判别分析及MATLAB应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判别分析及MATLAB应用
摘要
本文针对线性判别分析(LDA),总结了LDA的基本原理、求解过程
和MATLAB应用。

首先介绍了LDA的基本原理,即在最大化类内方差和最
小化类间方差之间寻求一个平衡,以作为类间距离的度量;然后,详细介
绍了求解LDA的算法流程,包括LDA的假设、建立数学模型、求解驻点过
程等;最后,结合MATLAB示例,介绍了如何在MATLAB中实现LDA,并介
绍了各种LDA的实现方法。

关键词:线性判别分析(LDA);最大似然估计;MATLAB
1 研究背景
统计学习理论中有两种重要分类模型:支持向量机(Support Vector Machine,SVM)和线性判别分析(Linear Discriminant Analysis,LDA)。

LDA是一种分类模型,它假设每个类别的概率密度函数都是一个
多元正态分布,利用极大似然估计,将各类样本数据的IC。

概率密度函
数的参数估计出来。

LDA可以有效的将特征进行降维,以得到较好的分类
结果。

2 线性判别分析原理
LDA是基于极大似然估计的一种分类模型,假定样本数据服从多元正
态分布,其目的是在最大化类内方差和最小化类间方差之间寻求一个平衡,以作为类间距离的度量。

(1)LDA的假设
LDA的假设有如下几点:
a.样本空间中两类样本具有多元正态分布。

相关文档
最新文档