sample solution ,System suitability solution , and Blank . Mix thoroughly. Incubate at 37° for 3 h. [N OTE —the incubation period may be increased, if necessary, to complete thedigestion.] Allow the solutions to cool before injection.Calculate the percentage of speci c disaccharides in the portion of Chondroitin Sulfate Sodium taken:Result = (Σr /Σr ) × (C /C ) × 100Σr = sum of the peak areas of ΔDi-0S, ΔDi-4S, and ΔDi-6S from the Sample solutionΣr = sum of the peak areas of ΔDi-0S, ΔDi-4S, and ΔDi-6S from the Standard solutionC = concentration of chondroitin sulfate sodium in the Standard solution (mg/mL)C = concentration of Chondroitin Sulfate Sodium in the Sample solution (mg/mL)Calculate the content of nonspeci c disaccharides in the sample taken:Result = CSC − SDCCSC = chondroitin sulfate sodium content from the test for Content of Chondroitin Sulfate Sodium (%)SDC = speci c disaccharides content (%)Acceptance criteria:NMT 10.0%•C LARITY AND C OLOR OF S OLUTIONSample solution:Transfer 2.5 g of Chondroitin Sulfate Sodium to a 50-mL volumetric ask. Dissolve in and dilute with carbon dioxide-free water to volume, and examine immediately.Instrumental conditions(See Ultraviolet-Visible Spectroscopy 〈857〉.)Analytical wavelength:420 nmCell:1 cmBlank:Carbon dioxide-free waterAnalysis:Measure the absorbance of the Sample solution .Acceptance criteria:NMT 0.35•O PTICAL R OTATION 〈781S 〉, Specific RotationSample solution:30 mg/mLAcceptance criteria:–20.0° to –30.0°•P H 〈791〉:5.5–7.5, in a solution (1 in 100)•L OSS ON D RYING 〈731〉[N OTE — Chondroitin Sulfate Sodium is extremely hygroscopic once dried. Avoid exposure to the atmosphere, and weigh promptly.]Analysis:Dry at 105° for 4 h.Acceptance criteria:NMT 12.0%ADDITIONAL REQUIREMENTS•P ACKAGING AND S TORAGE :Preserve in tight containers.–1–1SY U S SY U S U S S U U S S U•L ABELING :Label it to state the source(s) from which the article was derived, whether bovine, porcine, avian, or a mixture of any of them.•USP R EFERENCE S TANDARDS 〈11〉USP Chondroitin Sulfate Sodium RS Suitable cellulose acetate membranes for electrophoresis are available from Malta Chemetron SRL, Milano, Italy; Fluka Chemical Corp., Milwaukee, WI; and DiaSys Corp.,Waterbury, CT ( ). Suitable applicators are available from DiaSys Corp., Waterbury, CT ( ) and Helena Laboratories, Beaumont, TX ( ). Chondroitinase AC from Arthrobacter auresens , Chromadex, part number ASB-00003613-10. Chondroitinase AC from Flavobacterium heparium , ≥200 units/mg protein, Sigma-Aldrich, catalog number E2039.Auxiliary Information - Please check for your question in the FAQs before contacting USP .Topic/QuestionContact Expert Committee CHONDROITIN SULFATE SODIUM Binu Koshynull NBDS2015 Non-botanical Dietary Supplements 2015Chromatographic Columns Information: Chromatographic ColumnsMost Recently Appeared In:Pharmacopeial Forum: Volume No. 38(6)Page Information:USP42-NF37 - 4842USP41-NF36 - 4539USP40-NF35 - 6899Current DocID: GUID-CBC50321-4A1E-42DC-AB47-4A7C9EE59805_3_en-USPrevious DocID: GUID-CBC50321-4A1E-42DC-AB47-4A7C9EE59805_1_en-US1234。
纳米零价铁的应用研究进展
纳米零价铁的应用研究进展摘要:纳米零价铁结合了零价铁还原性强和纳米材料比表面积大的特点,可以通过不同机制降解各类环境污染物。
本文介绍了纳米零价铁在今后的研究重点和方向进行分析和展望。
关键词:纳米零价铁;重金属;污染物去除纳米零价铁可通过还原氧化、吸附沉淀等反应降解各类污染物,包括无机污染物(重金属、无机阴离子等)和有机污染物(卤代有机化合物、有机染料等),广泛应用于水处理和土壤修复方面。
1去除有毒重金属重金属主要包括汞、铬、铅、砷等难以被生物降解但却具有显著毒性的金属元素。
它们在水环境中的具有高度溶解性,有毒重金属可被活生物体吸收,一旦进入食物链,最终会进入人体并在器官中累积,如果摄入的有毒重金属超过允许的浓度,则可能导致严重的健康失调。
因此,有必要在将金属污染的废水排放到环境中之前对其进行处理。
Du等[1]引入人工腐殖酸(AHA)与nZVI协同作用,Pb2+与AHA-nZVI样品之间发生还原、络合和共沉淀反应,去除率高达99.2%。
当Hg2+,Cu2+,Cr3+等金属的E0远高于Fe的时,则还原作用为主导。
Akram等[2用生物炭基铁纳米复合材料(nZVI-BC)来去除水样中的砷,其去除机理主要包括表面特定的静电作用、氢键作用和氧化还原反应,其中氧化还原反应使剧毒As(III)转化为As(0)和As(V),As(III)和As(V)的最佳去除率分别为99.1%和96.1%。
2去除有机卤代物有机卤代物是水体环境中广泛存在的污染物之一,具有较强毒性和致癌性,并难以被生物所降解,等够长时间、长距离的迁移,在动植物身体和环境介质中均能检出,对环境危害较大。
与重金属不同的是,有机污染物可以改变官能团结构,使危害较大的污染物转换为危害较小的污染物。
氯代有机物在去除时,Ou等[3]发现加入短链有机酸(SCOAs)可以在酸性条件下促进nZVI降解五氯苯酚(PCP)。
草酸(OA)可以与PCP脱氯过程中产生的亚铁离子强烈地络合,并减少沉淀在nZVI表面的亚铁(氢)氧化物的形成。
金属配位化合物光催化降解罗丹明 B
金属配位化合物光催化降解罗丹明 B吴震宇;刘宁宁【摘要】当今世界的水污染日益严重、水资源逐渐匮乏,因此开发出利用太阳光能降解水中有机污染物的催化剂是当前研究的热点之一。
以金属配位化合物为光催化剂,在可见光的照射下,研究了其对有机染料罗丹明 B 的光催化降解作用。
结果表明,当罗丹明 B 水溶液的浓度为1×10-5 mol/L、罗丹明 B 水溶液的体积为80 mL、催化剂质量为0.02 g、反应温度为25℃、可见光功率为300 W、照射时间为120 min 时,Co(en)3 Cl3对罗丹明 B 的降解率为87%,Ni(en)3 Cl2对罗丹明 B 的降解率为2%,Ni(dien)2 Cl2对罗丹明 B 的降解率为8%。
因此,Co(en)3 Cl3是性能良好的光催化剂。
%Nowadays,the increasingly serious phenomenon of water pollution and the gradual shortage of water resources have been addressed more attentions all over the world.Developing effective catalyst for the degradation of organic pollutants in the water by using solar energy is one of the hot research topic currently.In this paper,the photocatalytic degradation of organic dye rhodamine B under visible light irradiation was studied by using metal coordination compounds as photocatalyst.The results show that the degradation rate of rhodamine B by Co(en)3 Cl3 reach 87%,the degradation rate of rhodamine B by Ni(en)3 Cl2 reach 2%,the degradation rate of rhodamine B by Ni (dien)2 Cl2 reach 2%,under the condition of rhodamine B aqueous solution (1×10 -5mol/L)80 mL,catalyst dosage 0.02 g,reaction temperature 25 ℃,300 W visible light irradiation for 120 min.Thus,Co(en)3 Cl3 is a good photocatalyst.【期刊名称】《辽宁石油化工大学学报》【年(卷),期】2016(036)002【总页数】4页(P5-8)【关键词】金属配位化合物;罗丹明 B;光催化;可见光;降解率【作者】吴震宇;刘宁宁【作者单位】辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001;辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001【正文语种】中文【中图分类】TE662;TQ016工业的发展给环境带来了越来越多的污染,其中,水污染由于直接威胁到人类的健康,因此是当前研究的热点之一。
关于参加 SPE 会议的一些事
使用评价性语言);尽量包括论文的主要论点和重要细节(重要的论证
或数据)。 2. 使用简短的句子 , 用词应为潜在的读者所熟悉;注意表述的逻辑性 ,
尽量使用指示性的词语来表达论文的不同部分(层次)。
3. 确保摘要的“独立性”或“自明性”: 尽量避免引用文献、图表和缩 写;如果无法回避使用引文,应在引文出现位置将引文的书目信息标 注在方括号内。 4. 为了方便检索系统检索,尽量避免使用化学结构式、数学表达式、角 标和希腊文等特殊符号。 5. 查询拟投稿期刊的作者指南,了解其对摘要的字数和形式的要求。
【论文撰写】
论文结构
标题 作者 摘要
引言
正文 结论 致谢 参考文献
附录
标题(Title)
用一句话来概括文章 体现出最重要的、最吸引人的信息 为方法、结果和结果的隐含意义做广告 关键是要让评审人看懂和理解
标题(Title)
不要滥用专业术语、罕见的缩写词、含糊的词汇、过于
细节、句子太长及仅关注部分内容
不要使用“新的”或“改进的”等词汇,除非确实如此
不要出现公司名称或缩写
标题(Title)
一般学术文章的标题主要有三种结构,即名词性词组(包
括动名词),介词词组,名词词组+介词词组。
也可用一个疑问句作标题,但一般不用陈述句或动词词
组作标题。
名词性词组
名词性词组由名词及其修饰语构成,修饰语可以是形容词、 介词短语,有时也可以是另一个名词。名词修饰名词时, 往往可以缩短标题的长度。 例: Latent demand and the browsing shopper (名词词组
关于参加 SPE 会议的 一些事
刘合
均相沉淀法合成纳米ZnO及其光催化性能研究
