机械工程测试技术实验(发)
机械工程测试技术论文
机械工程测试技术论文引言机械工程是一门应用科学,涵盖了许多领域,如动力学、力学、材料科学等。
在机械工程领域中,测试技术起着重要的作用。
本论文将探讨机械工程测试技术的发展、应用以及相关挑战。
发展历程机械工程测试技术的发展经历了多个阶段。
最初的阶段是基于实验的测试,通过搭建实验设备进行物理量的测量。
随着计算机技术的发展,数字化测试逐渐取代了传统的实验方法。
现代机械工程测试技术充分利用了计算机的强大计算能力和数据处理能力,并借助传感器和数据采集系统开展实时数据采集和分析。
应用领域机械工程测试技术广泛应用于以下领域:1.材料测试材料的物理力学特性是机械结构设计的重要参数。
通过使用机械工程测试技术,可以对材料的强度、韧性和疲劳寿命等进行准确测量和分析。
这为工程师提供了可靠的材料数据,有助于设计出更耐用、更安全的机械结构。
2.结构测试机械结构的测试是评估其性能和可靠性的重要手段。
通过应用机械工程测试技术,可以验证设计理论和模型的正确性,并提供改进设计的指导。
结构测试包括静态加载试验、动态响应分析等,旨在评估结构的强度、刚度和稳定性。
3.振动与噪音测试振动与噪音是机械系统中常见的问题,对机器性能和使用寿命产生重要影响。
机械工程测试技术可以用于测量机械系统的振动幅值、频率和振动模式等,并分析其对结构和性能的影响。
同时,噪音测试也是机械工程测试的重要内容,可以用于评估噪音水平,并提供相应的噪音控制建议。
4.流体力学测试流体力学在机械工程中有着广泛的应用,如气动力学、液压学等。
机械工程测试技术在流体力学领域中起着至关重要的作用。
通过测量流体力学参数,如流速、压力和温度等,可以评估流体系统的性能,并提供优化设计的依据。
相关挑战机械工程测试技术虽然已经取得了许多成果,但仍然面临一些挑战。
1.复杂性机械系统的测试涉及到多个物理量的测量和分析,这增加了测试的复杂性。
对于大型和复杂的机械系统,测试过程中需要克服许多技术难题,如数据采集、传感器布置和信号处理等。
《机械工程测试技术 第3版》教案大纲
《机械工程测试技术》教学大纲一、课程基本信息二、课程性质和课程目标1.课程性质《机械工程测试技术》是面向机械及近机械类专业开设的一门专业技术基础课。
本课程培养学生具备从事测试工作、特别是动态测试工作所必需的基础知识,并熟练运用研究动态测试的基本理论和基本方法,为今后从事机械工程测试工作打下坚实的理论基础。
2. 课程目标课程目标1:能理解测试技术的基本概念,具备测试技术的基础理论知识,掌握基本的测试应用技术,具有独立分析测试系统的基本能力,并能提升科学素养。
课程目标2:能掌握测量系统的静态和动态特性,理解各类传感器的工作原理与结构特点,并了解其技术前沿及发展趋势。
课程目标3:能运用常见测量系统的频率特性,分析调制与解调、滤波等基本电路,应用信号分析与处理技术,识别和判断机械领域的复杂工程问题的内在规律和关键参数。
正确评价解决方案对安全的影响,并理解应承担的责任。
课程目标4:能够选择恰当的软件工具或传感器,建立有效的测试系统,对复杂机械工程问题进行动态测试,并对获取的信号进行科学分析。
同时综合考虑公众安全及环保等因素,自觉履行责任,具备科技报国的家国情怀与使命担当。
四、课程目标与教学内容、方法及学习成果的对应关系1. 课程目标与教学内容的对应关系2.学习内容、学习成果及学时安排五、教学方法和学习建议1. 教学方法建议根据本课程的特点,确立学生中心、产出导向、持续改进的教育理念,按照模块化教学思想,有针对性的应用板书教学、多媒体教学、视频教学、网络教学、工程实例、实验教学、软件仿真等手段优化教学过程,激发学生的热情,以小组讨论与问题启发方式发挥学生的主体作用,真正做到“授人以鱼,更要教人以渔”。
