高一数学公式大全--新版

合集下载

高一数学公式大全

高一数学公式大全

高一数学公式大全高中一年级数学公式大全:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / (2a);2. 等差数列的通项公式:对于等差数列an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差,通项公式为an = a1 + (n-1)d;3. 等比数列的通项公式:对于等比数列an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比,通项公式为an = a1 * r^(n-1);4. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2;5. 二次三项式的因式分解公式:a^2 - b^2 = (a+b)(a-b);6. 两点之间的距离公式:对于平面上两点A(x1, y1)和B(x2, y2),两点之间的距离公式为AB = √((x2-x1)^2 + (y2-y1)^2);7. 余弦定理:对于任意三角形ABC,AB^2 = BC^2 + AC^2 -2BC·AC·cos∠BAC;8. 正弦定理:对于任意三角形ABC,a/sin∠A = b/sin∠B =c/sin∠C;9. 高度公式:对于任意三角形ABC,三角形的高h_a可表示为h_a =2A/b,其中A表示三角形ABC的面积,b表示BC边的长度;10. 余角公式:sin(90-θ) = cosθ;11. 诱导公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB;12. 乘法公式:sin(A + B) = sinAcosB + cosAsinB,sin(A - B) = sinAcosB - cosAsinB;13. 三角函数基本关系式:tanθ = sinθ/cosθ;14. 对数的换底公式:loga(b) = logc(b) / logc(a);15. 组合公式:C(n, m) = n! / (m!(n-m)!),其中C(n, m)表示从n个元素中取m个元素的组合数;16. 回文数判断公式:若一个n位数的各个数位上的数字自左至右和自右至左读都相同,则称其为回文数;17. 两平行线之间的距离公式:对于平行线L1和L2及点P,垂直于L1的线段PM与L2相交于点M,线段PM即为L1与L2之间的距离;18. 二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n,其中C(n,m)表示从n个元素中取m个元素的组合数;19. 勾股定理:直角三角形的斜边c的平方等于两直角边a和b的平方和;20. 平行线与三角形相交的性质:若一条直线与两条平行线相交,则所形成的三角形内部的对应角相等。

高一数学公式大全(完整资料).doc

高一数学公式大全(完整资料).doc

【最新整理,下载后即可编辑】1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于)()(21<k f k f ,或)(1=k f 且22211k k a bk +<-<,或)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或240a b ac <⎧⎨-<⎩. 12.真值表14.四种命题的相互关系逆命题 若q则p互 为 为 互 否 否 逆 逆逆否命题 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f k y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈. 注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>. 34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ).48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Zππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-.53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)OABS ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈. 特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Zπππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ .注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或. 74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分. 86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d . 其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为y kx =±。

高一数学公式大全

高一数学公式大全

高一数学公式大全1. 代数公式1.1 二次方程根公式对于二次方程ax^2 + bx + c = 0,可以使用以下公式求解其根:x = (-b ± √(b^2 - 4ac)) / (2a)1.2 因式分解公式对于二次多项式的因式分解,可以使用以下公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a + b)(a - b)等等。

2. 几何公式2.1 直角三角形对于直角三角形,可以使用以下公式:勾股定理:c^2 = a^2 + b^2正弦定理:a / sinA = b / sinB = c / sinC 余弦定理:c^2 = a^2 + b^2 - 2ab cosC2.2 圆对于圆,可以使用以下公式:圆的周长:C = 2πr圆的面积:A = πr^2等等。

3. 概率与统计公式3.1 概率对于概率计算,可以使用以下公式:概率 P(A) = n(A) / n(S)互斥事件概率:P(A ∪ B) = P(A) + P(B)独立事件概率:P(A ∩ B) = P(A) * P(B)3.2 统计对于统计分析,可以使用以下公式:平均值:mean = (x1 + x2 + ... + xn) / n方差:variance = ((x1 - mean)^2 + (x2 - mean)^2 + ... + (xn - mean)^2) / n标准差:standard deviation = √variance等等。