2002年第60卷第7期,1225~1229化学学报ACT A CHIMICA SINICAV ol.60,2002N o.7,1225~1229均相沉淀法合成纳米Z nO 及其光催化性能研究张绍岩 丁士文ΞΞ 刘淑娟 康全影 刘燕朝 丁 宇(河北大学化学与环境科学学院 保定071002)摘要 以ZnS O 4、尿素为原料,采用均相沉淀法在90℃合成出了纳米ZnO ,并就反应温度、反应时间、反应物浓度及物料配比等条件对产物的影响进行了探讨.XRD 物相分析,产物为六方晶系;TE M 形貌观察,粒子基本为球形,平均粒径20nm ;并用IR ,TG 2DT A 等测试手段对其进行了表征.利用紫外-可见分光光度计测试了光吸收性能,发现纳米氧化锌对200~380nm 波长范围的光有很强吸收性,在可见光范围内,也有较强的吸收.利用纳米氧化锌作为光催化剂对有机染料溶液进行了降解实验,发现在日光照射60min 后,对酸性大红4BE 的降解率可达100%.关键词 纳米氧化锌,均相沉淀合成,光吸收性能,光催化,染料降解Synthesis and Photocatalytic Property of N ano 2Z nOZH ANG,Shao 2Y an DI NG,Shi 2Wen Ξ LI U ,Shu 2Juan K ANG,Quan 2Y ing LI U ,Y an 2Chao DI NG,Y u(College o f Chemistry and Environmental Science ,H ebei Univer sity ,Baoding 071002)Abstract Using ZnS O 4and urea as raw materials ,nanometersized ZnO was prepared at 90℃by hom ogeneous precipitation method.The effects of reaction tem perature ,reaction time ,concentration and the ratio of the materials on the formed nanometer ZnO were als o discussed.The XRD reveals that the ZnO has a hexag onal structure.The TE M observation indicates that the ZnO is spherial particles with the average diameter of 20nm.IR and TG 2DT A were als o used to characterize the nanometer ZnO.The UV abs orption properties were detected by the UV spectrophotometer.The results show that the nanometer ZnO has an extremely strong abs orption at 200~380nm wavelength and als o a relatively strong abs orption at visible region.Photodegradation of dyes in aqueous s olution was investigated by using this nanometer ZnO as a photocatalyst ,showing that after 60minutes of s olar illumination ,the decolorization rate of the acidic red 4BE can be 100%.K eyw ords nano 2ZnO ,hom ogeneous precipitation ,UV abs orption ,photocatalysis ,photodegradation of dyes 科学家预言,纳米科学与技术将成为21世纪的核心.与传统的微米级材料相比,纳米材料的优点是不言而喻的,其量子尺寸效应、小尺寸效应、表面效应和界面效应使得材料具有一系列优异的电、磁、光、力学和化学等宏观效应.尤其在光催化、光电转化这一具有挑战性的领域,纳米半导体材料更将显示出它的无与伦比的优势[1,2].半导体的光催化效应发现以来,一直引起人们的重视,原因在于这种效应在环保、水质处理、有机物降解、失效农药降解等方面有重要的应用[3~5].近年来,人们一直致力于寻找光活性好、光催化效率高、经济价廉的材料,特别是对太阳光敏感的材料,以便利用光催化开发新产品,扩大应用范围.ZnO 是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业用品、ΞE 2mail :Dingsw @Received December 13,2001;revised February 25,2002;accepted M arch 12,2002.河北省自然科学基金(N o.202104)资助课题.化妆品及药物的生产和加工,而纳米ZnO 除了具有纳米材料的特点外,还具有光催化性能[1],可以以太阳光为光源来降解有机污染物,这将使得它在环境污染治理方面扮演极其重要的角色.本文用均相沉淀法合成了纳米氧化锌,并对其光吸收和光催化性能进行了研究.1 实验1.1 仪器和药品硫酸锌、尿素均为国产分析纯试剂,酸性大红4BE 为市售工业品,全部实验用水为二次蒸馏水.主要仪器有:Rigaku D/M AX 2RC 型X 射线衍射仪(日本),J E M 21000SX 透射电子显微镜(日本),DT 240热分析仪(日本),UV 2265紫外分光光度计(日本)以及实验室合成设备如500m L 四颈瓶,恒温磁力搅拌器等.1.2 纳米氧化锌的合成以ZnS O 4・7H 2O 为锌源,以尿素为均相沉淀剂,采用均相沉淀法制备了纳米ZnO.反应机理为:C O (NH 2)2+3H 2O C O 2+2NH 4OH3Zn 2++C O 2-3+4OH -+H 2OZnC O 3・2Zn (OH )2・H 2O3ZnO +C O 2+2H 2O过程为:称取适量硫酸锌和尿素分别溶于一定量的蒸馏水中,倒入三颈瓶充分混合均匀,于不断搅拌下逐渐升温,随着尿素的慢慢分解,溶液出现浑浊,直到出现大量白色沉淀.在一定温度下反应若干时间后停止,经过滤、洗涤、烘干、在500℃灼烧,得纳米氧化锌粉末.实验中对反应温度、反应浓度、物料配比、反应时间等各种因素对样品产量、粒度的影响作了详尽研究.1.3 光吸收性能实验取适量纳米氧化锌粉末均匀分散在1∶1的甘油和水的混合液中(超声波震荡2h 分散),用UV 2265紫外2可见分光光度计测定样品的吸光度和透过率.1.4 光催化实验配置50mg/L 的4BE 染料溶液(呈深红色),取150m L 置于250m L 的锥形瓶中,加入50mg 纳米氧化锌,磁力搅拌,在太阳光照射下进行反应,每隔10min 取样测试,在UV 2265紫外分光光度计上将其A 2λ曲线进行全波段(195~850nm )扫描,进行分析.脱色效果以脱色效率表示:脱色效率=初始吸光度-最终吸光度初始吸光度×100%2 结果与讨论2.1 合成过程的影响因素成核和生长是超细粒子制备过程中的两个关键步骤,产物粒子的大小取决于成核速度与晶核生长速度的相对大小.反应过程中的温度、时间、浓度、配比等条件对晶核生成及晶核生长速度都有影响.形成单分散的粒子,要求所有的核必须几乎同时形成,而且在接下去的生长中,必须没有进一步的成核或离子团聚.而纳米微粒由于它们具有大的比表面积,常常团聚构成二次粒子,从而减小体系的表面能或界面能,根据能量最低原理,物质构成的系统总是稳定在能量最低的状态,总能量的减少有利于纳米粒子达到稳定状态.细小粒子的团聚可能发生在合成阶段、干燥过程及后来的处理中,因此主要的是粒子制备及后处理的每一步都使粒子处于稳定状态而不团聚.这就表明许多条件在决定粒子大小中起着重要作用.2.1.1 反应温度的影响反应温度直接影响原料的利用率和产物的过滤性能.温度过低,沉淀剂分解不完全,且溶液形成不了一定的过饱和度,反应不完全,产品收率低;温度高时,产品的收率明显提高.由于反应温度对晶粒生长及晶核形成速度均有影响,所以不同的反应温度下得到的粒子的尺寸不同.实验发现产品的粒度随着温度的升高先增大而后减小,高于90℃以后又略有增高,正交设计实验结果见图1.因此通过系列实验后确定90℃为最佳反应温度.图1 反应温度对样品粒径和产率的影响a —粒径与温度的关系,b —产率与温度的关系Figure 1 E ffect of the reaction temperature on size and productivitya —size ,b —productivity6221 化学学报V ol.60,20022.1.2 反应时间的影响保持反应温度为90℃,改变反应时间发现,反应时间过短,反应不充分,收率低.随着反应时间的延长,收率明显提高;但反应时间过长,溶液中的小晶粒溶解而大晶粒继续长大,势必导致颗粒尺寸变大.实验证明当反应时间为3h 时,粒子尺寸为20nm ,产率可达85%,见图2.图2反应时间对样品粒径和产率的影响a —粒径与时间的关系;b —产率与时间的关系Figure 2 E ffect of the reaction time on size and productivitya —size ,b —productivity2.1.3 反应物浓度的影响反应物的浓度对产物的粒子尺寸大小及分布有很大的影响.当反应物浓度很低时,由于晶核生长速度高于成核速度,使得粒子尺寸较大;当反应物浓度较高时,反应瞬间晶核形成速度较快,由于成核速度明显高于晶核生长速度,使得粒子尺寸较小,而当反应物浓度过高时,由于粒子密度高,布朗运动使得粒子由于相互碰撞而长大,同时团聚现象加重,实验证明,ZnS O 4溶液的浓度以0.1~0.2m ol ・L 21为最好,见图3.图3 硫酸锌浓度对样品粒径的影响Figure 3 E ffect of concentration of the zinc sulphate on size2.1.4 反应物配比的影响产物粒子尺寸大小与反应物配比有很大关系.产物粒子尺寸先是随着沉淀剂的加入量的增多而减小,而后又随着加入量的增加而增大.实验证明尿素与ZnS O 4的最佳摩尔配比为2∶1,见图4.图4 反应物料配比对样品粒径和产率的影响a —粒径,b —产率Figure 4 E ffect of ratio of the reactant on size and productivitya —size ,b —productivity2.2 XR D 物相分析将制备的样品作XRD 物相分析,见图5,结果与JCPDS 卡片520664一致,表明产品为氧化锌,属六方晶系.从图中可以看出,由于是纳米粉体,其衍射峰有明显的展宽现象.图5 样品的XRD 图谱Figure 5 XRD pattern of sample2.3 TEM 形貌分析对合成的样品进行TE M 形貌分析,证明粒子基本为球形,平均约为20nm ,且粒度分布很窄,见图6.同时利用X 射线衍射数据,根据Scherrer 公式:D=K λ/βcos θ可计算出晶粒的粒径为17nm ,与TE M 基本吻合.其中D —晶粒尺寸,K —常数(=0.89),λ—射线波长(=0.154178nm ),θ—布格拉衍射角,β—测量的积分峰宽(弧度).7221N o.7张绍岩等:均相沉淀法合成纳米ZnO 及其光催化性能研究 图6 样品的TE M 照片Figure 6 TE M photograph of sample2.4 样品的TG 2DTA ,IR 光谱及元素分析对中间产物粉体进行TG 2DT A 分析,如图7所示,此粉体在280℃和370℃处各有一吸热峰,对应于TG 曲线上有明显的失重,结合元素分析和尿素的理论分解产物,可以推论280℃和370℃的吸热峰分别是Zn (OH )2和ZnC O 3热分解生成氧化锌所致,因此在该方法中选择500℃作为中间产物的焙烧温度.图7 样品先驱物的TG 2DT A 曲线a —热重曲线,b —差热曲线Figure 7 TG 2DT A curves of precurs ora —TG ・curves ,b —DT A ・curves图8给出了反应中生成的中间沉淀物分别在100℃烘干后和在500℃灼烧后所得样品的红外光谱.从图中可以看出,未经灼烧的样品分别在3400cm -1,2300cm -1,1500cm -1,1400cm -1,1100cm -1,820cm -1出现吸收峰,它们可分别归属于(OH )-和C O 2-3简正模式的振动[6],这表明中间产物为Zn (OH )2和ZnC O 3的混合物.对比在500℃灼烧产品的红外光谱发现,上述未烧样品的吸收峰全部消失,只是在360cm -1处出现一个强吸收峰,该峰可归属于ZnO 简正模式的振动.图8 先驱物(a )和ZnO (b )的红外光谱Figure 8 IR spectra of precurs or (a )and ZnO (b )2.5 光吸收性能从图9可以看出:纳米氧化锌样品从可见光到紫外光均有不同程度的吸收,在200~380nm 范围内具有强烈的吸收峰,表明用此法制备的纳米氧化锌有较强的紫外光吸收性能,并且在可见光区的吸收性也较强.据这一特性,可以利用纳米ZnO 作为光催化剂利用太阳光对有毒的有机污染物进行降解.图9 样品的紫外-可见光谱a —吸收光谱;b —透过光谱Figure 9 UV 2spectra of samplea —abs orption ,b —transmission2.6 光催化性能图10为酸性大红4BE 以纳米ZnO 为催化剂经不同时间太阳光光照降解后的紫外-可见光谱图,由谱图可见,酸性大红4BE 溶液在0.3‰纳米ZnO 存在下,经60min 光照后,溶液在紫外-可见光范围内已无吸收,计算脱色效率为100%.用重铬酸钾法测定其相应的C OD Cr 去除率亦接近100%.说明采8221 化学学报V ol.60,2002用纳米ZnO 光降解染料溶液不仅能迅速破坏染料中的发色基团,而且能有效地破坏染料分子中的芳香基团.图10 酸性红4BE 染料的A 2λ扫描曲线Figure 10 A 2λscan curves of acidic red 4BE a —no irradiation ,the irradiation time from curve b to g ;b —10min ;c —20min ;d —30min ;e —40min ;f —50min ;g —60min其基本原理是,纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,且随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了纳米材料的吸附性和化学反应的接触面.另外,纳米ZnO 由于量子尺寸效应使其导带和价带能级变成分裂能级,能隙变宽,因此当纳米ZnO 受到太阳能的辐射后,处于价带的电子就被激发到导带,价带便生成空穴(h +):ZnOhνZnO (h +,e -)空穴h +本身是强氧化剂将吸附在ZnO 颗粒表面的OH -和H 2O 分子氧化生成OH ・自由基,缔合在Zn 2+表面的OH ・为强氧化剂,可以氧化相邻的有机物,而且可以扩散到液相中氧化有机物,把各种有机物通过一系列的氧化过程,最终氧化成C O 2,从而完成对有机物的降解.3 结论采用均相沉淀法在90℃合成了粒度为20nm 的六方晶系氧化锌,该样品对可见光和紫外光均有强吸收作用.应用实验证明,用此法合成的纳米ZnO 对酸性大红4BE 染料具有完全降解作用.它的优势是能够直接利用太阳光和普通光源来净化环境,不仅具有理论意义,而且具有更大的经济效益和环境效益.R eferences1Zhang ,L.2D.;M ou ,J.2M.Nano 2material and Nano 2structure ,Science Press ,Beijing ,2001,p.59,p.88(inChinese ).(张立德,牟季美,纳米材料和纳米结构,科学出版社,北京,2001,p.59,p.88.)2Zhang ,Z.2K.;Cui ,Z.2L.Nano 2technology and Nano 2material ,National Defence Industrial Press ,Beijing ,2000,p.163(in Chinese ).(张志 ,崔作林,纳米技术与纳米材料,国防工业出版社,北京,2000,p.163.)3He ,B.2P.;Wang ,Z.2S.;Zhang ,X.2H.Environ.Sci.1994,15(3),80(in Chinese ).(贺北平,王占生,张锡辉,环境科学,1994,15(3),80.)4Wu ,H.2B.;D ong ,X.2L.China Environ.Sci.1997,17(1),93(in Chinese ).(吴海宝,董晓耒,中国环境科学,1997,17(1),93.)5Liu ,J.2D.;Y i ,B.2H ;X iao ,Z.2B.J.Jishou Univ.2000,21(2),9(in Chinese ).(刘建东,易保华,肖卓炳等,吉首大学学报,2000,21(2),9.)6Nakam oto ,K.Infrared and Raman Spectra o f Inorganic and Coordination Compounds ,tr.by Huang ,D.2R.;Wang ,R.2Q.,Chemical Industrial Press ,Beijing ,1986,pp.107~172(in Chinese ).(中本一雄(日),无机和配位化合物的红外和拉曼光谱,黄德如,王仁庆译,化学工业出版社,北京,1986,pp.107~172.)(A0112133 LU ,Y.J.;FAN ,Y.Y.)9221N o.7张绍岩等:均相沉淀法合成纳米ZnO 及其光催化性能研究 。
石墨烯_二氧化钛复合光催化剂的制备及可见光催化性能研究
spectra(DRS).
The photocatalytic activity of the as—prepared products was evaluated
at
by photocatalytic decolorization of Rhodamine B(Rh B)aqueous solution
an
a
certain extent.Thus,the graphene/Tj02 hy—
brid photocatalyst exhibited
region.