采用形式多样的课程教学方式,包括:(1)传统教学与多媒体教学结合法:板书和多媒体教学相结合,采用动画、实物演示等,提高课堂教学信息量,增强教学的直观性。
(2)案例教学法:对于每一知识模块,通过分析和研究已有的案例组织教学,使学生在分析和学习案例的过程中,提高理论联系实际的能力,了解理论知识的工程应用。
机械工程测试技术教案
机械工程测试技术教案1. 引言本教案旨在为机械工程专业的学生提供机械工程测试技术的相关知识和实践技巧。
通过本课程的学习,学生将能够掌握机械工程测试的基本原理和方法,并能够独立进行机械工程测试项目的规划、实施和分析。
2. 教学目标本课程的教学目标如下:•理解机械工程测试的基本原理和方法;•掌握常见机械工程测试仪器的操作和使用技巧;•能够独立规划机械工程测试项目,并进行实施和结果分析;•培养学生的实验设计和数据处理能力;•提高学生的团队协作和沟通能力。
3. 教学内容3.1 机械工程测试的基本原理•概述机械工程测试的定义、分类和应用领域;•熟悉机械工程测试的基本原理和方法;•了解机械工程测试中常见的测量误差来源及其对测试结果的影响。
3.2 常见机械工程测试方法•学习力学测试方法,包括静力学测试和动力学测试;•掌握热力学测试方法,包括温度、压力和流量的测量;•熟悉振动测试方法,包括振动信号的采集与分析。
3.3 机械工程测试仪器的操作和使用技巧•了解各类常见机械工程测试仪器的基本原理和使用方法;•学习如何正确操作机械工程测试仪器,进行测试数据的采集和处理。
3.4 机械工程测试项目的规划和实施•学习机械工程测试项目的规划和设计方法;•掌握实验的基本流程,包括实验前准备、实验方案设计、实验设备选择和实验数据采集;•学习实验结果的分析和报告撰写。
4. 教学方法本课程将采用以下教学方法:•授课:通过理论讲解,向学生传授机械工程测试的相关知识;•实验:通过实际操作,让学生掌握机械工程测试仪器的使用技巧,并进行实验项目的实施;•小组讨论:组织学生进行小组讨论,提高学生的团队协作和沟通能力;•课堂练习:通过课堂练习,帮助学生巩固所学内容。
5. 教学评价方法为了评价学生对本课程的学习情况,我们将采用以下评价方法:•平时成绩:根据学生的课堂参与情况、课堂作业和小组讨论表现评定;•实验报告:根据学生的实验设计、实验结果分析和报告撰写情况评定;•期末考试:通过笔试形式考察学生对机械工程测试知识的掌握情况。
机械工程测试技术测试习题答案
习题1第3章1、传感器的定义及主要分类有哪些?2、试绘出典型传感器的构成框图?3、从哪些方面评价或选用传感器?4、在选用传感器时,应该遵循什么原则?5、应该采取什么方法来提高传感器的性能?第4章1什么叫金属的电阻应变效应?金属丝的应变灵敏度系数的物理意义是什么?2什么叫金属丝的应变灵敏度系数?它与金属丝的灵敏度系数有何区别?为什么?3何谓半导体的压阻效应?它与金属的电阻应变效应有什么本质区别?4电阻应变计的基本测量电路有哪些?试比较它们各自的特点。
5电阻应变片与半导体应变片的工作原理有何区别?它们各有何特点?6某截面积为5cm2的试件,已知材料的弹性模量为2.0X10u N/m2,沿轴向受到105N的拉力,若沿受力方向粘贴一阻值为120Q、灵敏系数为2的应变片,试求出其A R。
7试说明差动式电感传感器与差动变压器式电感传感器工作原理的区别。
8差动变压器和普通变压器的工作原理有何区别?如何提高差动变压器的灵敏度?9试说明电涡流式传感器的工作原理和特点。
10根据电容式传感器的工作原理分为几种类型?各有什么特点?适用于什么场合?11如何改善单极式变极距型传感器的非线性?12什么是压电效应?压电材料有哪些?压电传感器的结构和应用特点是什么?能否用压电传感器测量静态压力?13为什么压电传感器通常用来测量动态或瞬态参量?14用压电式加速度计及电荷放大器测量振动加速度,若传感器的灵敏度为70pC/g (g为重力加速度),电荷放大器灵敏度为10mV/pC,试确定输入3g (平均值)加速度时,电荷放大器的输出电压Uo (平均值,不考虑正负号),并计算此时该电荷放大器的反馈电容C f。
