新初中数学命题与证明的易错题汇编及答案解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学命题与证明的易错题汇编及答案解析(1)
一、选择题
1.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )
A .①②③④
B .①③④
C .①③
D .①
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题; ②对顶角相等,其逆命题:相等的角是对顶角,是假命题;
③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;
④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题; 故选C .
【点睛】
本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.
2.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:
①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )
A .③④②①
B .③④①②
C .①②③④
D .④③①②
【答案】B
【解析】
【分析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:
应该为:(1)假设∠B ≥90°,
(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,
(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B <90°,
原题正确顺序为:③④①②,
故选B .
【点睛】
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
3.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )
A .0个
B .1个
C .2个
D .3个
【答案】B
【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.
【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;
②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确; ③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,
所以逆命题成立的只有一个,
故选B.
【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.
4.下列命题正确的是( )
A .矩形的对角线互相垂直平分
B .一组对角相等,一组对边平行的四边形一定是平行四边形
C .正八边形每个内角都是145o
D .三角形三边垂直平分线交点到三角形三边距离相等
【答案】B
【解析】
【分析】
根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.
【详解】
A.矩形的对角线相等且互相平分,故原命题错误;
B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.
证明:∵//AB CD ,
∴180A D +=︒∠∠,
∵A C ∠=∠,
∴180C D ∠+∠=︒,
∴//AD BC ,
又∵//AB CD ,
∴四边形ABCD 是平行四边形,
∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;
C.正八边形每个内角都是:()180821358
︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误. 故选:B .
【点睛】
本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.
5.下列命题:
①两条直线被第三条直线所截,同位角相等;
②两点之间,线段最短;
③相等的角是对顶角;
④直角三角形的两个锐角互余;
⑤同角或等角的补角相等.
其中真命题的个数是( )
A .2个
B .3个
C .4个
D .5个
【答案】B
【解析】
【分析】
【详解】
解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B .
考点:命题与定理.
6.以下说法中:(1)多边形的外角和是360︒;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为() A .0
B .1
C .2
D .3
【答案】C
【解析】
【分析】
利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.
【详解】
解:(1)多边形的外角和是360°,正确,是真命题;
(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;
(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,
真命题有2个,
故选:C .
【点睛】
考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.
7.下列命题中是真命题的是( )
A .两个锐角的和是锐角
B .两条直线被第三条直线所截,同位角相等
C .点(3,2)-到x 轴的距离是2
D .若a b >,则a b ->-
【答案】C
【解析】
【分析】
根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.
【详解】
A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;
B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;
C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;
D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.
故选:C .
【点睛】
本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.
8.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥c ,
则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )
A .1 个
B .2 个
C .3 个
D .4 个
【答案】A
【解析】
【分析】
根据立方根、平行线的判定和算术平方根判断即可.
【详解】
解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确;
③若0ab =,则(,)P a b 表示原点或坐标轴,错误;
3,错误;
故选:A .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
9.下列命题中逆命题是假命题的是( )
A .如果两个三角形的三条边都对应相等,那么这两个三角形全等
B .如果a 2=9,那么a=3
C .对顶角相等
D .线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A 、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
B 、逆命题为:如果a=3,那么a 2=9.是真命题;
C 、逆命题为:相等的角是对顶角.是假命题;
D 、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题. 故选C .
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
10.下列说法正确的是( )
A .若a >b ,则a 2>b 2
B .若三条线段的长a 、b 、c 满足a +b >c ,则以a 、b 、c 为边一定能组成三角形
C .两直线平行,同旁内角相等
D .三角形的外角和为360°
【答案】D
【解析】
利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.
【详解】
A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;
B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;
C、两直线平行,同旁内角互补,故本选项错误;
D、三角形的外角和为360°,故本选项正确;
故选:D
【点睛】
本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.
11.在下列各原命题中,其逆命题为假命题的是()
A.直角三角形的两个锐角互余
B.直角三角形两条直角边的平方和等于斜边的平方
C.等腰三角形两个底角相等
D.同角的余角相等
【答案】D
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;
B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;
C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;
D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.
故选:D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
12.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
【答案】D
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A 、两直线平行,同位角相等,是假命题;
B 、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
C 、同旁内角互补,两直线平行,是假命题;
D 、平行于同一直线的两条直线互相平行,是真命题;
故选:D .