enhanced Rh B degradation photoactivity under visible light
Key words:photocatalysts;Ti02;graphene;photocatalytic activity
10
~20 nm,attached
on
the surface of graphene matrix and formed
layer of dense titanium di— hybrid
oxide.The photocatalytic activity research showed that,with the cooperation of sp2
The physical and
chemical properties of graphene/TiO 2 hybrid photocatalyst were carefully studied by XRD,
SEM,TEM,Raman
tance
spectra,
photoluminescence spectra(PL)and UV—vis diffuse reflec—
全国检标委发布《化妆品中壬二酸的检测气相色谱法》征求意见
第8期范帆等:基于气相色谱-质谱联用的血府逐瘀汤治疗大鼠颅脑损伤的血浆代谢组学研究973[16]Jiang L R.Peg.Phys.Sd,(立锐.生理科学进展),1985,(2):84-177.[8]Cerveuda I,AguUele L Z,Ruas J L.Scienco,2217,357(6349):1-8.[8]Breda C,Sathyasaidumor K V,Idrissi S S,NotamngeU F M,Estmsem J G,Moore GGL,Greeu E W,Kyriacon CP,Schwocz R,Giorgisi F.Proc.NaO Acad2ch USA,2213,113(8):5435-5444.[8]Ferustrom J D,Faller D V.J.Neurochem.,1377,34(6):1531-833.[24]Aqufasi R,Iadarolo P,Coxmrdi A,Bosebi M,Verri M,Pastoris O,Boschi F,Amidiace P.Arch,P hys.Med.Renanilitatiok,215,86(9):829-1735.[21]Yu Y,Cai Z,Zheug J,Cheu J,Zhang X,Huang X F,Li D.NiUo Res.,2212,37(2):71-77.[22]Ebbexos SO E,Voruyanli V S,Higgiss P B,FOftz R R,Ebbessos L O,LoUs S,H arris W S,Keunish J,Umans B D,Wang H ,Deverexx R B,Okis P M,Weissman N J,MacCluer J W,Umans J G,Howard B V.InO J.Circampolae HealtO,im,74(1):1-11.[23]Wang Z J,Li GM ,NO B M,Lu Y,Yis M.Chem,-BioO Interact.,216,64(1):86-87.[24]LO J R,Li QM,Yi M J,Huang L W.J New Mel(刘建仁,黎启明,易铭佳,黄良文.新中医),,47(5):266-209.(责任编辑:周启动)全国检标委发布《化妆品中壬二酸的检测气相色谱法》征求意见近日,全国质量监管重点产品检验方法标准化技术委员会(SAC/TC374)发布《化妆品中壬二酸的检测气相色谱法》征求意见通知。
龙血树叶降血糖活性多糖的纯化及结构解析
生物资源2021,43(2 ): 172〜177Biotic ResourcesDOI : 10. 14188/j. ajsh. 2021. 02. 010龙血树叶降血糖活性多糖的纯化及结构解析孙赵龙1_2,尹燕锋1,刘宝3,周正凤3,王兴红1*,刘接卿4•(1.云南大学生命科学学院,云南昆明650000;2.贵州省草地技术试验推广站,贵州贵阳550000;3.普洱淞茂滇草六味制药股份有限公司,云南普洱665000;4.华侨大学生物医学学院,福建泉州362021)摘要:龙血树⑴Vandelli ex Linnaeus)是一种热带特有的珍稀药用植物。
傣族贝叶经记载龙血树叶具有和血竭相似的医疗功效,且市场反馈显示对糖尿病有一定治疗效果,但其降血糖机制尚未揭示。
将柬埔寨龙血树叶在L6大鼠成肌细胞 降糖活性模型指导下,经热水浸提、醇沉制备粗多糖,再经Sevag法除蛋白、A-722MP阴离子交换树脂脱色后,上DEAE-52纤 维素柱层析和SephacrylS-lOOHR凝胶柱分离纯化,得到单一活性组分LZS,利用紫外、红外、核磁共振波谱以及HPAEC-PAD 色谱法对LZS的结构进行鉴定。
活性组分LZS为7种单糖和柠檬酸组成的一种多糖衍生物,单糖组成为:果糖、葡萄糖、半乳 糖、阿拉伯糖、鼠李糖、甘露糖、木糖,摩尔比为54. 3:29. 5:6. 9:6. 2:2. 1:0. 7:0.4,主要由果糖和葡萄糖聚合而成,龙血树叶多 糖结构新颖,具有明显的细胞活性。
实验结果初步阐明了龙血树叶降糖活性的化学本质,为龙血树叶的利用提供了科学依据。
关键词:龙血树叶;分离纯化;多糖柠檬酸衍生物;降血糖活性;结构表征中图分类号:R282.4 文献标志码:A 文章编号:2096-3491(2021)02-0172-06Purification and structural elucidation of hypoglycemic active polysaccharidesfrom leaves of Dracaena cambodianaSUN Zhaolong' 2, YIN Yanfeng1, LIU Bao1, ZHOU Zhengfeng', WANG Xinghong1*, LIU Jieqing4*(1. School of Life Science, Yunnan University, Kunming 650000, Yunnan, China;2. Guizhou Extension Station of Grassland Technology, Guiyang 550000, Guizhou, China;3. Pu’er Song Mao Dian Cao Liu Wei Pharmaceutical Co, Ltd, Pu’er 665000, Yunnan, China;4. School of Biomedical Science, Huaqiao University, Quanzhou 362021, Fujian, China)A b stract:Dracaena tree is a rare medicinal plant unique to the tropics. The Dai Palm leaf manuscript recorded that Dracaena leaves have similar medical effects to blood resin, and market feedback showed that they have certain therapeutic effects on diabetes, but their hypoglycemic mechanism has not been revealed. Under the guidance of hypoglycemic activity model of myoblast of L6rat cell strain,a pure active component LZS was prepared by extraction with hot water, a卜cohol precipitation, decolorization with A-722M P anion exchange resin, deproteinization with Sevag method, and final purification with DEAE-52 cellulose column chromatography and Sephacryl S-100HR gel column chromatography. The structure of LZS was solved by U V, IR, NMR and HPAEC-PAD methods, indicating that LZS is a polysaccharide derivative consisting of seven monosaccharides and citric acid. The monosaccharide components of LZS include fructose,收稿R期:2020-11-04 修回日期:202卜02-06 接受日期:2021_03_23作者简介:孙赵龙(1990-),男,硕士,农艺师,研究方向为中草药。
一种类石墨状Au
d o i :10.3963/j.i s s n .1674-6066.2023.04.001一种类石墨状A u /g-C 3N 4催化剂的制备及其光催化性能王 颖1,汪 炜2,徐荣琪1,朱 丽1,徐 慢1(1.武汉工程大学材料科学与工程学院,武汉430205;2.湖南三安半导体有限责任公司,长沙410004)摘 要: 论文以尿素作为前驱体,采用热聚合法合成了类石墨状氮化碳(g -C 3N 4)纳米片光催化剂,并将g -C 3N 4纳米片用作载体,利用化学方法成功制备合成了多种不同掺金量的A u /g -C 3N 4的复合催化剂,并在模拟太阳光(300W 氙灯)照射下,系统探究了其光催化性能和不同p H 下的化学稳定性㊂采用X 射线衍射仪(X R D )㊁红外光谱仪㊁紫外漫反射光谱仪㊁扫描电子显微镜等多种表征手段对样品结构和形貌进行分析和表征㊂研究结果表明:相比于g -C 3N 4,不同掺金量的A u /g -C 3N 4复合催化剂的催化降解能力均有显著提高㊂当金与g -C 3N 4的质量比为3%时,A u /g -C 3N 4对甲基橙的降解率最高,并具有优异的光催化稳定性㊂关键词: A u /g -C 3N 4催化剂; 光催化; 掺金量; 稳定性F a b r i c a t i o na n dP h o t o c a t a l y t i cP e r f o r m a n c e o f aG r a ph i t e -l i k e A u /g -C 3N 4C a t a l ys t WA N GY i n g 1,WA N G W e i 2,X UR o n g -qi 1,Z HUL i 1,X U M a n 1(1.S c h o o l o fM a t e r i a l sS c i e n c e a n dE n g i n e e r i n g ,W u h a n I n s t i t u t e o fT e c h n o l o g y,W u h a n430205,C h i n a ;2.H u n a nS a n a nS e m i c o n d u c t o rC o ,L t d ,C h a n gs h a 410004,C h i n a )A b s t r a c t : I n t h i s p a p e r ,g r a p h i t i c c a r b o nn i t r i d e (g -C 3N 4)n a n o s h e e t s s y n t h e s i z e db y t h e r m a l p o l y m e r i z a t i o nu s i n g u -r e a a s t h e p r e c u r s o rw e r eu s e da s t h ec a r r i e r t o p r e p a r eav a r i e t y o fA u /g -C 3N 4c o m p o s i t ec a t a l y s t sw i t hd i f f e r e n t a -m o u n t s o fA u .T h e c a t a l y s t sw e r e c h a r a c t e r i z e db y X -r a y d i f f r a c t i o n (X R D ),F o u r i e r t r a n s f o r mi n f r a r e ds pe c t r o m e t e r (F T I R ),U V -V i s d if f u s e r e f l e c t i o n s p e c t r o s c o p y (U V -V i s -D R S )a n d s c a n n i ng e l e c t r o n i cm i c r o s c o p y (S E M ).Th e p h o -t o c a t a l y t i c a c t i v i t i e s o fA u /g -C 3N 4c a t a l y s t sw e r e e v a l u a t e d b y p h o t o c a t a l y t i c d e c o l o r i z a t i o n o fm e t h y l o r a n g e i n a q u e o u s s o l u t i o na s am o d e l p o l l u t a n t u n d e r s i m u l a t e d s o l a r i r r a d i a t i o n ,a n d t h e e f f e c t o f d i f f e r e n t p H v a l u eo n t h ed e gr a d a t i o n r a t e o fm e t h y l o r a n g ew a s s t u d i e d .I t s h o w e d t h a t t h em a s s r a t i oo fA u t o g -C 3N 4n a n o s h e e t g r e a t l y e n h a n c e d t h e p h o -t o c a t a l y t i c p e r f o r m a n c e o f t h e g -C 3N 4n a n o s h e e t ,a n dw h e n t h em a s s r a t i o o fA u t o g -C 3N 4i s 3%,t h eA u /g -C 3N 4c a t a -l y s t s s h o wt h eh i g h e s t a c t i v i t y a n de x c e l l e n t p h o t o c a t a l y t i c s t a b i l i t y.K e y w o r d s : A u /g -C 3N 4c a t a l y s t ; p h o t o c a t a l y t i c ; g o l d c o n t e n t ; s t a b i l i t y 收稿日期:2023-02-28.作者简介:王 颖(1989-),硕士生.E -m a i l :1012016517@q q .c o m 通讯作者:徐 慢(1964-),博士,教授.E -m a i l :x u m a n @w i t .e d u .c n现代商业染料由于其高纯度的芳香性和广泛结合的发色团,从而具有结构性强和颜色稳定性的特征㊂合成染料被广泛用于许多领域,无意中释放到环境中会对人体健康和生态系统造成潜在风险[1,2]㊂所以,把合成染料从废水中有效地去除变得非常有意义㊂日本科学家本田和藤岛在1972年发现了P t -T i O 2能光催化分解水[3],半导体光催化技术在环境净化和氢能生产领域引起了广泛关注㊂半导体光催化技术不仅能将太阳能直接转化为电能或氢能,而且能高效降解有机污染物,且无二次污染㊂目前,传统半导体光催化剂仍以无机化合物为主,而金属氧化物㊁硫化物等传统半导体光催化剂无法兼具高可见光利用率与高量子效率,因此难以在实际中广泛运用㊂2009年W a n g 等[4]发现一种性能优异的半导体聚合物的类石墨相氮化碳(g r a p h i t i c c a r b o nn i t r i d e ,g -C 3N 4),这是一种不含金属组分的可见光光催化剂,这引起了研究工作者们的极1建材世界 2023年 第44卷 第4期Copyright ©博看网. All Rights Reserved.建材世界2023年第44卷第4期大兴趣,使得g-C3N4成为当前材料科学领域一个热门研究方向,如今被广泛应用于光催化分解水产氢与产氧以及降解有机污染物㊂作为一种类石墨状结构聚合物,g-C3N4可以通过前体如尿素[5]㊁双氰胺[6]㊁硫脲[7]㊁氰胺[8]和三聚氰胺[9]的聚合制备g-C3N4,制备工艺简单㊁成本低廉,可进行大规模的工业生产㊂并且g-C3N4包含6个氮孤对电子,具有类石墨烯的特殊二维结构和有机分子的特性,具有理想的化学修饰位点,因此容易对材料进行掺杂㊁复合半导体等改性[10]㊂且g-C3N4不溶于水㊁乙醇等溶剂,高温下不易分解,稳定性能好㊂这些特点使得g-C3N4在光催化降解㊁光催化制氢和电催化领域都取得了一定的成效㊂然而,在g-C3N4制备过程当中,由于前驱物的不完全聚合,往往会导致生成大量平面氢键出现严重的层间团聚现象,进而形成大量块状g-C3N4㊂这些块状g-C3N4表面存在一些严重的缺陷,使材料表现出较差的光催化性能㊂由此可归纳出g-C3N4作为光催化材料仍然存在的一些缺陷:光生电子空穴复合率高;对可见光(<460n m)吸收能力有限;单体的高度团聚和少的活性位点;较差的氧化能力;光生电荷迁移效率低以及电子的离域性受到晶界效应的严重破坏[11,12]㊂尽管这些缺陷导致g-C3N4的光催化反应活性受到限制,但同时也为众多研究工作者就如何构建更高效的g-C3N4基光催化剂提供了更为明确的发展方向㊂该研究以g-C3N4纳米片为载体和光催化剂,绿色合成了A u N P s负载的g-C3N4纳米片(A u/g-C3N4)㊂研究了A u/ g-C3N4中不同掺金量对甲基橙(m e t h y l o r a n g e,MO)在可见光的降解情况㊂1实验1.1化学试剂与仪器化学试剂:尿素㊁甲基橙㊁盐酸㊁硝酸㊁甲醇㊁氯金酸(国药集团(中国上海))㊂用到的仪器有:A T-S B-011纯水仪(湖北安泰科技有限公司)㊁马弗炉(S x2-4010)(苏州江东精密仪器有限公司)㊁光化学反应仪D Y-B (上海德洋意邦仪器有限公司)㊁M P511型实验室p H计(上海三信仪表厂)㊁集热式恒温加热磁力搅拌器(D F-101S,巩义予华仪器有限责任公司)㊂1.2方法1.2.1g-C3N4纳米片的制备采用热解法制备,其合成过程如下:取10g尿素粉末放入氧化铝坩埚中,置于马弗炉中由室温加热至550ħ,加热时间3h,升温速率5ħ/m i n㊂待反应时间结束后,收集得到淡黄色粉末,将这些淡黄色粉末用0.1m o l/L的H N O3洗涤,去除里面的含硫㊁胺杂质,然后用超纯水将其洗涤至近中性,最后在鼓风干燥箱中(60ħ)干燥24h即可得到最终样品㊂1.2.2 A u/g-C3N4复合纳米催化材料的制备化学方法制备A u/g-C3N4复合纳米催化材料过程如下:称取制备好的g-C3N40.6g,使其溶于120m L 去离子水中,再加入30m L甲醇,超声使其溶解均匀,再准确量取0.2m L氯金酸,在搅拌的同时在高压汞灯下照射3h,离心,取下层沉淀㊂分别用乙醇和水清洗2次后真空干燥,研磨后即可得到A u/g-C3N4复合纳米催化材料㊂1.3表征手段实验所制备的样品分别采用X射线衍射仪(X-r a y d i f f r a c t o m e t e r,X R D)(D MA X-D8X,日本岛津公司)㊁傅里叶转换红外光谱仪(F o u r i e r t r a n s f o r mi n f r a r e ds p e c t r o m e t e r,F T-I R)(P a r a g o n1000P C,美国P e r k i n E l m e r公司)㊁场发射扫描电镜(f i e l de m i s s i o ns c a n n i n g e l e c t r o n m i c r o s c o p e,F E S E M)(Z e i s sS I GMA,德国Z e i s s公司)㊁紫外-可见分光光度计(U V-v i s i b l e s p e c t r o p h o t o m e t e r,U V-v i s)(T U-1900,北京普析通用仪器有限责任公司)㊁S K L12X射线光电子能谱仪(X-r a yp h o t o e l e c t r o ns p e c t r o m e t e r,X P S)(德国L e y b o l d H e r a e u s公司)进行测试㊂2结果与讨论2.1形貌表征图1为样品g-C3N4和A u/g-C3N4的F E S E M图谱㊂从图1(a)中可以看出,g-C3N4的表面比较光滑,类似于石墨烯形状,是由光滑片状叠加而成㊂其中非常薄的多孔片状结构,是因为在尿素的热解过程中会产2Copyright©博看网. All Rights Reserved.生NH 3与C O 2气体,使得制备所得g -C 3N 4呈现出非常薄的多孔片状结构㊂这些均匀的纳米孔在整个g -C 3N 4结构中相互连接,有利于促进催化剂中活性物质的转移㊂并且g -C 3N 4表面上的含氧缺陷和氨基可以为敏化改性的其他半导体的前驱体提供固定位点㊂在图1(b )中可以看到,g -C 3N 4的片状结构上有许多尺寸较小的A u 小颗粒分布在g -C 3N 4表面,由局部断裂面可看出,这种A u 小颗粒是由更小的纳米颗粒堆积而成[13],这种多重的堆积结构可以提高整体的比表面积,从而增加光催化过程中的活性位点,对提高光催化效率具有重要意义㊂2.2 结构表征图2(a )为g -C 3N 4的红外谱图,g -C 3N 4在3294c m -1㊁1200~1700c m -1和808c m -1附近具有3个特征吸收区域㊂在3294c m -1处为N H 2或N-H 基团的伸缩振动峰㊂1200~1700c m -1处的谱带,如1654c m -1㊁1575c m -1㊁1411c m -1㊁1321c m -1和1243c m -1,为典型的C N 杂环的伸缩模式[14]㊂808c m -1的谱带属于三嗪单元的伸缩振动[15]㊂图2(b )为g -C 3N 4和A u /g -C 3N 4的X RD 图㊂在图2(b )中27.4ʎ和13.2ʎ处可以发现2个明显的衍射峰,这是g -C 3N 4对应于芳族体系的特征性层间堆积峰,分别对应于(002)晶面和(100)晶面[16]㊂与g -C 3N 4纳米片相比,A u /g -C 3N 4纳米复合材料除了表现出原始g -C 3N 4的X 射线特征衍射信号外,在38.2ʎ和44.4ʎ分别出现了2个信号衍射峰,分别代表具有面心立方结构的A u 的(111)和(200)晶面[17]㊂上述结果表明,A u /g -C 3N 4样品在形成A u 纳米颗粒的同时,仍旧保留了原始g -C 3N 4π-共轭的均三嗪结构单元㊂图3中可以观察到N ㊁O ㊁A u 和C 的信号峰;其中在结合能为83.7e V 和87.6e V 处出现2个信号峰,分别对应A u4f 7/2轨道和A u4f 5/2轨道,这与单质A u 的化学结合能相一致㊂于284.5e V 和287.7e V 处出现了2个信号峰,前一个峰通常归因于g -C 3N 4中s p 2轨道杂化的C-C 键,后一个(287.7e V )被确定为s p2轨道杂化的含氮芳香环(N C N )㊂这也说明了g -C 3N 4中的主要结构为含氮芳香环[18]㊂在398.2e V 处出现1个信号峰,这个信号峰来自以g -C 3N 4为主的三嗪环(C -N-C )[19]㊂2.3 A u /g-C 3N 4光催化活性测试图4(a )分别呈现了A u /g -C 3N 4在不同掺金含量情况下对MO 降解情况㊂从图4(a )中可知,由于A u /g -C 3N 4光催化剂比表面结构较大,增加了其吸附能力,而且为光催化提供了更多反应活性位点,因此各个掺金量的A u /g -C 3N 4光催化材料对MO 的吸附能力均较g -C 3N 4有不同程度的提高㊂在光照150m i n 3建材世界 2023年 第44卷 第4期Copyright ©博看网. All Rights Reserved.