4. 其他重要公式4.1 指数与对数对于指数与对数运算,可以使用以下公式:指数公式:a^m * a^n = a^(m + n)对数公式:loga(xy) = loga(x) + loga(y)4.2 排列与组合对于排列与组合计算,可以使用以下公式:排列数:P(n, r) = n! / (n - r)!组合数:C(n, r) = n! / (r! * (n - r)!)等等。

高一数学所有公式归纳

高一数学所有公式归纳

高一数学所有公式归纳一、代数部分1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n2. 因式分解公式:a^2 - b^2 = (a+b)(a-b)3. 奇偶性公式:(-1)^n = 1 (n为偶数), (-1)^n = -1 (n为奇数)4. 平方差公式:a^2 - b^2 = (a+b)(a-b)5. 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)6. 二次根式化简公式:√(a ± √b) = √[(a + √b) / 2] ± √[(a - √b) / 2]二、几何部分1. 直角三角形勾股定理:a^2 + b^2 = c^2 (c为斜边,a、b为直角边)2. 正弦定理:a/sinA = b/sinB = c/sinC (a、b、c为三角形的边长,A、B、C为对应的角度)3. 余弦定理:c^2 = a^2 + b^2 - 2abcosC (a、b、c为三角形的边长,C为对应的角度)4. 正切定理:tanA = a/b (a、b为直角三角形的边长,A为对应的角度)5. 相似三角形比例公式:a/b = c/d = e/f (a、b、c、d、e、f为相似三角形的对应边长)6. 圆的面积公式:S = πr^2 (r为圆的半径)7. 圆的周长公式:C = 2πr (r为圆的半径)8. 扇形面积公式:S = θ/360° * πr^2 (θ为扇形的角度,r为半径)三、概率统计部分1. 排列公式:A(n, m) = n! / (n-m)! (n为总数,m为选取的个数)2. 组合公式:C(n, m) = n! / (m! * (n-m)!) (n为总数,m为选取的个数)3. 期望公式:E(X) = Σx * P(x) (X为随机变量,x为可能的取值,P(x)为概率)4. 方差公式:Var(X) = Σ(x-E(X))^2 * P(x) (X为随机变量,x为可能的取值,P(x)为概率,E(X)为期望)5. 标准差公式:SD(X) = √Var(X) (X为随机变量)四、微积分部分1. 导数定义公式:f'(x) = lim(h→0) [f(x+h) - f(x)] / h (f(x)为函数,f'(x)为导数)2. 导数四则运算法则:(cf(x))' = cf'(x), (f(x)±g(x))' = f'(x)±g'(x), (f(x)g(x))' = f'(x)g(x) + f(x)g'(x), (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / g^2(x)3. 积分定义公式:∫f(x)dx = F(x) + C (f(x)为函数,F(x)为其原函数,C为常数)4. 不定积分法则:∫(f(x)±g(x))dx = ∫f(x)dx ± ∫g(x)dx, ∫cf(x)dx =c∫f(x)dx (c为常数)5. 定积分公式:∫[a,b] f(x)dx = F(b) - F(a) (f(x)为函数,F(x)为其原函数,[a,b]表示积分区间)五、数列部分1. 等差数列通项公式:a(n) = a(1) + (n-1)d (a(n)为第n项,a(1)为首项,d为公差)2. 等差数列前n项和公式:S(n) = n/2 * (a(1) + a(n)) (S(n)为前n 项和,a(1)为首项,a(n)为第n项)3. 等比数列通项公式:a(n) = a(1) * r^(n-1) (a(n)为第n项,a(1)为首项,r为公比)4. 等比数列前n项和公式:S(n) = a(1) * (1 - r^n) / (1 - r) (S(n)为前n项和,a(1)为首项,r为公比)这些公式是高一数学中常见的公式,通过运用它们,可以解决各种代数、几何、概率统计、微积分和数列的问题。