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
13.下列命题中,假命题是( )
A .平行四边形的对角线互相垂直平分
B .矩形的对角线相等
C .菱形的面积等于两条对角线乘积的一半
D .对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A. 平行四边形的对角线互相平分,故是假命题;
B. 矩形的对角线相等,故是真命题;
C. 菱形的面积等于两条对角线乘积的一半,故是真命题;
D. 对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
14.下列命题中,是假命题的是( )
A .任意多边形的外角和为360o
B .在AB
C V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V
C .在一个三角形中,任意两边之差小于第三边
D .同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A. 任意多边形的外角和为360o ,是真命题;
B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;
C. 在一个三角形中,任意两边之差小于第三边,是真命题;
D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.
故选D .
【点睛】
本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.
15.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )
A .1a =-,2b =
B .2a =,1b =-
C .1a =,2b =-
D .2a =-,1b =
【答案】D
【解析】
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.
【详解】
A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;
B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;
C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;
D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,
故选:D .
【点睛】
本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.
16.交换下列命题的题设和结论,得到的新命题是假命题的是( )
A .两直线平行,同位角相等
B .相等的角是对顶角
C .所有的直角都是相等的
D .若a=b ,则a ﹣3=b ﹣3
【答案】C
【解析】
【分析】
写出原命题的逆命题,根据相关的性质、定义判断即可.
【详解】
解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;
交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,
故选C .
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
17.下列命题中,真命题的序号为( )
①相等的角是对顶角;
②在同一平面内,若//a b ,//b c ,则//a c ;
③同旁内角互补;
④互为邻补角的两角的角平分线互相垂直.
A .①②
B .①③
C .①②④
D .②④
【答案】D
【解析】
【分析】
根据对顶角的性质、平行线的判定、平行线的性质、角平分线的性质判断即可.
【详解】
①相等的角不一定是对顶角,是假命题;
②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ,是真命题;
③两直线平行,同旁内角互补; 是假命题;
④互为邻补角的两角的角平分线互相垂直,是真命题;
故选:D .
【点睛】
此题考查命题的真假判断,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
18.下面命题的逆命题正确的是( )
A .对顶角相等
B .邻补角互补
C .矩形的对角线互相平分
D .等腰三角形两腰相等
【答案】D
【解析】
【分析】
先分别写出四个命题的逆命题,然后利用对顶角的定义、邻补角的定义、矩形的判断和等腰三角形的判定方法对各命题的真假进行判断.
【详解】
解:A.对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;
B.邻补角互补的逆命题为互补的角为邻补角,此逆命题为假命题;
C.矩形的对角线互相平分的逆命题为对角线互相平分的四边形为矩形,此逆命题为假命题;
D.等腰三角形两腰相等的逆命题为两边相等的三角形为等腰三角形,此逆命题为真命题.故答案为D.
【点睛】
本题考查了命题与定理,掌握举出反例法是判断命题的真假的重要方法.
19.下列命题是假命题的是()
A.三角形的外心到三角形的三个顶点的距离相等
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限
D.若关于x的一元一次不等式组
213
x m
x
-≤
⎧
⎨
+>
⎩
无解,则m的取值范围是1
m£
【答案】B
【解析】
【分析】
利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.
【详解】
A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;
B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;
C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;
D. 若关于x的一元一次不等式组
213
x m
x
-≤
⎧
⎨
+>
⎩
无解,则m的取值范围是1
m£,正确,是真
命题;
故答案为:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.
20.用三个不等式a>b,ab>0,1
a
>
1
b
中的两个不等式作为题设,余下的一个不等式作
为结论组成一个命题,组成真命题的个数为()
A.0 B.1 C.2 D.3【答案】A
【解析】
【分析】
由题意得出3个命题,由不等式的性质再判断真假即可.【详解】
解:①若a>b,ab>0,则1
a
>
1
b
;假命题:
理由:∵a>b,ab>0,∴a>b>0,
∴1
a
<
1
b
;
②若ab>0,1
a
>
1
b
,则a>b,假命题;
理由:∵ab>0,∴a、b同号,
∵1
a
>
1
b
,
∴a<b;
③若a>b,1
a
>
1
b
,则ab>0,假命题;
理由:∵a>b,1
a
>
1
b
,
∴a、b异号,
∴ab<0.
∴组成真命题的个数为0个;
故选:A.
【点睛】
本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.。