里,随着掺金量的增加,对甲基橙的降解速率先增加后减小,其中3%A u /g -C 3N 4降解速率达到最快㊂但整体A u /g -C 3N 4对MO 的降解能力要优于g -C 3N 4㊂这可能是因为贵金属A u 的等离子体共振效应增强了材料对可见光吸收强度,拓宽了光吸收波长范围,使光催化剂能够捕获更多的太阳能㊂但随着A u /g -C 3N 4中掺金量的继续增加,对MO 的能力反而减小,可能是由于A u /g -C 3N 4表面掺金量太多,A u 在A u /g -C 3N 4表面形成了团聚,从而影响了其光催化性能㊂由于光催化剂的可重复催化活性是光催化的一个重要因素,因此为了研究A u /g -C 3N 4的稳定性,对3%A u /g -C 3N 4进行了4次循环测试,如图4(b )所示㊂4次重复实验中催化剂A u /g -C 3N 4均表现出优异的催化活性,由此说明A u /g -C 3N 4具有稳定的催化活性㊂2.4 A u /g-C 3N 4酸碱稳定性测试图5是A u /g -C 3N 4在不同p H 下对甲基橙的降解情况㊂从图5中可以看出,酸性条件下,甲基橙溶液降解率最快,随着溶液p H 值升高,A u /g -C 3N 4对甲基橙溶液降解率呈现出先下降后上升的趋势㊂在溶液p H 值为1时,降解速率最快㊂从图中降解曲线可知,酸性条件下甲基橙的降解率更高,可能是因为甲基橙作为阴离子型偶氮染料,在不同条件下其结构具有差异,酸性条件下甲基橙为醌式结构,碱性条件下则是偶氮式结构,这说明甲基橙的醌式结构相较于其偶氮结构更容易被氧化分解㊂当甲基橙溶液中O H -浓度较高时,溶液中O H -会与空穴反应:O H -+h ң+O H ㊃;羟基自由基多由吸附在A u /g -C 3N 4表面上的羟基负离子俘获光生空穴而产生㊂当甲基橙溶液中H +浓度较高时,羟基自由基是由氢质子与被吸附在A u /g -C 3N 4表面上的氧反应,发生一系列氧化还原反应,在生成具有强氧化性的双氧水基础上进一步生成的㊂e -+O ң2㊃O -2 ㊃O -2+Hң+H 2O ㊃ 2H 2O ң㊃H 2O 2+O 2㊃O -2+H 2O ң㊃O 2+HO -2 HO -2+Hң+H 2O 2H 2O ң22OH ㊃ H 2O 2+O -ң2OH ㊃+OH -+O 2 H 2O 2+eң-OH ㊃+OH - 所以,不论是高p H 值和低p H 值区都有可能出现甲基橙的光催化高降解率,但是低p H 值对提高甲基橙的光催化降解率更为有利[20]㊂所以无论是酸性或碱性条件下A u /g -C 3N 4都具备良好的催化活性㊂2.5 A u /g-C 3N 4催化机理讨论由于类石墨烯型A u /g -C 3N 4光催化剂具有大比表面积和富足的活性位点,MO 分子首先被吸附在A u /g -C 3N 4光催化剂表面上㊂在可见光照射下,光生电子通过可以通过薄层π-共轭的均三嗪聚合纳米片作为电子传输 捷径 高效的从A u /g -C 3N 4的价带(v a l e n c eb a n d ,V B )跃迁到导带(c o n d u c t i o nb a n d ,C B ),并捕获系统中存在的O 2反应,将其还原为超氧自由基阴离子㊃O -2㊂除此之外,在可见光的散射和吸收方面A u N P s 也表现出优越性能,同时光电子会引发贵金属A u 表面上等离子体振荡(S P R 效应),建立金属-半导体界面范围的内部电场,A u 周围的近电场有效地促进了A u /g -C 3N 4上光生电子-空穴的分离,从而增强了4建材世界 2023年 第44卷 第4期Copyright ©博看网. All Rights Reserved.电子转移能力[21]㊂并且由于金的电负性相对较高,A u N P s 可以捕获吸附在其上的MO 分子中的电子以中和正电荷㊂从而使MO 氧化,这也是MO 分子分解的原因之一㊂另外A u /g -C 3N 4光催化剂价带上的空穴(h +)具有较强的氧化能力,可以直接氧化 O H 和H 2O 分子产生羟基自由基(㊃O H ),最终将吸附在表面的MO 分子被羟基自由基(㊃OH )和超氧根离子㊃O -2氧化成C O 2和H 2O ,其主要机理如图6所示[22]㊂1)光子激发产生电子-空穴对A u /g-C 3N 4+ңhv e -+h+2)h +与H 2O 反应生成㊃O H h ++H 2ңOH ++㊃OH 3)h +与O H -反应生成㊃O Hh ++OHң-㊃OH 4)电子空穴复合e -+h ң+热量5)e-与㊃O H 反应e -+O ң2㊃O -2; ㊃O -2+Hң+H 2O ㊃H 2O 2+㊃O -ң2㊃OH +OH -+O 2H 2O 2+ңhv 2㊃OH3 结 论以g -C 3N 4纳米片作载体,通过化学法在其表面生长A u 纳米颗粒,成功制备了不同掺金量的A u /g -C 3N 4的复合催化剂㊂复合光催化剂对甲基橙的降解实验表明,各个掺金量的A u /g -C 3N 4光催化活性均比g -C 3N 4的催化活性高,这可能是贵金属A u 的等离子体共振效应促进光生电子-空穴的分离,提高了复合材料的光催化性能㊂在强酸强碱环境下,当m (A u )ʒm (g -C 3N 4)=3%时,复合催化剂光催化活性最高,对甲基橙的降解率可达100%,且在连续4次循环后对甲基橙的降解率仍然保持100%,表明复合光催化剂具有优异的光催化性能㊂参考文献[1] F o r g a c sE ,C s e r h Át iT ,O r o sG.R e m o v a l o f S y n t h e t i cD y e s f r o m W a s t e w a t e r s :A R e v i e w [J ].E n v i r o n m e n t I n t e r n a t i o n a l ,2004,30(7):953-971.[2] A n t o n y RP ,M a t h e w sT ,R a m e s hC ,e t a l .E f f i c i e n t P h o t o c a t a l y t i cH y d r o g e nG e n e r a t i o nb y P tM o d i f i e dT i O 2,N a n o t u b e s F a b r i c a t e db y R a p i dB r e a k d o w nA n o d i z a t i o n [J ].I n t e r n a t i o n a l J o u r n a l o fH y d r o g e nE n e r g y ,2012,37(10):8268-8276.[3] M a e d aK ,D o m e nK.P h o t o c a t a l y t i cW a t e r S p l i t t i n g :R e c e n t P r o g r e s s a n dF u t u r eC h a l l e n g e s [J ].J o u r n a l o f P h y s i c a l C h e m -i s t r y Le t t e r s ,2010,1:2655-2661.[4] W a n g XC ,M a e d aK ,T h o m a sA ,e t a l .A M e t a l -f r e eP o l y -m e r i cP h o t o c a t a l y s t f o rH y d r og e nP r o d u c t i o n f r o m W a t e rU n -d e rV i s i b l eL i gh t [J ].N a t u r eM a t e ri a l s ,2009,8(1):76-80.[5] L i u JH ,Z h a n g T K ,W a n g ZC ,e t a l .S i m p l eP y r o l y s i s o fU r e a i n t oG r a p h i t i cC a r b o nN i t r i d ew i t hR e c y c l a b l eA d s o r p t i o n a n dP h o t o c a t a l y t i cA c t i v i t y [J ].M a t e r i a l sC h e m i s t r y a n dP h y s i c s ,2011,21:14398-14401.[6] X i nG ,M e n g YL .P y r o l y s i s S y n t h e s i z e d g -C 3N 4f o rP h o t o c a t a l y t i cD e g r a d a t i o no fM e t h y l e n eB l u e [J ].J o u r n a l o f C h e m i s -t r y,2013:187912-187917.[7] Z h a n g Y W ,L i u JH ,W uG ,e t a l .P o r o u sG r a p h i t i cC a r b o nN i t r i d e S y n t h e s i z e dV i aD i r e c t P o l y m e r i z a t i o n o fU r e a f o rE f -f i c i e n t S u n l i g h t -d r i v e nP h o t o c a t a l y t i cH y d r o g e nP r o d u c t i o n [J ].N a n o s c a l e ,2012,4(17):5300-5303.[8] Z h a oYC ,L i uZ ,C h u W G ,e t a l .L a r g e -s c a l eS y n t h e s i so fN i t r o g e n -r i c hC a r b o nN i t r i d e M i c r o f i b e r sb y U s i n g G r a p h i t i c C a r b o nN i t r i d e a sP r e c u r s o r [J ].A d v a n c e d M a t e r i a l s ,2008,20(9):1777-1781.5建材世界 2023年 第44卷 第4期Copyright ©博看网. All Rights Reserved.建材世界2023年第44卷第4期[9] W u M,Y a n JM,T a n g XN,e t a l.S y n t h e s i s o f P o t a s s i u m-m o d i f i e dG r a p h i t i cC a r b o nN i t r i d ew i t hH i g hP h o t o c a t a l y t i cA c-t i v i t y f o rH y d r o g e nE v o l u t i o n[J].C h e m i s t r y S u s t a i n a b i l i t y E n e r g y M a t e r i a l s,2014,7:2654-2658.[10]D o n g F,Z h a oZ,X i o n g T,e t a l.I nS i t uC o n s t r u c t i o no f g-C3N4/g-C3N4M e t a l-f r e eH e t e r o j u n c t i o n f o rE n h a n c e dV i s i b l e-l i g h tP h o t o c a t a l y s i s[J].A C SA p p l i e d M a t e r i a l s&I n t e r f a c e s,2013,5(21):11392-11401.[11]W a n g C,Z h a oY,X uH,e t a l.E f f i c i e n tZ-s c h e m eP h o t o c a t a l y s t so fU l t r a t h i n g-C3N4-w r a p p e dA u/T i O2-n a n o c r y s t a l s f o rE n h a n c e dV i s i b l e-l i g h t-d r i v e nC o n v e r s i o no fC O2w i t hH2O[J].A p p l i e dC a t a l y s i sB:E n v i r o n m e n t a l,2020,263:118314.[12]W e nP,S u n Y,L iH,e ta l.A H i g h l y A c t i v eT h r e e-d i m e n s i o n a lZ-s c h e m eZ n O/A u/g-C3N4P h o t o c a t h o d ef o rE f f i c i e n tP h o t o e l e c t r o c h e m i c a lW a t e r S p l i t t i n g[J].A p p l i e dC a t a l y s i sB:E n v i r o n m e n t a l,2020,263:118180.[13]F uY,H u a n g T,J i aB,e t a l.R e d u c t i o no fN i t r o p h e n o l s t oA m i n o p h e n o l sU n d e rC o n c e r t e dC a t a l y s i sb y A u/g-C3N4C o n-t a c t S y s t e m[J].A p p l i e dC a t a l y s i sB:E n v i r o n m e n t a l,2017,202:430-437.[14]Z h a oS,T a n g Z,G u oS,e ta l.E n h a n c e d A c t i v i t y f o rC O2E l e c t r o r e d u c t i o no na H i g h l y A c t i v ea n dS t a b l eT e r n a r y A u-C D o t s-C3N4E l e c t r o c a t a l y s t[J].A C SC a t a l y s i s,2018,8(1):188-197.[15]R a z i q F,S u nL,W a n g Y,e t a l.S y n t h e s i so fL a r g eS u r f a c e-a r e a g-C3N4C o m o d i f i e dw i t h M n O x a n dA u-T i O2a sE f f i c i e n tV i s i b l e-l i g h tP h o t o c a t a l y s t s f o rF u e l P r o d u c t i o n[J].A d v a n c e dE n e r g y M a t e r i a l s,2018,8(3):1701580.[16]Z a d aA,H u m a y u n M,R z a i q F,e t a l.E x c e p t i o n a lV i s i b l e-l i g h t-d r i v e nC o c a t a l y s t-f r e eP h o t o c a t a l y t i cA c t i v i t y o f g-C3N4b yW e l lD e s i g n e dN a n o c o m p o s i t e sw i t hP l a s m o n i cA ua n dS n O2[J].A d v a n c e dE n e r g y M a t e r i a l s,2016,6(21):1-9. [17]L iQ Q,L u M F,W a n g W L,e ta l.F a b r i c a t i o no f2D/2D g-C3N4/A u/B i2WO6Z-s c h e m eP h o t o c a t a l y s tw i t hE n h a n c e dV i s i b l e-l i g h t-d r i v e nP h o t o c a t a l y t i cA c t i v i t y[J].A p p l i e dS u r f a c eS c i e n c e,2020,508:144182.[18]L i a n g M,B o r j i g i nT,Z h a n g Y,e t a l.Z-s c h e m eA u@V o i d@g-C3N4/S n SY o l k-s h e l lH e t e r o s t r u c t u r e s f o r S u p e r i o r P h o t o-c a t a l y t i cC O2R ed u c t i o nU n de rV i s i b l eL i g h t[J].A C SA p p l i e d M a t e r i a l s&I n t e rf a c e s,2018,10(40):34123-34131.[19]L iH,G a oY,X i o n g Z,e t a l.E n h a n c e dS e l e c t i v eP h o t o c a t a l y t i cR e d u c t i o no fC O2t oC H4O v e rP l a s m o n i cA u M o d i f i e d g-C3N4P h o t o c a t a l y s tU n d e rU V-v i sL i g h t I r r a d i a t i o n[J].A p p l i e dS u r f a c eS c i e n c e,2018,439:552-559.[20]H u a n g XX,Z h uN W,M a oFL,e t a l.N o v e lA u@C M o d i f i e d g-C3N4(A u@C/g-C3N4)a sE f f i c i e n tV i s i b l e-l i g h tP h o t o-c a t a l y s t f o rT o x i cO r g a n i cP o l l u t a n t D e g r ad a t i o n:S y n t he s i s,P e rf o r m a n c e a n dM e c h a n i s mI n s igh t[J].S e p a r a ti o n a n dP u r i-f i c a t i o nT e c h n o l og y,2020,252:117485.[21]L i uG X,W a n g SB,G o n d a lM A,e t a l.E n h a n c e dV i s i b l eL i g h t P h o t o c a t a l y t i cP e r f o r m a n c e o f g-C3N4P h o t o c a t a l y s t sC o-d o pe dw i t hG o l d a n dS u lf u r f o rD eg r a d a t i o n o f P e r s i s t e n t P o l l u t a n t(Rh o d a mi n eB)[J].J o u r n a l o fN a n o s c i e n c e a n dN a n o-t e c h n o l o g y,2019,19(2):713-720.[22]L e eSJ,B e g i l d a y e v aT,J u n g HJ,e t a l.P l a s m o n i cZ n O/A u/g-C3N4N a n o c o m p o s i t e s a s S o l a rL i g h tA c t i v eP h o t o c a t a l y s t sf o rD eg r a d a t i o no fO r g a n i cC o n t a m i n a n t s i n W a s t e w a t e r[J].Ch e m o s p h e r e,2020,263:128262:1-10.6Copyright©博看网. All Rights Reserved.。
化学专业英语省公共课一等奖全国赛课获奖课件
我们将要研究众多化合物能够分类为酸、碱、盐、金 属氧化物或非金属氧化物。这五类化合物中前三类-- 酸、碱和盐--是最主要。
第10页
2. When an acid, base, or salt is dissolved in water the resulting solution is a conductor of the electric current and is termed an electrolyte. If no conduction of current occurs, the compound is known as a nonelectrolyte.