高一数学公式总结

高一数学公式总结

高一数学公式总结1500字高一数学公式总结一、代数公式1. 二次根式公式:(a+b)² = a² + 2ab + b²2. 二次根式方差公式:(a-b)² = a² - 2ab + b²3. 二次根式与一次根式乘法公式:a√b · c√d = (a · c)√(b · d)4. 一次根式除法公式:a√b / c√d = (a / c)√(b / d)5. 两个一次根式相加时的简化公式:a√b ± c√b = (a ± c)√b6. 两个一次根式相减时的简化公式:a√b ± c√b = (a ± c)√b7. 复数加法公式:(a+bi) + (c+di) = (a+c) + (b+d)i8. 复数减法公式:(a+bi) - (c+di) = (a-c) + (b-d)i9. 复数乘法公式:(a+bi) · (c+di) = (ac-bd) + (ad+bc)i10. 复数除法公式:(a+bi) / (c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i二、三角公式1. 正弦定理:a/sinA = b/sinB = c/sinC = 2R (其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径)2. 余弦定理:c² = a² + b² - 2abcosC (其中c为三角形的边长,a、b为其他两边的长度,C为它们的夹角)3. 正弦函数和余弦函数的和差公式:sin(x ± y) = sinx·cosy ± cosx·siny和cos(x ± y) = cosx·cosy ∓ sinx·siny4. 三角函数和差公式:sin(x ± y) = sinx·cosy ± cosx·siny和cos(x ± y) = cosx·cosy ∓sinx·siny5. 三角函数积化和差公式:sinx·siny = (1/2)(cos(x-y) - cos(x+y))和cosx·cosy = (1/2)(cos(x-y) + cos(x+y))6. 二倍角公式:sin2x = 2sinx·cosx和cos2x = cos²x - sin²x三、解析几何公式1. 点与直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)2. 点到平面的距离公式:d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²)3. 直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)4. 平面斜率公式:k = (z₂ - z₁) / (x₂ - x₁)5. 两点间距离公式:d = √[(x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²]6. 两点间中点坐标公式:(x, y) = (x₁ + x₂) / 2, (y₁ + y₂) / 2, (z₁ + z₂) / 27. 点到直线的距离公式:d = |Ax₀ + By₀ - C| / √(A² + B²)8. 点到平面的距离公式:d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²)9. 平面一般方程:Ax + By + Cz + D = 0四、概率统计公式1. 计数原理:设一个操作共有m种可能,第一步有n₁种选择,第二步有n₂种选择,...,则共有n₁n₂...种可能。

高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。

- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。

2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。

- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。

3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。

- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。

- 二次函数的图像关于直线 x = -b/(2a) 对称。

4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。

- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。

- 绝对值函数是奇函数,即 f(x) = -f(-x)。

5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。

- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。

- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。

二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。

2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。

3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。

2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。

3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。

4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。

5、推导公式:tanα+cotα=2/sin2α。

数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。

2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。

3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

5、-ctgA+ctgBsin(A+B)/sinAsinB。

数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时。

2、分数指数幂。

正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。

高一数学上册全部公式

高一数学上册全部公式

高一数学上册全部公式一、集合。

1. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。

- 若A中的元素都在B中,则A⊆ B(A是B的子集);若A⊆ B且B⊆ A,则A = B。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

2. 函数的表示法。

- 解析法:用数学表达式表示两个变量之间的对应关系。

- 图象法:用图象表示两个变量之间的对应关系。

- 列表法:列出表格来表示两个变量之间的对应关系。

3. 函数的性质。

- 单调性。

- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性。

- 对于函数y = f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于函数定义域内的任意一个x,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。

4. 一次函数y = kx + b(k≠0)- 斜率k=(Δ y)/(Δ x),k决定函数的单调性,当k>0时,函数单调递增;当k<0时,函数单调递减。

- b为截距,是直线与y轴交点的纵坐标。

5. 二次函数y = ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 对称轴方程x =-(b)/(2a)- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

高中高一数学公式大全

高中高一数学公式大全

高中高一数学公式大全一、代数1. 二次方程求根公式:根据二次方程 ax^2 + bx + c = 0 的系数 a、b、c 求解方程的根 x 的公式为 x = (-b ± √(b^2 - 4ac)) / (2a)。