15.用压电式单向脉动力传感器测量一正弦变化的力,压电元件用两片压电陶瓷并联,压电常数为200X 10-12C/N,电荷放大器的反馈电容C =2000pF,测得输出电压u =5sinwt (V)。
f o求:1)该压电传感器产生的总电荷Q (峰值)为多少pC?2)此时作用在其上的正弦脉动力(瞬时值)为多少?16.试说明磁电式速度传感器非线性误差产生的原因以及补偿办法(画图说明)?17.试证明霍耳式位移传感器的输出U H与位移成正比关系?第5章1什么叫激光、激光器和激光传感器?试叙述激光产生的激理。
机械工程试验方案
机械工程试验方案一、试验目的和背景机械工程是一门研究机械和机械部件工作性能、结构、运动、设计、制造、维修和改进的学科。
在机械工程领域,各种试验是十分重要的手段。
试验可以用来验证理论模型,分析试验数据,评估产品性能,验证设计可靠性等。
本文旨在研究某机械部件的耐久性能,为设计和生产提供参考。
二、试验对象试验对象为某型号某厂家的机械部件,该部件在特定工况下需要承受频繁的机械震动和动态负荷。
因此,需要对该部件的耐久性能进行评估。
三、试验方案3.1 试验内容本试验旨在评估该机械部件在特定工况下的耐久性能,包括静态负荷、动态负荷、振动负荷等方面的试验。
3.2 试验装置本试验需要使用静态负荷测试机、动态负荷测试机和振动测试台等试验装置。
3.3 试验步骤① 静态负荷试验:将机械部件放置在静态负荷测试机上,加载特定的静态负荷,并记录应力应变数据。
② 动态负荷试验:将机械部件装配到动态负荷测试机上,加载特定的动态负荷,并记录疲劳寿命数据。
③ 振动试验:将机械部件放置在振动测试台上,进行特定的振动频率和幅值的振动试验,记录振动响应数据。
3.4 试验指标本试验的主要指标包括静态强度、疲劳寿命和振动稳定性等方面的指标。
四、试验过程4.1 静态负荷试验将机械部件放置在静态负荷测试机上,加载特定的静态负荷,并记录应力应变数据。
根据应力应变数据,可以分析机械部件的强度情况,评估其静态负荷承载能力。
4.2 动态负荷试验将机械部件装配到动态负荷测试机上,加载特定的动态负荷,并记录疲劳寿命数据。
通过分析疲劳寿命数据,可以评估机械部件在动态负荷下的寿命特性。
4.3 振动试验将机械部件放置在振动测试台上,进行特定的振动频率和幅值的振动试验,并记录振动响应数据。
通过分析振动响应数据,可以评估机械部件在振动环境下的稳定性。
五、试验数据分析和结论根据试验数据分析,得出机械部件在不同工况下的性能表现。
结合试验结果,可以给出相应的改进建议,为设计和生产提供参考。
机械工程测试技术
机械工程测试技术机械工程测试技术机械工程测试技术是机械领域中非常重要的一个领域,也是机械工程师必须掌握的技术之一。
机械工程测试技术包括各种测试方法的应用和实现,例如破坏性测试、非破坏性测试、材料测试、性能测试等等。
破坏性测试是机械工程测试技术中最常见的测试方法之一,它通过对材料的破坏、拉伸、压缩等已知条件下的实验来确定材料的力学性质。
破坏性测试的过程中,可以对实验条件进行各种调整,以便了解材料的各种性质,如强度、韧性、硬度和脆性等。
破坏性测试的优势在于可以在事前清楚的条件下得出比较准确的数据。
非破坏性测试是机械工程测试技术中的另一重要领域,它与破坏性测试不同,非破坏性测试在测试过程中不会对材料造成任何损伤。
非破坏性测试通常使用声波、电磁波、超声波等非接触式的方法来进行测试。
同时,非破坏性测试还可以用于测试材料的电导性、导热性、厚度等特性。
非破坏性测试非常适用于对大型、贵重设备的检测。
材料测试是机械工程测试技术中的一个较为基础的领域,主要用于测试材料的结构、成分和性能等方面。