Lesson 2 THE CLASSIFICATION OF INORGANIC
COMPOUNDS 无机化合物分类
第1页
词汇
chemist 化学家
equation 方程式
▪ become 适合,与…… ▪ aqueous 水 相当
radical 基,根,原子团
balance 天平,平衡
▪ acidic 酸,酸性
第3页
The Classes of Compounds
1.Thousands and tens of thousands of compounds are known to the chemist today. It would be impossible to learn properties and behavior of even a fraction of this number if it had to be done on the basis of individual compounds. Fortunately, most chemical compounds can be grouped together in a few classes. Then, if we can properly classify a compound, we are at once aware of the general properties of the compound from knowledge of the properties of that class or group of compounds. For example, HCl is classed as an acid, and by becoming familiar with the behavior of acids as a distinct class, we are at once aware of the general properties of the compound. A great many of the compounds we are to study may be classified as acids, bases, salts, metallic oxides, or nonmetallic oxides. Of these five classes of compounds, the first three-acids, bases, and salts-are by far the most important.
纳米零价铁去除地下水中亚硒酸盐的动力学及机理
纳米零价铁去除地下水中亚硒酸盐的动力学及机理梁丽萍;杨文君;关小红【摘要】为解决地下水中亚硒酸盐(Se(Ⅳ))污染问题,采用纳米零价铁为还原剂,考察溶液的pH、Se(Ⅳ)初始浓度以及溶液温度等因素对Se(Ⅳ)去除效果的影响.结果表明:纳米零价铁在厌氧条件下能够在短时间内将Se(Ⅳ)完全去除,速率常数随pH 和初始硒浓度的升高而降低,随温度的升高而升高,利用阿伦尼乌斯方程得到其反应活化能为26.26 kJ·mol-1.X射线吸收近边结构谱(XANES)进一步证明了在不同pH 和浓度下,还原产物以Se(0)为主.水中Se(Ⅳ)的去除由吸附和还原引起,反应过程是水中Se(Ⅳ)先吸附到纳米铁表面,随后被还原为零价硒.纳米零价铁还原是一种有效去除水体中Se(Ⅳ)的方法.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2014(046)006【总页数】5页(P20-24)【关键词】纳米零价铁;Se(Ⅳ);动力学;地下水【作者】梁丽萍;杨文君;关小红【作者单位】哈尔滨工业大学城市水资源与水环境国家重点实验室,150090哈尔滨;常州大学环境与安全工程学院,213000江苏常州;哈尔滨工业大学城市水资源与水环境国家重点实验室,150090哈尔滨【正文语种】中文【中图分类】X52水体中的硒主要以无机的硒酸根离子Se(VI))和亚硒酸根离子Se(IV))形式存在,其中Se(IV)的毒性比Se(VI)高10倍[1],本研究以Se(IV)为目标污染物.目前去除水中Se(IV)的常用方法包括生物还原[2]、含二价铁的矿物还原[3]、光催化[4]、吸附[5]等,但均存在去除效率低、反应周期长、吸附容量小的缺点,因此,开发实用、经济、有效的处理技术非常必要和紧迫.纳米零价铁具有还原性强和反应速度快的特点,广泛用于去除污染水体中的重金属,是地下水和工业水修复的高效反应介质材料.与普通铁粉和铁屑相比,能更有效地去除重金属离子,纳米零价铁还原逐渐成为水体修复领域颇具潜力的新方法.近年来,利用纳米零价铁还原降解水中氯代有机物、硝基化合物、重金属离子等的研究已取得一定成效,但去除水体中Se(IV)的研究很少.因此,采用纳米零价铁还原去除水体中的Se(IV),系统考察其反应动力学及机理.1.1 试剂与材料纳米铁(购于北京德科岛金纳米材料有限公司,出厂前表面已作钝化处理),实验过程中未经预处理直接使用.所购纳米铁的形貌和XRD谱如图1所示.亚硒酸钠、盐酸、氢氧化钠、MES(2-(N -吗啉基)乙磺酸-水)、TRIS(三(羟甲基)氨基甲烷)、乙酸、乙酸钠均为分析纯.均采用去离子水(Milli-Q Water)配备溶液.实验时用高纯N2(99.99%)吹脱去除水中溶解氧,使水中溶解氧的质量浓度低于0.5 mg/L,以保持低水平的溶解氧质量浓度模拟实际的地下水.1.2 还原实验在厌氧条件下,利用低温恒温槽控温,投加缓冲溶液调节溶液pH并保持反应过程中pH恒定(pH=4.0和5.0采用0.1 mol/L HAc-NaAc缓冲;pH=6.0采用0.1 mol/L MES缓冲;pH= 7.0~8.0采用0.1 mol/L TRIS缓冲),利用磁力搅拌器搅拌溶液,称取0.05 g纳米零价铁投加于含500 mL一定浓度Se(IV)、氯化钠、缓冲溶液的广口瓶中,并开始计时.需要注意的是本研究中磁力搅拌器的转速较大,利用离心力可使铁粉较均匀地分散在水中.在既定时间用塑料注射器取5 mL 样,过0.22 μm滤膜,置于聚四氟乙烯小管中,加一滴65%的浓硝酸酸化至pH<1.0,硒浓度由AgilentICP-OES测定.体系中二价铁的测定使用紫外分光光度计(TU-1901),利用邻菲罗啉分光光度法(510 nm)测定.所有实验均重复二次以上.1.3 分析测试方法纳米铁的形貌采用日立4700场发射扫描电镜(FE-SEM)在15 kV放大4万倍的情况下拍照.纳米铁的晶型测定采用日本理学DXR-8000自动粉末衍射仪(XRD),在40 kV和40 mA条件下,2θ角从20°到90°,步长0.02°,每步2 s进行扫描. 不同pH和不同浓度反应3 h后的产物经真空抽滤机抽滤,冷冻干燥后,置于手套箱中保存,采用XANES谱技术确定反应产物中硒的价态.该技术利用上海光源BL14W线站提供的机时,在Si(111)模式下,同步加速器能量为3.5 GeV,电流为150~210 mA,采用荧光模式对反应后固体粉末采谱.零价硒、四价硒和六价硒的标准谱使用零价硒粉、亚硒酸钠及十水硒酸钠为标样采用透射模式采谱.2.1 pH对去除效果的影响为考察pH对纳米铁去除Se(IV)的动力学影响,采用0.1 g/L纳米铁与100μmol/L的Se(IV)反应,结果见图2.可以看出,纳米铁在酸性和中性及偏碱性条件下可以有效地去除Se(IV),60 min时基本达100%.利用假一级动力学对pH= 4.0,5.0,6.0和7.0的反应数据进行模拟,结果见表1.可以看出,纳米零价铁去除Se(IV)的过程在这些pH下可以很好地用假一级动力学拟合,R2均大于0.96.随着pH由4.0升高到7.0,kobs从0.339降到0.149 min-1,半衰期(t1/2)从2.04增加到4.65 min.在pH=7.2和7.5时,由于反应初期存在平台期,不能用假一级模拟,但Se(IV)分别在30和60 min内完全去除.然而在pH=7.8和8.0时,60 min内几乎无Se(IV)被去除,这可能是由于在碱性条件下,大量氢氧根的存在导致纳米零价铁表面生成钝化膜.考虑到pH为4.0~8.0的范围内H2SeO3的pKa1和pKa2分别为2.62和8.23,HSeO3-为主要的存在形态[6],因此,pH对速率常数的影响不能主要归因于Se(IV)的形态变化.在厌氧条件下,纳米铁的腐蚀产物是Fe2+,而根据XANES的结果Se(IV)被还原为Se(0),因此,纳米铁与Se(IV)的反应方程为由式(1)可知,该反应是消耗氢离子的过程,随着pH升高,氢离子减少,导致反应速率稍有下降.从Fe2+质量浓度的变化趋势可见,pH为4.0~7.5时,60 min时约有29~70 mg/L的Fe2+释放,但是在pH=7.8和8.0时,60 min内基本无Fe2+释放,证明在碱性环境下,纳米铁表面生成的钝化膜阻止了纳米铁的腐蚀.从ORP的变化可以看出,pH为4~7.5时ORP迅速从正值变为负值,预示整个过程中主要以还原反应为主.但是pH=7.8和8.0时,ORP基本恒定不变,与前面观察到的现象一致,进一步说明在酸性和中性条件下,纳米零价铁更易腐蚀.2.2 初始硒浓度对去除效果的影响由图3可以看出,当Se(IV)浓度从100 μmol/L升高到250 μmol/L,反应速率逐渐降低.对其进行假一级模拟发现纳米铁对Se(IV)去除的假一级反应速率常数kobs由0.149减小到0.088 min-1,半衰期从4.65升高到7.85 min(表1).即使Se(IV)的初始浓度高达250 μmol/L,30 min内纳米铁依然可以将Se(IV)100%去除.在整个反应过程中伴随着Fe2+的大量释放,且Fe2+的释放随着Se(IV)浓度的升高而逐渐降低,表明纳米铁的腐蚀速度随着污染物Se(IV)浓度的升高而降低. ORP的变化进一步证明整个过程以还原为主,ORP由+200 mV左右迅速降到-600 mV左右,且维持恒定.由此可以得出纳米零价铁是一种有效处理水体中Se(IV)的方法,反应迅速且对高浓度的Se(IV)污染依然保持较高的处理能力.2.3 温度对去除效果的影响由图4可以看出,温度从5℃升高到35℃,纳米铁去除Se(IV)的假一级反应速率常数kobs从0.063升高到0.197 min-1,半衰期从11.0 min降到3.52 min,表明升高温度有利于反应的进行.利用阿仑尼乌斯(Arrhenius)方程对速率常数随温度的变化规律进行拟合,发现ln k与1/T呈现良好的线性关系,根据图中直线的斜率可求出反应的活化能Ea为26.26 kJ·mol-1,与纳米镍铁还原硒酸盐的活化能29.5 kJ·mol-1相近[7].对于一个普通的热力学反应,最适的反应活化能是60~250kJ·mol-1[8],所以,26.26 kJ·mol-1的活化能表明该反应极易发生,并且在实际的水体中受温度的影响很小.早在1983年,埃文斯(Evans M G)和波兰尼(Palanyi M)提出化学反应活化能Ea与摩尔反应焓之间有线性关系,谢苗诺夫(Cemehob H H)将这一关系应用于放热和吸热反应中[9].本实验中还原反应为吸热反应,对于吸热反应则有Ea=-0.75ΔrH+ 48.1 kJ·mol-1,进而求得该反应的焓变为ΔrH= 2.912×104J·mol-1.研究表明,在5~35℃内,纳米铁可有效地去除Se(IV).2.4 机理分析纳米铁与Se(IV)首先发生的是表面反应,通过吸附作用从溶液转移到零价铁表面,随后纳米铁以3种作用方式将污染物去除:零价铁本身的还原作用[10](式(1));吸附在零价铁表面的二价铁是一种强还原剂,可以将亚硒酸还原(式(3))[11];厌氧条件下,零价铁与水反应产生大量氢气,氢气也可以提供电子将Se(IV)还原[12](式(4)).为进一步验证Se(IV)与纳米铁反应后产物中硒的价态,取不同pH和不同初始Se(IV)浓度反应3 h后固体,冷冻干燥后利用上海光源BL14W线站的XANES 技术(具体仪器操作见文献[11])进行研究,整个过程中严格控制厌氧环境,结果如图5所示.在不同pH和不同初始Se(IV)浓度条件下,还原产物的峰位与Se(0)的基本完全吻合.利用线性组分拟合(LCF)对其做定量分析,结果表明,在不同pH和不同初始Se(IV)浓度下,Se(IV)被完全还原为Se(0).由于零价硒是固体,可以与反应中生成的铁氧化物或铁的氢氧化物发生共沉淀,从而易于从水中分离去除.由于在地下水中氧气含量较低,也阻止了污染物被氧化再次释放,达到了极好的去除效果.1)纳米铁还原是一种有效的去除Se(IV)的方法,且还原过程符合假一级反应动力学.2)纳米铁还原Se(IV)随着pH和浓度的升高反应速率常数降低,随着温度的升高速率常数变大,其反应活化能为26.26 kJ·mol-1.3)纳米铁还原Se(IV)的还原产物为溶解度极低的Se(0)固体,且在该反应过程中释放的亚铁离子可以通过先调节pH至弱碱性然后进行曝气,利用空气的氧化能力将亚铁氧化成三价铁沉淀的方法去除.4)纳米铁颗粒作为一种新型功能材料,去除受污染水体中重金属的效能明显优于其他技术,且纳米零价铁颗粒粒径小,易于在水体中迁移,可灵活应用于地下水和土壤的原位和异位修复.但目前纳米零价铁应用于实际工程修复还存在一些限制性条件,如成本较高;纳米颗粒对重金属的去除机理尚处于讨论阶段;纳米零价铁颗粒注入环境的长期效果如生态影响等也需要进一步研究[13-14].【相关文献】[1]LOYO R L D A,NIKITENKOS I,SCEINOSTA C,et al.Immobilization of selenite onFe3O4and Fe/Fe3C ultrasmall particles[J].EnvironmentalScience&Technology,2008,42:2451-2456.[2]KESSI J,SELMANN K W H.Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by rhodospirillum rubrum andescherichiacoli[J].JournalofBiological Chemistry,2004,279:50662-50669.[3]BRUGGEMAN C,MAES A,VANCLUYSEN J,et al. Selenite reduction in boomclay:effect of FeS2clay mineralsanddissolvedorganicmatter[J]. Environmental Pollution,2005,137:209-221.[4]SANUK I S,ARA I K,KOJIM A T,et al.Photocatalytic reduction of selenate and selenite solutions using TiO2powders[J].Metallurgical and Materials Transactions B,1999,30:15-20.[5]ROVIRA M,GIMENEZ J,MARTINEZ M,et al. Sorption of selenium(IV)and selenium(VI)onto natural iron oxides:goethite and hematite[J].Journal of Hazardous Materials,2008,150:279-284.[6]KANGM L,CHEN F,WU S,et al.Effect of pH on aqueous Se(IV)reduction by pyrite[J].Environmental Science&Technology,2011,45:2704-2710.[7]MONDAL K,JEGADEESAN G,LAVLVANI S B. Removal of selenate by Fe and NiFe nanosized particles[J].Industrial&Engineering Chemistry Research,2004,43:4922-4934.[8]FAN J,GUO Y H,WANG J J,et al.Rapid decolorization ofazodyemethylorangeinaqueoussolutionby nanoscale zerovalent iron particles[J].Journal of Hazardous Materials,2009,166:904-910.[9]刘国杰,黑恩成.物理化学导读[M].北京:科学出版社,2008:335-341.[10]LIANG L P,JIANG X,YANG W J,et al.Kinetics of selenite reduction by zero-valent iron[J].Desalination andWaterTreatment,2013,doi:10.1080/19443994.2013.862868. [11]LIANG L P,YANG W J,GUAN X H,et al.Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron[J].Water Research,2013,47(15): 5846-5855.[12]CHUNG J,RITTMANN B E,HER N,et al.Integration of H2-based membrane biofilm reactorwith RO and NF membranes for removal of chromateand selenate[J]. Water Air Soil Pollution,2010,207:29-37.[13]王静波,田海风.纳米零价铁在水处理中的应用研究[J].山西水利,2012(3):36-38. [14]李钰婷,张亚雷,代朝猛,等.纳米零价铁颗粒去除水中重金属的研究进展[J].环境化学,2012,31(9): 1349-1354.。
药物分析常用英语词汇之欧阳育创编
药物分析专业英语词汇表Aabsorbance 吸收度 absorbance ratio 吸收度比值absorption 吸收 absorption curve 吸收曲线absorption coefficient 吸收系数 accurate value 准确值Acid—dye colormcty 酸性染料比色法 acidimcty 酸量法acidity 酸度 activity 活度adjusted retention time 调整保留时间 absorbent 吸收剂absorption吸附 alkalinity 碱度alumina 氧化铝,矾土 ambient temperature 室温ammonium thiocyanate 硫氰酸铵 analytical quality control 分析质量控制 anhydrous substance 干燥品antioxidant 抗氧剂 application of sample 点样area normalization method 面积归一法arsenic砷arsenic sport 砷斑 assay 含量测定assay tolerance 含量限度 attenuation 衰减acid burette 酸式滴定管 alkali burette 碱式滴定管a mortar 研钵Bback extraction 反萃取 band absorption 谱带吸收batch 批 batch number 批号Benttendorlf method 白田道夫法 between day precision 日间密度精biotransformation 生物转化 blank test 空白试验boiling range 沸程 British Pharmacopeia 英国药典bromate titration 溴酸盐滴定法 bromine method 溴量法bromothymol blue 溴麝香酚蓝 bulk drug 原料药by—product 副产物breaker 烧杯burette glass bead nozzle 滴定管 brown acid burette 棕色酸式滴定管Ccalibration curve 校正曲线 calomel electrode 甘汞电极calorimetry 量热分析 capacity factor 容量因子capillary gas chromatography 毛细管气相色谱法carrier gas 载气 characteristics description 性状chelate compound 螯合物 chemical equivalent 化学当量Chinese pharmacopeia 中国药典Chinese material medicine 中成药Chinesematerial midical preparation 中药制剂chiral 手性的chiral carbon atom 手性碳原子 chromatogram 色谱图chromatography 色谱法 chromatographic column 色谱柱chromatographic condition 色谱条件 clarity 澄清度coefficient of distribution 分配系数coefficient of variation 变异系数color change interval 变色范围 color reaction 显色反应colormetry 比色法 column efficiency 柱效column temperature 柱温 comparative test 比较试验completeness of solution 溶液的澄清度 conjugate 缀合物concentration—time curve 浓度时间曲线confidence interval 置信区间confidence level 置信水平 controlled trial 对照试验correlation coefficient 相关系数 contrast test 对照试验congealing point 凝点 content unifarmity装量差异controlled trial 对照试验 correlation coefficient 相关系数contrast test 对照试验 counter ion 反离子cresal red 甲酚红 cuvette cell 比色池cyanide氰化物 casserole small 勺皿Ddead—stop titration 永定滴定法 dead time 死时deflection 偏差 deflection point 拐点degassing 脱气 deionized water 去离子水deliquescence 潮解 depressor substances test 降压物质检查法 desiccant 干燥剂detection 检查 developing reagent 展开剂developing chamber 展开室 deviation 偏差dextrose 右旋糖 diastereoisomer 非对映异构体diazotization 重氮化 differential thermal analysis 差示热分析法 differential scanning calorimetry 差示扫描热法Gutzeit 古蔡 day to day precision 日间精密度dissolution 溶出度direct injection 直接进样2,6-dichlorindophenol titration 2,6-二氯靛酚滴定法 digestion 消化diphastic titration 双向滴定 disintegration test 崩解试验dispersion 分散度 dissolubility 溶解度dissolution test 溶解度检查 distilling range 滴程distribution chromatography 分配色谱 dose 剂drug quality control 药品质量控制drying to constantweight 干燥至恒重 duplicate test 重复试验disk method water method 压片法Eeffective constituent 有效成分 effective plate number有效板数 effective of column 柱效electrophoresis 电泳 elimination 消除eluate 洗脱液 elution 洗脱enamtiomer 对映体 end absorption 末端吸收endogenous substances 内源性物质 enzyme drug酶类药物enzyme induction 酶诱导 enzyme inhibition 酶抑制epimer 差向异构体 equilibrium constant 平衡常数error in volumetric analysis 容量分析误差exclusion chromatography 排阻色谱法 expiration date 失效期external standard method 外标法 extract 提取物extration gravimetry 提取重量法 extraction titration 提取容量法 extrapolated method外插法Erlenmeyer flask 锥形瓶 evaporating dish small 蒸发皿elongated bulb 胖肚electronic balance MettlerAL204 MettlerAL204电子天平Ffactor 系数 fehling’s reaction 