2. 因式分解公式:对于多项式,如 a^2 - b^2 ,可以利用差平方公式将其因式分解为 (a - b)(a + b)。

3. 二项式定理:根据二项式 (a + b)^n 的展开式,可以得到每一项的系数,公式为 (a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ... + C(n, n)a^0 b^n ,其中 C(n, k) 表示从 n 个元素中取出 k 个元素的组合数。

二、几何1. 直角三角形的勾股定理:在直角三角形中,设直角边的长为a,另外两边的长分别为 b 和 c,满足条件 a^2 + b^2 = c^2。

2. 圆的周长和面积公式:圆的周长公式为C = 2πr ,面积公式为A = πr^2 ,其中 r 表示圆的半径。

3. 相似三角形的边长比例:对于相似三角形 ABC 和 DEF ,它们对应的边长之比满足 AB/DE = BC/EF = AC/DF 。

三、函数1. 直线的斜率公式:设直线上两个点的坐标分别为 (x1, y1) 和(x2, y2),那么直线的斜率 k = (y2 - y1) / (x2 - x1)。

2. 一次函数的图像方程:一次函数的图像方程为 y = kx + b ,其中 k 表示斜率,b 表示截距。

3. 幂函数的性质:幂函数 y = x^a 其中 a 是常数,当 a > 0 时,函数是递增的,当 a = 0 时,函数是常数函数,当 a < 0 时,函数是递减的。

以上只是高中高一数学公式的一部分,希望能对您的学习有所帮助。

高一数学知识点公式大全总结

高一数学知识点公式大全总结

高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。

5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。

乘法:相乘后约分。

除法:转换为乘法,分子乘以倒数。

10. 根式的运算法则加减法:合并同类项,并进行化简。

乘法:相乘后合并同类项,并进行化简。

除法:转换为乘法,除数的倒数乘以被除数。

二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。

6. 正方形的性质正方形的四条边相等,四个内角都为90度。

7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。

数学高一知识点及公式

数学高一知识点及公式

数学高一知识点及公式高中数学知识点及公式一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为常数。

斜率公式:k = (y₂ - y₁) / (x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上两点的坐标。

2. 二次函数二次函数的标准方程为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。

顶点坐标公式:顶点的横坐标为x = -b / (2a),纵坐标为y = -Δ / (4a),其中Δ为判别式,Δ = b² - 4ac。

3. 指数函数指数函数的标准方程为:y = a^x,其中a为底数,a > 0且a ≠ 1。

公式:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n。

4. 对数函数对数函数的标准方程为:y = logₐx,其中a为底数,a > 0且a ≠ 1。

公式:logₐ(mn) = logₐm + logₐn,logₐ(m/n) = logₐm - logₐn,logₐ(m^n) = n * logₐm。

5. 三角函数常见三角函数有正弦函数、余弦函数和正切函数。

正弦函数的定义:y = sin(x),取值范围为[-1, 1]。

余弦函数的定义:y = cos(x),取值范围为[-1, 1]。

正切函数的定义:y = tan(x),取值范围为实数。

二、平面几何1. 直线直线的一般方程为:Ax + By + C = 0,其中A、B、C为实数且A² + B² ≠ 0。

直线的斜率公式:k = -A / B。

2. 平面平面的一般方程为:Ax + By + Cz + D = 0,其中A、B、C、D为实数且A² + B² + C² ≠ 0。

平面的法向量:平面的法向量为(A, B, C)。

高一数学-必修一、四常用公式

高一数学-必修一、四常用公式

ylogc x ylogd x
3
系 指数函数与对数函 数的关系
y a x 与 y log a x ( a 0 且 a 1) 互为反函数,它们的图象关于直线 y x 对称
函数 y log a f ( x ) (a 0 ,且 a 1) 的单调性结论
当 a 1时 当 0 a 1时 6.幂函数