材料测试的重要性在于了解材料的实际性能情况,从而设计合适的材料和结构。
材料测试的经典试验有拉伸试验、剪切试验、冲击试验和疲劳试验等。
材料测试对于各种工程中的设计和产品的生产都具有重要意义。
性能测试则是机械工程测试技术对材料的实际应用性能进行的测试。
性能测试方法包括冲击试验、疲劳试验、表面硬度测量等。
性能测试可以揭示材料在特定应用环境下的性能,从而选择出最适合的材料用于实际生产。
性能测试的结果对于工程师来说非常重要。
总而言之,机械工程测试技术是非常广泛的一个领域,包括大量的测试方法和实施方案。
机械工程师需要掌握各种测试方法的原理和实践,才能为产品的研发、生产和应用提供支持和保障。
机械工程测试技术的应用机械工程测试技术的应用可以扩展到各种领域,例如航空、建筑、能源、交通等。
以下是机械工程测试技术的应用实例。
航空领域:航空领域中对于材料的强度和耐久性要求非常高。
机械工程测试技术试卷及答案.
机械⼯程测试技术试卷及答案.填空题(20分,每空1分)1.测试技术是测量和实验技术的统称。
⼯程测量可分为(静态测量和(动态测量)。
2.测量结果与(被测真值)之差称为(测量误差)。
3.将电桥接成差动⽅式习以提⾼(灵敏度),改善⾮线性,进⾏(温度)补偿。
4.为了补偿(温度)变化给应变测量带来的误差,⼯作应变⽚与温度补偿应变⽚应接在 (相邻) 桥臂上。
5.调幅信号由载波的(幅值)携带信号的信息,⽽调频信号则由载波的 (频率 )携带信号的信息。
6.绘制周期信号()x t 的单边频谱图,依据的数学表达式是 (傅⽒三⾓级数中的各项系数),⽽双边频谱图的依据数学表达式是(傅⽒复指数级数中的各项系数)。
7.信号的有效值⼜称为均(⽅根值),有效值的平⽅称为(均⽅值2ψ),它描述测试信号的强度(信号的平均功率)。
8.确定性信号可分为周期信号和⾮周期信号两类,前者频谱特点是(离散的),后者频谱特点是(连续的)。
9.为了求取测试装置本⾝的动态特性,常⽤的实验⽅法是(频率响应法)和(阶跃响应法)。
10.连续信号()x t 与0()t t δ-进⾏卷积其结果是:0()()x t t t δ*-= (0()x t t -)。
其⼏何意义是把原函数图像平移⾄(0t )位置处。
11、带通滤波器的中⼼频率F=500HZ ,负3分贝点的带宽B=10HZ ,则该滤波器的品质因数Q=(50)。
12.调幅过程在频域相当于(频率搬移)过程,调幅装置实质上是⼀个(乘法器)。
13.周期信号的傅⽒三⾓级数中的n 是从(0到+∞)展开的。
傅⽒复指数级数中的n 是从(-∞)到(+∞)展开的。
14.周期信号x (t )的傅⽒三⾓级数展开式中:a n 表⽰(余弦分量的幅值),b n 表⽰(正弦分量的幅值),a 0表⽰(直流分量)。
15.余弦函数只有(实频)谱图,正弦函数只有(虚频)谱图。
16.单位脉冲函数0()t t δ-与在0t 点连续的模拟信号()f t 的下列积分:0()()f t t t dt δ∞-∞-=?0()f t 。
机械工程测试技术课程标准
《机械工程测试技术》课程标准课程名称:《机械工程测试技术》课程性质:理论学时学分:100学时,4学分课程属性:专业必修课适用范围:机械制造、机械一体化等专业一、课程定位《机械工程检测技术》是数控设备应用与维护专业的专业拓展课程,主要为培养学生数控机床机械装调维修能力奠定基础,在数控设备应用与维护的整个课程体系中起到承上启下的作用。
它是以研究自动检测系统中的信息获取、信息转换以及信息处理的理论和技术为主要内容的一门应用技术学科。
其前修课程有机械制图与公差、电工电子技术、数控机床电气传动、液压与气动技术、维修电工操作技能实训、机床与数控机床等,后续课程有数控机床机械装配与调试、数控机床整机调试与维修等。