斐林实验filter 过滤 fineness of the particles 颗粒细度flow rate 流速fluorescent agent 荧光剂fluorescence spectrophotometry 荧光分光光度法 fluorescence detection 荧光检测器 fluorescence analysis 荧光分析法 foreign pigment 有色杂质formulary 处方集 free 游离freezing test 冻结试验 fused silica 熔融石英filter paper 滤纸Ggas chromatography 气相色谱法gas-liquid chromatography 气液色谱法 gas purifier 气体净化器General identification test 一般鉴别试验general notices 凡例General requirements (药典) 通则 good clinical practices药品临床管理规范 good laboratory practices 药品实验室管理规范good manufacturing practices(GMP)药品生产质量管理规范good supply practices(GSP) 药品供应管理规范 gradient elution 梯度洗脱grating 光栅 gravimetric method 重量法Gutzeit test 古蔡(检砷)法 glass funnel long stem玻璃漏斗grad cylinder 量筒 glass rod 玻棒graduated pipettes 刻度吸管 GC 气相色谱Hheavy metal 重金属 half peak width 平峰宽heat conductivity 热导率height equivalent to atheoretical plate 理论塔板高度 height of an effectiveplate 有效塔板高度high-performance liquid chromatography (HPLC)高效液相色谱法high-performance thin-layer chromatography (HPTLC)高效薄层色谱法hydrate 水合物 hydrolysis 水解hydrophilicity 亲水性 hydrophobicity 疏水性hydroxyl value 羟值 hyperchromic effect 浓色效应hypochromic effect 淡色效应HHS-type constant temperature water bath HHS型恒温水锅 HPLC 高效液相色谱法Iidentification 鉴别 ignition to constant weight 灼烧至恒重 immobile phase 固定相immunoassay 免疫测定 impurity 杂质inactivation 失活 index 索引indicator electrode 指示电极 indicator 指示剂inhibitor 抑制剂 injecting septum 进样隔膜胶垫instrumental analysis 仪器分析 injection value 进样阀insulin assay 胰岛素生物检测法 integrator 积分仪intercept 截距 interface 接口internal standard substance 内标物质International unit 国际单位in vitro 体外 in vivo 体内iodide 碘化物 iodoform reation 碘仿反应iodometry 碘量法ion pair chromatography 离子对色谱 ion suppression离子抑制ion suppression 离子抑制 ionic strength 离子强度ion-pairing agent 离子对试剂 ionization 电离isoabsorptive point 等吸收点 isocratic elution 等溶剂组成洗脱 isoelectric point 等电点isoosmotic solution 等渗溶液irreversible indicator 不可逆指示剂irreversible potential 不可逆电位KKarl Fischer titration 卡尔-费舍尔滴定Kjeldahl method for nitrogen 凯氏定氮法 Kober reagent 科伯试剂 Kovats retention index 科瓦茨保留指数Llabelled amount 标示量 leading peak 前延峰leveling effect 均化效应 licensed pharmacist 执业药师 limit control 限量控制limit of detection 检测限 limit of quantitation 定量限 limit test 杂质限度试验loss on drying 干燥失重 low pressure gradient pump 氧压梯度泵 linearity and range 线性及范围linearity scanning 线性扫描 luminescence 发光litmus paper 石蕊试纸 lyophilization 冷冻干燥Mmain constituent 主成分 make-up gas 尾吹气maltol reaction 麦芽酚试验 Marquis test 马奎斯试验mass analyzer detector 质量分析检测器mass spectrometric analysis 质谱分析 mass spectrum 质谱图mean deviation 平均偏差 melting point 熔点melting range 熔距 metabolite 代谢物metastable ion 亚稳离子 micellar chromatography 胶束色谱法 microanalysis 微量分析microcrystal 微晶 microdialysis 微透析migration time 迁移时间 Millipore filtration 微孔过滤 mobile phase 流动相molecular formula 分子式 monitor 检测monochromator 单色器 monographs 正文Nnatural product 天然产物 Nessler’s reagent 碱性碘化汞试液 neutralization 中和nitrogen content 总氮量 nonaqueous acid-base titration 非水酸碱滴定 nonprescription drug ,over the counter drugs 非处方药 nonspecific impurity 一般杂质non-volatile matter 不挥发物 normal phase 正相normalization 归一化法 Nessler color comparison tube 纳氏比色管Onotice 凡例 octadecyl silane bonded silicagel 十八烷基硅烷键合硅胶 odorless 辛基硅烷odorless 无臭 official name 法定名official test 法定试验 on-column detector 柱上检测器on-column injection 柱头进样 on the dried basis 按干燥品计opalescence 乳浊 optical activity 光学活性optical isomerism 旋光异构 optical purity 光学纯度organic volatile impurities 有机挥发性杂质 orthogonal test 正交试验orthophenanthroline 邻二氮菲 outlier 可疑数据overtones 倍频封 oxidation-reduction titration 氧化还原滴定oxygen flask combustion 氧瓶燃烧Ppacked column 填充柱 packing material 色谱柱填料palladium ion colorimetry 钯离子比色法 parent ion 母离子particulate matter 不溶性微粒 partition coefficient 分配系数pattern recognition(ppm)百万分之几 peak symmetry 峰不对称性peak valley 峰谷 peak width at half height 半峰宽percent transmittance 透光百分率pH indicator absorbance ratio method pH指示剂吸光度比值法pharmaceutical analysis 药物分析 pharmacopeia 药典pharmacy 药学 photometer 光度计polarimetry 旋光测定法 polarity 极性polydextran gel 葡聚糖凝胶 potentiometer 电位计potentiometric titration 电位滴定法precipitation form 沉淀形式precision 精密度 preparation 制剂prescription drug 处方药 pretreatment 预处理primary standard 基准物质 principal component analysis 主成分分析prototype drug 原型药物 purification 纯化purity 纯度 pyrogen 热原pycnometer method 比重瓶法plastic wash bottle 洗瓶platform balance 天平 pipette 移液管pyknowmeter flasks 容量瓶Qquality control 质量控制 quality evaluation 质量评价quality standard 质量标准 quantitative determination 定量测定quantitative analysis 定量分析 quasi-molecular ion 准分子离子Rracemization 消旋化 random sampling 随机抽样rational use of drug 合理用药 readily carbonizable substance 易炭化物质 reagent sprayer 试剂喷雾剂recovery 回收率 reference electrode 参比电极related substance 相关物质 relative density 相对密度relative intensity 相对强度 repeatability 重复性replicate determination 平行测定 reproducibility 重现性residual basic hydrolysis method 剩余碱水解法residual liquid junction potential 残余液接电位residual titration 剩余滴定 residuce on ignition 炽灼残渣resolution 分辨率 response time 响应时间retention 保留 reversed phase chromatography 反相色谱法reverse osmosis 反渗透 rinse 淋洗robustness 可靠性 round 修约reagent bottles 试剂瓶 round bottom flask 圆底烧瓶rubber suction bulb 洗耳球Ssafety 安全性 Sakaguchi test 坂口试验salt bridge 盐桥 salting out 盐析sample applicator 点样器 sample application 点样sampling 取样 saponification value 皂化值saturated calomel electrode 饱和甘汞电极 selectivity 选择性significant difference 显著性水平 significant testing 显著性检验silica get 硅胶 silver chloride electrode 氯化银电极similarity 相似性 sodium dodecylsulfate 十二基酸钠solid-phase extraction 固相萃取 solubility 溶解度specific absorbance 吸收系数 specification 规格specificity 专属性 specific rotation 比旋度specific weight 比重 spiked 加入标准的split injection 分流进样 spray reagent 显色剂stability 稳定性 standard color solution 标准比色液standard deviation 标准差 standardization 标定standard substance 标准品 statistical error 统计误差sterility test 无菌试验 stock solution 储备液stoichiometric point 化学计量点 storage 贮藏stray light 杂散光 substrate 底物substituent 取代基 sulfate 硫酸盐sulphated ash 硫酸盐灰分 support 载体suspension 旋浊度 swelling degree 膨胀度symmetry factor 对称因子 systematic error 系统误差separating funnel 分液漏斗 stopcock 玻璃活塞scissors 剪刀 spirit lamp 酒精灯silica gel G thin layer 硅胶G薄层板Ttable 片剂 tailing factor 拖尾因子tailing peak 拖尾峰 test solution 试液thermal analysis 热分析法 thermal conductivity detector 热导检测器thermogravimetric analysis 热重分析法The United States Pharmacopoeia 美国药典The Pharmacopoeia of Japan 日本药局方thin layer chromatography 薄层色谱thiochrome reaction 硫色素反应thymol 百里酚 thymolphthalein 百里酚酞titer 滴定度 three-dimensional chromatogram 三维色谱图titrant 滴定剂 titration error 滴定误差titrimetric analysis 滴定分析法 tolerance 容许限total ash 总灰分 total quality control 全面质量控制traditional drugs 传统药 traditional Chinese medicine 中药turbidance 浑浊 turbidimetric assay 浊度测定法turbidimetry 比浊度 turbidity 浊度Uultracentrifugation 超速离心 ultraviolet irradiation 紫外线照射undue toxicity 异常毒性 uniform design 均匀设计uniformity of dosage units 含量均匀度 uniformity of volume 装量均匀性 uniformity of weight 重量均匀性Vvalidity 可靠性 variance 方差viscosity 粘度 volatile oil determination apparatus 挥发油测定器 volatilization 挥发性volumetric analysis 容量分析 volumetric solution 滴定液volumetric flasks 比重瓶Wwave length 波长 wave number 波数weighing bottle 称量瓶 weighing form 称量形式well-closed container 密闭容器 white board 白瓷板Xxylene cyanol blue FF 二甲苯蓝FF xylenol orange 二甲酚橙ZZigzag scanning 锯齿扫描 zwitterions 两性离子Zymolysis 酶解作用 zone electrophoresis 区带电泳。
十二烷基硫酸钠(SDS)对克氏原螯虾抗氧化功能和酸性磷酸酶活性的影响
十二烷基硫酸钠(SDS)对克氏原螯虾抗氧化功能和酸性磷酸酶活性的影响谭树华;李玉峰;刘文海;罗洁;叶可【摘要】研究了不同浓度(0、35、70、140和280 mg·L-1)十二烷基硫酸钠(SDS)对克氏原螯虾(Procambarus clarkii)肝胰腺和鳃的毒性效应.结果表明,肝胰腺和鳃超氧化物歧化酶(SOD)活性与SDS浓度及暴露时间密切相关,总体表现为低浓度(≤70 mg·L-1)下受诱导而高浓度(≥140 mg·L-1)下受抑制、暴露时间延长则活性下降的趋势,肝胰腺SOD对高浓度SDS(≥140 mg·L-1)胁迫比鳃SOD更为敏感.2种组织过氧化氢酶(CAT)活性变化趋势总体相似,表现为先升高后下降,鳃CAT活性受诱导或受抑制程度均低于肝胰腺.肝胰腺和鳃酸性磷酸酶(ACP)活性变化大体分别表现为上升-下降和下降-上升-下降,肝胰腺ACP对SDS胁迫高度敏感,暴露24 h 时即出现显著受诱导现象(P<0.05或P<0.01),对SDS胁迫具有指示作用.肝胰腺和鳃还原型谷胱甘肽(GSH)含量均表现出先升高后下降趋势,两者分别在48和24h 时达最大值,肝胰腺GSH主要在抵御较低浓度SDS(≤140 mg·L-1)胁迫中发挥重要作用,而鳃GSH含量在24 h内极显著升高(P<0.01),鳃GSH比肝胰腺更容易受诱导.由此可见,克氏原螯虾可通过调节抗氧化系统及物质代谢来抵御SDS胁迫,且多数酶表现出明显的时间-剂量效应,而肝胰腺ACP和鳃GSH对SDS胁迫敏感,可作为SDS污染的潜在生物指示物.【期刊名称】《生态与农村环境学报》【年(卷),期】2014(030)003【总页数】6页(P392-397)【关键词】克氏原螯虾;十二烷基硫酸钠(SDS);抗氧化酶;抗氧化物质;酸性磷酸酶(ACP)【作者】谭树华;李玉峰;刘文海;罗洁;叶可【作者单位】湖南科技大学生命科学学院,湖南湘潭411201;湖南科技大学生命科学学院,湖南湘潭411201;湖南科技大学生命科学学院,湖南湘潭411201;湖南科技大学生命科学学院,湖南湘潭411201;湖南科技大学生命科学学院,湖南湘潭411201【正文语种】中文【中图分类】X52;X592十二烷基硫酸钠(sodium dodecyl sulfate,SDS)是一种极易溶于水的阴离子表面活性剂,在洗涤剂及化学试剂生产中应用广泛[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Decolorization of Aqueous Acid Red BSolution During the Cathode Processin Abnormal Glow DischargeDilai Lu,Jierong Chen,Aihua Gao,Georges Zissis,Senior Member,IEEE,Shangbin Hu,and Zhiguo LuAbstract—This paper investigated some chemical and physical factors which probably affect the decolorization of aqueous acid red B solution by atmospheric abnormal glow discharge.When the aqueous solution served as the cathode,effective decolorization occurred in the inert gas discharges as well as in the active gas discharges.The hydroxyl radicals were mainly responsible for the decolorization in the solution phase.The gas ionization potential may influence the decolorization effect.Index Terms—Abnormal glow discharge,cathode,decoloriza-tion,ionization potential.I.I NTRODUCTIONT HE DISCHARGES and chemical reactions in plasma wa-ter treatment are fairly complicated.When plasma comes in contact with water,various physical and chemical processes are initiated[1],[2];as a result,positive ions,electrons,and UV radiations as well as active species,such as active molecules (nitrogen oxides,ozone,and hydrogen peroxide)and radicals (hydrogen atom,hydroxyl,etc.),may be created[3].In the past decade,attempts have been made to understand the mechanism of the discharge processes occurring above the surface of water [4].However,for a thorough understanding of the degradation mechanism,it is necessary to investigate the properties of the discharge gases used for the treatment.Both chemical and physical factors can affect the chemical oxidation reactions occurring during the discharge process. Aside from the conductivity effects,pH,input power,and characterization of the water-phase products[5],the charge particles in the discharge phase may influence the degradation of the organic pollutant as well.In this paper,some chemical active products(hydrogen peroxide,radicals,etc.)were created in the solution phase,and their effect on decolorization hasManuscript received January14,2010;revised June24,2010,May15,2010, and March25,2010;accepted July15,2010.Date of publication August19, 2010;date of current version October8,2010.This work was supported in part by the National Science Foundation of China under Grant20877062and in part by the Scientific Technique Innovation Engineering of Shaanxi Province through the Specialized Project of“13115”under Grant2008ZDKG-78.D.L.Lu and J.R.Chen are with the Department of Environmen-tal Science and Engineering,School of Energy and Power Engineering, Xi’an Jiaotong University,Xi’an710049,China(e-mail:ludilai531@; Jrchen@).A.H.Gao,S.B.Hu,and Z.G.Lu are with the Department of Physics, Northwest University,Xi’an710069,China(e-mail:gaoaihua@; hushangbin110@;luzg@).G.Zissis is with the Laboratoire Plasma et Conversion d’Energie (LAPLACE),Universite Paul Sabatier-Toulouse III,31062Toulouse Cedex9, France(e-mail:georges.zissis@laplace.univ-tlse.fr).Digital Object Identifier10.1109/TPS.2010.2061871Fig.1.Schematic diagram of our experimental setup.been discussed.The authors also focus on some physical factorsin various discharge gases.The abnormal glow discharge wasemployed for our studies because the mechanism has been wellestablished in some literatures[6].In this paper,we examined the decolorization of acid red B(CAS Number:3567-69-9)as a model pollutant in wastewater(see Fig.1).In our experiment,the current intensity was variedin the range of27–28mA,and the discharge pressure wascontrolled at1atm or so(750–760torr).The acid red B aqueoussolution was used as the cathode during the discharge process,the so-called liquid cathode process,which was conducted toinvestigate the interrelationship between the decolorization ef-fect and the physical and chemical factors during the dischargeprocess.II.E XPERIMENTALThe concentration and volume of the aqueous solution ofacid red B were100mg/L and50ml,respectively.The pH andconductivity of the initial solution were6–7and approximately0.12mS/cm,respectively.The electrical discharges in the puregases(N2,O2,Ar,and Ne with gas purity≥99.995%)wereadopted in our experiment.The experimental reactor is shown in Fig.1.The reactorwas hermetically isolated to ambient air,and both gas-phaseand solution-phase gaseous impurities were removed from thereactor with a vacuum pump.A high-voltage(HV)dc powersupply which can provide a discharge voltage of0–13kV wasemployed to generate a discharge in the reactor.A HV wasapplied between the aqueous solution(cathode)and a pointedtungsten electrode(anode;diameter:1.5mm).The HV tungstenanode was placed above the solution surface,and the distancebetween the HV tip of the anode and the cathode was varied 0093-3813/$26.00©2010IEEEFig.2.Decolorization rate in N 2,O 2,Ar,and Ne discharges (discharge gap:3mm;discharge pressure:1atm or so).from 1to 5mm.This distance could be adjusted by changing the solution volume.The negative electrode of the dc power supply was connected to a platinum (Pt)electrode immersed in the solution.A milliammeter and an electrostatic voltmeter were used to measure the discharge current and the potential fall,respectively.As per the method reported in [7],we perform electric probe measurements to determine the potential fall and the spatial potential distribution in the air discharge channel.Since the electric probe measurement device is exposed to ambient air,it is used only for the air discharge experiment.A tungsten filament (diameter:≤0.1mm)covered by a ceramic sheath is used as the diagnostic probe;the probe position can be precisely controlled by a screw micrometer.In fact,the potential fall (U t )measured in this diagnostic device is the sum of the potential fall at a certain point (U p )in the discharge channel and the voltage drop (U s )in the solution.Hence,(U p )can be obtained by subtracting (U s )from (U t ).(U s )can be obtained when the diagnostic probe is made to touch the solution surface.In the initial stage of the discharge (solution conductivity:∼0.12mS/cm),(U s )is approximately 150V .A compact dual-channel monochromator (AH430)was em-ployed to test the decolorization effect.The absorbance of the acid redB solution at 507nm was measured.The decolorization rate of the solution,which is denoted as η,can be calculated as follows:η=A 0−A tA 0×100%(1)A 0absorbance of the solution before treatment;A t absorbance of the solution after treatment.Optical emission spectroscopy measurements were performed by putting the tungsten electrode to the window of a mono-chrometer at a distance of 9–10cm.The optical emission from the discharge region was detected by a GWD-3monochrometer (the wavelength resolution is 0.1nm at a 0.2-mm slit width).III.R ESULTS AND D ISCUSSIONA.Experimental ResultsAs Fig.2presents,after an 8-min discharge,the decoloriza-tion rate ηreaches over 97%in the N 2discharge.The decol-orization rate was much higher when using N 2as thedischargeFig.3.Emission spectrum of (a)N 2,(b)O 2,(c)Ar,and (d)Ne discharges (discharge gap:3mm;760torr).gas than using the other gases.It was more interesting that the value of ηreached over 40%in the Ne and Ar discharges;how-ever,after a 35-min discharge,the value of ηeven could reach over 97%in both the discharges.The results suggested that there was an evident decolorization effect no matter whether the discharge gases were activated (N 2)or inert (Ar and Ne).After a discharge time of10min,ηexceeds60%in the Ar discharge but approaches70%in the Ne discharge(see Fig.3). After16min of discharge,ηcould reach85%in the Ar dis-charge and90%in the Ne discharge.Thus,the decolorization rate in the Ne discharge was better than that in the Ar discharge. O2is one kind of strong oxidizer;a lot of strong oxygen-based oxidizers(ozone ions,ozone,atom oxygen,hydroxyl radicals,etc.)can be produced in an electrical discharge at an oxygen–water interface[8].Therefore,it should be expected that the decolorization effect would be much better when using O2as the discharge gas than the other gas discharges.However, as Fig.2shows,the decolorization rate in the pure O2discharge is unexpectedly lower than that in the other gases:after10min of discharge,ηcould reach50%in the O2discharge but exceed 60%in the Ar discharge,and after16min of discharge,ηcan approach70%in the O2discharge but reach over80%in the Ar discharge.Consequently,an overall evaluation of the decolorization rate in the four gas discharges adopted in our experiments could be obtained,and theηvalues in the different gas dis-charges can be listed in the following order:η(N2)>η(Ne)>η(Ar)>η(O2).Fig.3(a)–(d)shows the emission spectra recorded at the gas–solution interface in the N2,O2,Ar,and Ne discharges. From the emission spectra,we can observe a number of emis-sion lines of positive ions,atoms,and some emission bands of molecules or molecule ions.Moreover,we canfind the emission spectra intensity of positive ions often stronger than the other species.It seems to suggest that the production rate of the positive ions was much higher than that of the other active particles in the discharge phase.B.Effects of Chemical FactorsThe decolorization of dye is a complex chemical process [1]–[5];many chemical products forming in aqueous solution, such as hydrogen atoms(H.),hydrogen peroxides(H2O2), ozone(O3),nitrogen oxides,and hydroxyl radicals(OH),could affect the decolorization.Nitrogen oxides can be generated in the air discharges and affect the decolorization rate.Due to the absence of oxygen, the production rate of nitrogen oxides in the pure nitrogen discharge must be less than that in the air discharge.It was confirmed by the emission spectra measurements:The emission bands of the nitrogen oxides in the nitrogen discharge were hardly detected.However,the decolorization rate in the nitro-gen discharge is higher than that in the air discharge(see Fig.4). Moreover,the evident decolorization also occurred in some electrical discharges without nitrogen(in the Ne,Ar,and O2 discharges).These results demonstrate that the nitrogen oxides are not a necessary requirement to the decolorization of dye. H2O2which is formed by the recombination of hydroxyl radicals in the water phase can be generated in the four gas discharges considered in this paper;it also could influence the decolorization of dye owing to its strong oxidizing ability. The authors have tested the effect of H2O2(concentration is about30%)by mixing an initial acid red B solution with H2O2 (1:1,v/v).However,the apparent decolorization did notoccur Fig.4.Decolorization rates in the nitrogen and airdischarges.Fig.5.Decolorization rate in the Ar discharge(after30-min discharge)versus concentration of Na2CO3(mol/L).after2h of stirring.It shows that H2O2can hardly influence the decolorization in our experiments.Both H and OH can be formed at the gas–water interface when the four gases adopted in this paper were used as the discharge gases.The formation of OH radicals is desired to the decolorization of dye since they are one of the strongest oxidizers[8],and H.can affect the decolorization also.Sodium carbonate(Na2CO3)is well known as a radical scavenger[9]; OH can be scavenged by the carbonate anions easily,whereasH.reacts with this radical scavenger in a lower reaction rate[10].To avoid disturbing the nitrides and ozone,the discharge in the pure Ar was employed for testing the effect of the radicals.As Fig.5presents,the decolorization rate decreases significantly with an increasing concentration of sodium car-bonate.If H.is a main factor to the decolorization reactions, the apparent decolorization rate(may be lower than that at a low concentration of Na2CO3)would have also taken place at a higher concentration of Na2CO3;however,it was not the case in our experiments.As mentioned earlier,a large number of OH radicals can be scavenged at a high concentration of Na2CO3,and the lower decolorization rate occurred at the higher concentration of Na2CO3.Therefore,it was concluded that it was the OH radicals that are mainly responsible for the decolorization of dye in the aqueous solution.Fig.6.Fitting curve for spatial potential distribution in air discharge channel (760torr).C.Effects of Physical FactorsSome physical factors in the discharge phase,such as the potential fall of the discharge channel(U),discharge power,and charge particle characteristics,can contribute to the decoloriza-tion in our experiments.To determine the spatial potential distribution in the air dis-charge channel,the gap between the electrodes isfixed at5mm, and the spatial potential fall at different space positions is measured by using an electric probe.Then,the spatial potential distribution in the air discharge channel is obtained by curve fitting(see Fig.6).The electricfield at the solution surface is very strong when the aqueous solution served as the cathode,as is evident from the large slope of the voltage drop(see Fig.6).As a result,the positive ions are pulled by the electric force and swarm to the cathode.At the same time,most of the electrons and negative ions are repulsed by the electricfield and hardly reach the cathode.Hence,only the positive ions and neutral particles can reach the cathode surface.The neutral particles can also obtain energy from the electricfield because of the charge exchange effect.When the gas pressure isfixed,the kinetic energy of the gas ions should be influenced by the electricfield[11].Denaro and Hough[12]proposed that the positive ion(⊕)collide with water molecule(H2O+)and ionize H2O into H2O+with its kinetic energy and that H2O+decompose into H+and OH [see(2)].According to their view,in some degree,the decol-orization may be determined by the potential fall U since it is known that the potential fall affects the electricfield⊕+(n+1)H2O→(n+1)H2O++ne−aq→nH+(n+1)OH+H+.