1 时,幂函数的图象下凸;当 0 1 时,幂函数的图象上凸; ③ 0 时, 幂函数的图象在区间 (0,) 上是减函数.在第一象限内, 当 x 从右边趋 向原点时,图象在 y 轴右方无限地逼近 y 轴正半轴,当 x 趋于 时,图象在 x 轴上方无
限地逼近 x 轴正半轴.
sin sin tan cos , cos tan
.
4
7.函数的诱导公式: (口诀:奇变偶不变,符号看象限.) (1) sin 2k sin , cos 2k cos , tan 2k tan k . (2) sin sin , cos cos , tan tan . (3) sin sin , cos cos , tan tan . (4) sin sin , cos cos , tan tan .
(5) sin cos , cos sin . 2 2 (6) sin cos , cos sin . 2 2
8.两角和与差的正弦、余弦和正切公式: (1)cos cos cos sin sin ; (2)cos cos cos sin sin ; (3) sin sin cos cos sin ; (4) sin sin cos cos sin ; (5) tan (6) tan

高一数学公式知识点大全

高一数学公式知识点大全

高一数学公式知识点大全一、初等数论公式:1. 两个整数的乘积等于它们的最大公约数与最小公倍数的积:a *b = gcd(a, b) * lcm(a, b)2. 费马小定理:如果 p 是一个质数,a 是任意整数且 a 不是 p 的倍数,那么:a^(p-1) ≡ 1 (mod p)3. 埃拉托斯特尼筛法:利用筛法可以快速求解小于等于 n 的所有质数。

首先创建一个长度为 n+1 的布尔数组,然后将数组中的所有元素初始化为 true。

从 2 开始,如果该数为质数,则将其所有倍数标记为非质数。

最后,遍历布尔数组,所有仍然标记为 true 的数字即为质数。

二、代数公式:1. 二次方程求根公式:对于 ax^2 + bx + c = 0,其求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)2. 二次根式的乘法公式:(√a + √b)(√a - √b) = a - b3. 二次根式的加减法公式:(√a ± √b)^2 = a± 2√ab + b4. 二项式的展开公式:(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n-1)a b^(n-1) + C(n, n)a^0 b^n其中,C(n, k) 表示从 n 个元素中选取 k 个元素的组合数。

三、三角函数公式:1. 三角函数的和差化简公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)tan(y))2. 三角函数的平方和差化简公式:sin^2(x) + cos^2(x) = 1sin^2(x) - cos^2(x) = sin(2x)cos^2(x) - sin^2(x) = cos(2x)3. 三角函数的倍角化简公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = (2tan(x)) / (1 - tan^2(x))四、几何公式:1. 圆的面积公式:S = πr^22. 球的体积公式:V = (4/3)πr^33. 直角三角形的勾股定理:a^2 + b^2 = c^2其中,c 表示直角边长,a 和 b 表示另外两个边长。

高中数学必修一公式大全

高中数学必修一公式大全

高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。

在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。

在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。

一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。

高一数学所有公式大全

高一数学所有公式大全

高一数学所有公式大全1. 代数1.1 一次方程- 一次方程的定义:- 形如 $ax + b = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 是常数。

- 一次方程的解法:- 将方程转化为标准形式,即 $x = \frac{-b}{a}$。

1.2 二次方程- 二次方程的定义:- 形如 $ax^2 + bx + c = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 和 $c$ 是常数。

- 二次方程的解法:- 使用公式 $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ 计算方程的根。

1.3 等差数列- 等差数列的定义:- 一个数列,其中任意两个相邻的项之差都相等。

- 等差数列的通项公式:- $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

1.4 等比数列- 等比数列的定义:- 一个数列,其中任意两个相邻的项之比都相等。

- 等比数列的通项公式:- $a_n = a_1 \cdot r^{(n-1)}$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$r$ 是公比,$n$ 是项数。