二、课程性质通过本课程的学习,使学生掌握测试技术特性和测试技术基础;了解传感器的基础知识;学会合理的设计或选用适宜的传感器和检测仪器;培养学生的科学思维能力,创新能力及岗位职业能力。
三、课程目标1、教学目标学生通过本课程的学习应达到以下要求:1)使学生熟悉常规传感器原理与测量电路,掌握各种传感器的特点及应用范围;2)熟悉新型传感器原理及应用;熟悉虚拟仪器测试系统;使学生了解测试系统的基本结构与工作原理;3)使学生掌握信号分析的能力及振动测试、机械参数测试、噪声测试的工作原理;通过对本门课程的学习,使学生认识传感器,检测仪器,等其他信号检测装置,培养学生在实际使用和装调机电设备中具有初步的分析能力和解决问题的能力,为后续课程和未来从事的工程技术工作打下良好的基础。
2.知识要求(1)、了解测试技术的基本知识;了解传感器的基础知识;(2)、熟悉常规传感器原理与测量电路;熟悉新型传感器原理及应用;(3)、认识虚拟仪器测试系统;(4)、掌握各种信号分析仪器的操作与应用。
3.实施说明(1)成绩考核方法本课程为专业必修课,为考试课。
为了准确考核学生对本课程的学习和掌握情况,总评成绩可按下式给出:总评成绩=平时成绩(平时出勤占10%、课堂表现占10%、课后作业占 10%)×30%﹢测验占30%+考试成绩×40%。
机械工程测试实验
《机械工程测试技术》实验指导书实验一、霍尔传感器的直流激励特性一、实验目的加深对霍尔传感器静态特性的理解。
掌握灵敏度、非线性度的测试方法,绘制霍尔传感器静态特性特性曲线,掌握数据处理方法。
二、实验原理当保持元件的控制电流恒定时,元件的输出正比于磁感应强度。
本实验仪为霍尔位移传感器。
在极性相反、磁场强度相同的两个钢的气隙中放置一块霍尔片,当霍尔元件控制电流I不变时,Vh与B成正比。
若磁场在一定范围内沿X方向的变化梯度dB/dX为一常数,则当霍尔元件沿X方向移动时dV/dX=RhXIXdB/dX=K,K为位移传感器输出灵敏度。
霍尔电动势与位移量X成线性关系,霍尔电动势的极性,反映了霍尔元件位移的方向。
三、实验步骤1.有关旋钮初始位置:差动放大器增益打到最小,电压表置2V档,直流稳压电源置±2V档。
2..RD、r为电桥单元中的直流平衡网络。
3.差动放大器调零,按图6-1接好线,装好测微头。
4.使霍尔片处于梯度磁场中间位置,调整RD使电压表指示为零。
5.上、下旋动测微头,以电压表指示为零的位置向上、向下能够移动5mm,从离开电压表指示为零向上5mm的位置开始向下移动,建议每0.5mm读一数,记下电压表指示并填入数据记录表。
6.用以上的位移和输出电压数据,绘出霍尔传感器静态特性的位移和输出电压特性V-X曲线, 指出线性范围。
7.将位移和输出电压数据分成两组,用“点系中心法”对数据进行处理,并计算两点联线的斜率,即得到灵敏度值。
实验可见:本实验测出的实际是磁场的分布情况,它的线性越好,位移测量的线性度也越好,它们的变化越陡,位移测量的灵敏度也就越大。
数据记录表四、思考题1.为什么霍尔元件位于磁钢中间位置时,霍尔电动势为0。
2.在直流激励中当位移量较大时,差动放大器的输出波形如何?实验二、电容传感器的直流特性实验内容:加深对电容传感器静态特性的理解。
掌握灵敏度、非线性度的测试方法,绘制电容传感器静态特性曲线,掌握数据处理方法。
“机械工程测试技术”课程介绍
“机械工程测试技术”课程介绍1 课程在本专业中的定位与课程目标“机械工程测试技术”课程是面向“机械工程及自动化”大专业,即涵盖现有的机械工程各专业本科生的一门工程技术课。
它涉及机械工程领域中的非电量电测技术和试验技术等知识,是工业生产与科学研究必不可少的重要技术手段。
通过该课程的学习可以获得传感器测量原理、测量信号处理方法和计算机测量系统等方面的基础知识,并掌握温度、力、压力、噪声等常见物理量的测量和应用方法。