(2) As Fig.7presents,the potential fall U in the N2discharge is much higher than that in the Ne,Ar,and O2discharges as well as theηvalues in the N2discharge are remarkably higher than that in the other gas discharges.It also suggests that the potential fall U may affect the decolorization.The input discharge power can also influenceη.In our experiment,the input discharge power for N2(P N≈84W) was considerably higher than that for Ne(P Ne≈16W)and Fig.7.Potential fall U of O2,Ar,Ne,and N2(discharge gap:3mm;760torr; measured by electrostatic voltmeter).Ar(P Ar≈16W).Hence,the decolorization rate in the N2 discharge was higher than that in the Ar and Ne discharges.As we know,the input discharge power depends on the discharge current and the potential fall U.In this experiment,the input power depends on the potential fall U solely because the dis-charge current is maintained at27–28mA.Therefore,the effect of the input power was led by the potential fall U substantially. However,the potential fall U in the O2discharge is evidently higher than that in the inert gas discharges,whereas theηvalues in the O2discharge is lower than that in the inert gas discharges. Thus,aside from the potential fall U and the input power,there should be other factors that can affect the decolorization of dye. The gas discharge channel of the stable abnormal glow discharge can be simply classified as the anode zone,the plasma region,the negative-glow region,and the cathode fall region. The mechanism of the glow discharge has been well studied [11],and it has been reported that the secondary electron ejection at the cathode surface is mainly caused by the effect of the positive ion[11].When the positive ions come to approach the cathode surface,because of the potential ejection from the positive ion[13],some electrons in the aqueous solution can gain sufficient energy to overcome the electron work function of aqueous solution eϕ(6.1eV)as a result,and two electrons may be ejected:One neutralizes the positive ion,and the other desorbs from the cathode surface,forming the secondary electron.At the cathode surface,the currentflow in the gas phase is mainly carried by the positive gas ions;however,a lot of the positive gas ions are deionized at the cathode surface [11].As a result,aqueous electrons(e−aq)[14]and some cations (H2O+,H3O+,etc.)are formed in the solution phase.These water-phase charge particles act as the current carriers in the aqueous solution.In fact,we can predict the decolorization results(η(N2)>η(Ne)>η(Ar)>η(O2))even before carrying out the experi-ments;this was because of the potential ejection of the positive ions that were mentioned earlier.During this process,a positive ion with a higher ionization potential can transfer more ioniza-tion energy to the cathode surface.Thus,it is possible that the positive ion with the higher ionization potential can produce more OH radicals.As Fig.3shows,in optical emission spectra experiments,evidently,the emission spectra which belong to the positiveions were markedly stronger than that belonging to the otherspecies.The most prominent emission spectra lines or bandswere observed as follows:N2+(336.1nm,312.5nm,etc.)in theN2discharge[see Fig.3(a)],O+2(A2Πu−X2Πg system[15], 321.1nm,323.1nm,etc.)in the O2discharge[see Fig.3(b)],Ar+(321.3nm,329.3nm,etc.)in the Ar discharge[seeFig.3(c)],and Ne+(337.1nm,357.7nm,etc.)in the Nedischarge[see Fig.3(d)].These results demonstrate that themajority excitation particles were positive ions and the mainlypositive ions were N2+,O+2,Ar+,and Ne+in the N2,Ne,O2,Ar,and Ne discharges,respectively.According to theliterature[16],the ionization potential values of the mainlyposition ions in the four different gas discharges consideredin this paper decrease in the following order:N2+(29.5eV)>Ne+(21.5eV)>Ar+(15.8eV)>O+2(12.2eV).Interestingly,the sequence is in accordance with the sequence of the decol-orization rate:η(N2)>η(Ne)>η(Ar)>η(O2).Therefore,the decolorization rate could be thought to depend on theionization potential in some degree.Additionally,it is possible that the metastable potential ofthe gases affect the decolorization of dye.For example,themetastable potential of Ne(16.53eV)is higher than that ofAr(11.49eV)as well as the decolorization rate in the Nedischarge is higher than that in the Ar discharge.Owing tothe long lifetime of metastable states(10−3s),the metastableatoms have enough time to go through the cathode fall regionand transfer their energy to the solvent molecules.The excitation potential of Ne(16.58eV)is higher thanthat of Ar(11.56eV),and this might affect the decolorizationalso.However,many excitation atoms unlikely transfer theirenergy to the solvent molecules due to the shorter lifetime ofthe excitation states(10−8∼10−10s).Hence,not all of the excitation atoms are involved in the decolorization effect.IV.C ONCLUSIONIn this paper,some chemical and physical factors have been investigated during the liquid cathode process of the decol-orization of acid red B in aqueous solution.It was found that the decolorization effect has been obtained no matter whether the discharge gas is active or inert and that the decoloriza-tion efficiency is lower in the pure O2discharge than that in the other gas discharges.The experimental results have also demonstrated that the hydroxyl radicals are mainly responsible for the decolorization in the solution phase and that the ioniza-tion potential,the metastable potential of the discharge gases, probably affects the decolorization also.The results of our study suggest that the positive ion can affect the decolorization or degradation of the organic dyes in aqueous solution and that taking advantage of the deionization of the positive ions can be useful to improve the decolorization/degradation efficiency.R EFERENCES[1]J.-Z.Gao,X.Wang,Z.Hu,H.Deng,J.Hou,X.Lu,and J.Kang,“Plasmadegradation of dyes in water with contact glow discharge electrolysis,”Water Res.,vol.37,no.2,pp.267–272,Jan.2003.[2]L.Wang,“Aqueous organic dye discoloration induced by contact glowdischarge electrolysis,”J.Hazard.Mater.,vol.171,no.1–3,pp.577–581, Nov.2009.[3]P.Lukes and B.R.Locke,“Plasmachemical oxidation processes in hy-brid reactor,”J.Phys.D.Appl.Phys.,vol.38,no.22,pp.4074–4081, Nov.2005.[4]P.Lukes,M.Clupek,V.Babicky,and P.Sunka,“UV radiation from thepulsed corona discharge in water,”Plasma Sources Sci.Technol.,vol.17, no.2,pp.24012-1–24012-11,May2008.[5]A.Hickling,“Electrochemical processes in glow discharge electrolysisat the gas–solution interface,”in Modern Aspects in Electrochemistry, J.O.Bockris and B.E.Conway,Eds.,10th ed.New York:Plenum,1971, pp.329–373.[6]P.F.Little and A.V.Engel,“The hollow-cathode effect and theory of glowdischarge,”Proc.R.Soc.Lond.A,Math.Phys.Sci.,vol.224,no.1157, pp.209–227,Jun.1954.[7]R.H.Huddlestone and S.L.Leonard,Plasma Diagnostic Techniques.New York:Academic,1965,pp.151–198.[8]M.Magureanu,N.B.Mandache,and V.I.Parvulescu,“Degradation oforganic dyes in water by electric discharges,”Plasma Chem.Plasma Process.,vol.27,no.5,pp.589–598,Oct.2007.[9]A.K.Sharma,B.R.Locke,P.Arce,and W.C.Finney,“A preliminarystudy of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions,”Waste Hazard.Mater.,vol.10,no.2,pp.209–219, Apr.1993.[10]Y.Tabata,Y.Ito,and S.Tagawa,CRC Handbook of Radiation Chemistry.Boca Raton,FL:CRC Press,1991,pp.103–105.[11]A.V.Engel,Ionized Gases,2nd ed.Oxford,U.K.:Clarendon,1965,pp.222–233.[12]A.R.Denaro and K.O.Hough,“Glow-discharge electrolysis of sulphuricacid solutions,”Electrochim.Acta,vol.17,no.3,pp.549–559,Mar.1972.[13]H.D.Hagstrum,“The development of ion-neutralization spectroscopy,”J.Vac.Sci.Technol.,vol.12,no.1,pp.7–16,Jan.1975.[14]S.M.Thagard,K.Takashima,and A.Mizuno,“Chemistry of the posi-tive and negative electrical discharges formed in liquid water and abovea gas–liquid surface,”Plasma Chem.Plasma Process.,vol.29,no.6,pp.455–473,Dec.2009.[15]R.W.B.Pearse and A.G.Gaydon,The Identification of MolecularSpectra,4th ed.London,U.K.:Chapman&Hall,1976,pp.260–263.[16]G.Herzberg,Atomic Spectra and Atomic Structure.New York:Dover,1944.Dilai Lu was born in Shaanxi,China.He receivedthe B.S.and M.S.degrees in electric circuit andsystem from Northwest University,Xi’an,China.Heis currently working toward to the Ph.D.degree inthe Department of Environmental Science and Engi-neering,School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an.His current research interests include plasmachemistry and plasma wastewatertreatment.Jierong Chen was born in Shanghai,China,onFebruary18,1949.She received the Ph.D.degreefrom Kyoto Institute of Technology,Kyoto,Japan,in1991.She is currently with the Xi’an Jiaotong Univer-sity,Xi’an,China,where she is a Professor of plasmachemistry and the Head of the Department of Envi-ronmental Science and Engineering and where shehas been doing research in low-temperature plasmachemistry and plasma application in the medicalfieldsince1999,and,for the pastfive years,has been studying the main chemical features of the complex gas media excited by a different kind of gas discharge.Dr.Chen is a syndic of the polymer and a member of the American Association for the Advancement of Science.Aihua Gao was born in Shaanxi,China.She re-ceived the B.S.and M.S.degrees in physics from Northwest University,Xi’an,China,in1987and 1996,respectively.She is currently an Associate Professor with the Department of Physics,Northwest University.Her research interests include gas laser characterizationand gas discharge plasmaapplications.Georges Zissis(M’82–SM’06)was born in Athens,Greece,in1964.He received the degree in generalphysics from the Department of Physics,Universityof Crete,Crete,Greece,in1986,and the M.Sc.andPh.D.degrees in plasma science from Toulouse3University,Toulouse,France,in1987and1990,respectively.He is currently a Full Professor with the Depart-ment of Electrical Engineering,Toulouse3Univer-sity.He is also the Deputy Director of the Laboratoryof Plasma and Conversion of Energy,a joint labora-tory between the Toulouse3University,the National Polytechnic Institute of Toulouse,Toulouse,and the French National Council of Research.He acted as the Chairman of the European Union COST-529“efficient lighting for the21st century”network.He is working in the domain of light sources science and technology.Prof.Zissis was a Chairman of the Industrial Lighting and Displays Tech-nical Committee of the IEEE Industry Applications Society,and a National Secretary and a President of the Regional Branch of the French Illuminating Society(AFE).Shangbin Hu was born in1984.He is currently working toward the degree at Northwest University, Xi’an,China.His research interests include plasmaapplications. Zhiguo Lu was born in Henan,China.He received the B.S.degree from the Department of Physics, Northwest University,Xi’an,China.He is currently a Professor with Northwest Uni-versity.His research interests include plasma appli-cation,gas laser,and lighting technology.Prof.Lu is the Chairman of the Laser and Infrared Society in Xi’an and the Vice-Chairman of the Illu-minating Engineering Society in Shaanxi,China.。