2. 几何2.1 直线与角- 直线与角的定义:- 直线是一个无限延伸的曲线,两个非相邻点可以唯一确定一条直线。

- 角是由两条相交的直线所形成的两个射线之间的空间部分。

- 直线与角的性质:- 两条相交直线所形成的相邻内角互补,即它们之和等于$180^\circ$。

2.2 三角形- 三角形的定义:- 有三条边和三个角的图形。

- 三角形的性质:- 三角形的内角和等于 $180^\circ$。

- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

2.3 圆- 圆的定义:- 由与圆心距离相等的所有点组成的图形。

- 圆的性质:- 圆上的任意弧所对的圆心角等于该圆上的任意两条切线所夹的角。

高一知识点归纳数学公式总结

高一知识点归纳数学公式总结

高一知识点归纳数学公式总结一、代数1.二次方程:对于二次方程ax²+bx+c=0,解可以用以下公式表示:x = (-b ± √(b²-4ac))/(2a)2.因式分解:通过找到一个或多个公因子,将多项式表示为乘法形式。

3.二项式定理:二项式定理用于展开一个二项式的幂:(a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1) * b + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * b^n4.指数和对数:(a^m) * (a^n) = a^(m+n)(a^m) / (a^n) = a^(m-n)(a^m)^n = a^(m*n)loga(m*n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^n) = n*loga(m)5.等差数列公式:第n个数:an = a1 + (n-1)d数列总和:Sn = (n/2)*(a1 + an)6.等比数列公式:第n个数:an = a1 * r^(n-1)数列总和:Sn = (a1 * (r^n - 1))/(r - 1)7.排列与组合:n个元素中取r个元素的排列数:A(n,r) = n!/(n-r)!n个元素中取r个元素的组合数:C(n,r) = n!/(r!(n-r)!)二、几何1.正弦定理:在任意三角形ABC中,边长分别为a、b、c:a/sinA = b/sinB = c/sinC2.余弦定理:在任意三角形ABC中,边长分别为a、b、c:c² = a² + b² - 2ab*cosC3.正切定理:在任意三角形ABC中,边长分别为a、b、c:(a+b)/(a-b) = (tan((A+B)/2))/(tan((A-B)/2))4.勾股定理:直角三角形斜边的平方等于两直角边平方和:c² = a² + b²5.面积公式:三角形的面积:S = (1/2)*b*h梯形的面积:S = (a+b) * h / 2圆的面积:S = π * r²三、概率与统计1.排列:n个元素的全排列数:P(n) = n!2.组合:n个元素中取r个元素的组合数:C(n,r) = n! / (r! * (n-r)!)3.事件概率:P(A and B) = P(A) * P(B|A)P(A or B) = P(A) + P(B) - P(A and B)4.正态分布:正态分布是一个对称的连续概率分布,由均值和标准差两个参数决定。

数学公式高一必背公式

数学公式高一必背公式

高一数学必背公式如下:诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)。

二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα。

三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα。

四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα。

五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα。

高一数学公式某些数列前n项和。

1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2。

2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6。

13+23+33+43+53+63+n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7++n(n+1)=n(n+1)(n+2) /3。

正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径。

余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角。

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标。

圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0。

高一数学必背公式及知识汇总

高一数学必背公式及知识汇总

高一数学必背公式及知识汇总1. 几何公式1.1 三角形•周长公式:三角形的周长等于三条边长之和:C=a+b+c。

•面积公式:三角形的面积可以用底和高计算:$S=\\frac{1}{2}bh$。

1.2 圆•圆的周长公式:圆的周长可以用半径计算:$C=2\\pi r$。

•圆的面积公式:圆的面积可以用半径计算:$S=\\pi r^2$。

1.3 矩形和正方形•矩形的周长公式:矩形的周长可以用长和宽计算:C=2(l+w)。

•矩形的面积公式:矩形的面积可以用长和宽计算:S=lw。

2. 代数公式2.1 一次函数一次函数的一般形式为:y=ax+b,其中a为斜率,b为截距。

2.2 二次函数二次函数的一般形式为:y=ax2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。

•一元二次方程求根公式:一元二次方程ax2+bx+c=0的根可以通过下式求得:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$。