2 课程的重点、难点及解决办法机械工程测试技术是一门实践性较强的课程,教学内容包括测试信号分析理论和传感器原理两大部分。
因历史的原因和受当时教学和实验条件限制,过去侧重课本内容讲授,实践性环节偏少,学生普遍反映测试技术应用、发展部分空洞;传感器部分没有实物对象、枯燥无味;信号分析理论部分深奥、难懂。
导致学生对课程作用认识不足,严重影响教学效果。
在各章节绪论和展望部分,实行自己采编的多媒体教案为主,书本教材为辅的形式。
用计算机多媒体来丰富课程内容和表现形式,将课程组成员接触过的科研项目和工程案例融入教学内容中,现身说法,使从未接触过工程实际的学生能够建立工业测量与应用的整体概念。
对测试信号分析部分,改变重理论、轻实践的教学观点,强调对测试信号分析的本质理解和工程实际应用,淡化对公式推导过程等数学理论的要求。
课堂上结合工程案例,用演示实验对实际测试信号进行分析,让学生建立信号分析与实际应用间的联系。
课后,用仿真实验代替习题,让学生利用我们提供的虚拟仪器软件平台自己动手对测试信号进行分析。
对传感器部分,采用实物模型教学的方法。
为此,采用工业探头和敏感元件开发了20多种可直接插接在计算机A/D卡(或声卡Line in口)上的四线制无二次仪表传感器。
将传感器带到课堂上,在讲解传感器原理的同时,现场演示传感器是如何将被测物理量转化为电量和测试信号。
为在课后给学生营造一个实验学习环境,提出利用PC机上的测试资源( 鼠标:光电传感器,麦克风:电容传感器,摄象头: CCD 传感器,声卡: A/D 卡)建立PC个人测试实验室,使学生课后能够自己动手做测试实验。
机械工程测试技术试卷及答案(20200723175808)
一、 填空题(20分,每空1分)1. 测试技术是测量和实验技术的统称。
工程测量可分为2. 测量结果与被测真值之差称为 测量误差3. 将电桥接成差动方式习以提高灵敏度,改善非线性,进行 温度 补偿。
4. 为了 补偿 温度变化给应变测量带来的误差,工作应变片与温度补偿应变片应接在相邻桥臂上。
5•调幅信号由载波的 幅值携带信号的信息,而调频信号则由载波的 频率 携带信号的信息。
6•绘制周期信号X (t )的单边频谱图,依据的数学表达式是 傅氏三角级数中的各项系数,而双边频谱图的依据数学表达式是 傅氏复指数级数中的各项系数。
27. 信号的有效值又称为均方根值 ,有效值的平方称为 均方值,它描述测试信号的强度(信号的平 均功率)。
8确定性信号可分为周期信号和非周期信号两类,前者频谱特点是 续的。
9. 为了求取测试装置本身的动态特性,常用的实验方法是 频率响应法 10.连续信号X(t )与(t t o )进行卷积其结果是:x (t )(t t o )把原函数图像平移至to 位置处 。
选择题(20分,每题2分)1 •直流电桥同一桥臂增加应变片数时,电桥灵敏度将 (C )。
A.增大 B .减少 C.不变D.变化不定2•调制可以看成是调制信号与载波信号 (A )。
A 相乘 B •相加 C •相减 D.相除 3 •描述周期信号的数学工具是(D )。
A.相关函数B •拉氏变换C •傅氏变换 D.傅氏级数 4•下列函数表达式中,(B )是周期信号。
A5cos10 t 当t 0 A. x (t )当t 0B. x (t ) 20e aq cos20 t ( t )C. x (t ) 5sin20 t 10cos10 t ( t )5•时域信号的时间尺度压缩时,则其频带的变化为 (B )。
A.频带变窄、幅值增高 B .频带变宽、幅值压低 C.频带变窄、幅值压低D .频带变宽、幅值增高6•非线性度是表示定度曲线(A )的程度。
机械工程测试技术实验课程介绍
机械工程测试技术实验课程介绍
1.教学单位名称:机械科学与工程学院
2.实验中心名称:机械制造实验室
3.课程名称:机械工程测试技术
4.课程代码:41234
5.课程类别:学科基础课