2.3 指数函数指数函数的一般形式为:y=a x,其中a为底数,x为指数。

•指数函数性质:–对于任意实数a,a0=1。

–对于任意实数a,$a^{-n}=\\frac{1}{a^n}$。

–对于任意实数a和b,$a^n \\cdot a^m = a^{n+m}$。

–对于任意实数a,$a^n \\div a^m = a^{n-m}$。

3. 概率与统计•排列公式:从n个不同元素中取出r个元素按一定次序排列的可能数可以用排列公式计算:$P_n^r = \\frac{n!}{(n-r)!}$。

•组合公式:从n个不同元素中取出r个元素不按次序排列的可能数可以用组合公式计算:$C_n^r = \\frac{n!}{r!(n-r)!}$。

•事件的概率:事件的概率等于有利结果数与总结果数之比:$P(A) = \\frac{N(A)}{N}$。

4. 函数•函数定义:函数是一个由一个或多个输入值得出唯一输出值的规则。

高一数学必修一公式

高一数学必修一公式

高一数学必修一公式高一数学必修一公式 11高一数学必修一公式【和差化积】2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sina=b/sinb=c/sinc=2r 注:其中 r 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式s=1/2xlxr乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1xx2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根【两角和公式】sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)【倍角公式】tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。

高一数学知识点及公式大全

高一数学知识点及公式大全

高一数学知识点及公式大全导语:数学作为一门具有普遍性和长久性的学科,一直被认为是科学的基石。

无论从理论还是实际应用方面,数学都发挥着重要的作用。

本文将介绍高一阶段的数学知识点及公式大全,帮助同学们全面理解数学的基础知识。

下面让我们开始探索吧!一、代数与函数1. 一次函数:函数表达式:y = kx + b斜率:k截距:b2. 二次函数:函数表达式:y = ax^2 + bx + c判别式:Δ = b^2 - 4ac零点:x = (-b ± √Δ) / 2a对称轴:x = -b / 2a顶点坐标:(h, k),其中 h = -b / 2a, k = f(h)3. 幂函数:函数表达式:y = x^a当 a > 1 时,图像开口向上;a < 1时,图像开口向下。

4. 对数函数:函数表达式:y = loga(x)特点:反函数是指数函数 y = a^x二、几何与三角学1. 相似三角形:两个三角形对应角相等,对应边成比例。

2. 正弦定理:a / sinA =b / sinB =c / sinC3. 余弦定理:c^2 = a^2 + b^2 - 2abcosC4. 正切定理:tanA = (a / b)三、概率与统计学1. 排列组合:排列:An^m = n!/(n-m)!组合:Cn^m = n!/(m!(n-m)!)2. 事件概率:P(A) = n(A) / n(S)3. 期望值:E(X) = Σ(xi * Pi)四、导数与微积分1. 基本导数公式:(1) (x^n)' = nx^(n-1)(2) (sinx)' = cosx, (cosx)' = -sinx(3) (ex)' = ex(4) (lnx)' = 1/x2. 高阶导数:f^(n)(x) 表示函数 f(x) 的 n 阶导数。

3. 泰勒展开式:f(x) = f(a) + f'(a)(x - a) + f''(a)/2!(x - a)^2 + ...五、数列与数学归纳法1. 等差数列:通项公式:an = a1 + (n - 1)d前n项和公式:Sn = (n / 2)(a1 + an)2. 等比数列:通项公式:an = a1 * q^(n - 1)前n项和公式:Sn = (a1 * (1 - q^n)) / (1 - q)3. 递归数列:an 根据前面的项(如 a(n-1)) 来定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学公式集合大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:奇变偶不变,符号看象限。

同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。

同理可推导余弦的万能公式。

正切的万能公式可通过正弦比余弦得到。

和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)0度sina=0,cosa=1,tana=030度sina=1/2,cosa=√3/2,tana=√3/345度sina=√2/2,cosa=√2/2,tana=160度sina=√3/2,cosa=1/2,tana=√390度sina=1,cosa=0,tana不存在120度sina=√3/2,cosa=-1/2,tana=-√3150度sina=1/2,cosa=-√3/2,tana=-√3/3180度sina=0,cosa=-1,tana=0270度sina=-1,cosa=0,tana不存在360度sina=0,cosa=1,tana=0等比数列公式如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

相关文档
最新文档