6.课程性质:必修
7.课程学时:40学时,其中含实验6学时
8.课程学分:2.5
9.面向专业:机械工程、车辆工程
10.实验课程的教学任务、要求和教学目的
《机械工程测试技术》是机械工程及其自动化专业必修的一门专业基础课程。
实验课程是理论教学课程的一个重要组成部分。
通过课程实验,使学生掌握课堂教学中所学到的相关基础理论知识和基本概念,更深刻地理解测量系统、传感器的工作原理和特性;拓宽和加深学生对理论知识的理解,从而掌握比较全面的专业知识。
通过独立完成实验项目,培养学生实际动手能力,掌握各类仪器仪表的操作技能,逐步提高学生分析问题、解决问题的能力,能根据工程要求对各类检测系统进行设计和实施。
培养学生良好的工作习惯和严谨的科学作风,为后续课程的学习打下基础。
拍振实验
机械学院测试实验室 龙建勋 二○一三年三月
-1-
拍振实验
二○一三年三月 机械学院测试实验室
-2-
一、实验目的
1、观察拍振现象,建立拍振的概念。 2、了解如何消除或减弱拍振现象。
-3-
二、实验原理
当结构振动时,有时会产生所谓拍的现象。 什么叫拍?如果对设备系统施加两个频率接近、振幅不等的激 扰力,使系统产生振动,用测振仪测得系统的振动信号,其振幅具 有时强时弱、呈周期性变化的特征,这种现象就叫做拍,如下图所 示。总之,两个频率接近、振幅不等 的振动迭加就能形成拍。
在交变外力的反 复作用下,设备 很容易出现疲劳 损坏。
-4-
二、实验原理
拍振方程:设两个频率接近、振幅不等的振动方程为:
y1 A1 sin( 1t )
y2 A2 sin( 2 t )
则合振动为:
y y1 y2 A1 sin( 1t ) A2 sin( 2 t )
y A sin(
1 2
2
t )
式中: A-- 合振动振幅 A A12 A22 2 A1 A2 cos( 2 1 )t φ -- 初相角 tg 1 ( A1 A2 tg 2 1 t )
A1 A2 2
-5-
二、实验原理
合振动的频率及周期为:
- 10 -
四、实验步骤
4、获得“分振动2”的振幅 A2和频率 f 2 : a)选择“谱跟踪”; b)接通激振信号源的电源(注意:此时调压器处于关闭状态,用激振器对简支梁 施加另一频率为 f 2的激振力,使梁产生振幅为A2的振动)。调整信号源的激振频率和 电流,使其满足 f 2 > f1 、 A2 < A1 ,然后将幅值谱中ID为“01”的频率( f 2 )和谱 值( A2 )记录在实验报告中。 A b)依次选择“暂停”→“位图”, 将该图形保存到文件中, 命名为“3-2.bmp”。
机械工程测试技术拓展实训实验教案实验二应变传感器性能实验
实验二:应变传感器性能实验实验2.1 金属箔式应变片——单臂电桥性能实验一、实验目的1、了解金属箔式应变片的应变效应,应变式传感器的工作原理;2、掌握单臂测量电路的工作原理。
二、实验内容1、记录所加重量与电桥电压输出数据;2、计算灵敏度、非线性误差δ。
三、实验原理、方法和手段电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:。
式中:为电阻丝电阻相对变化,K 为应变灵敏系数,为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压。
四、实验条件主机箱(±4V 、±15V 、电压表)、应变式传感器实验模板、托盘、砝码、数显万用表。
五、实验步骤应变传感器实验模板说明:实验模板中的R 1、R 2、R 3、R 4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
εK R R =∆/R R /∆L L /∆=ε4/01εEK U =图 2-1应变式传感器单臂电桥实验安装、接线示意图1、根据图2-1安装、接线。
应变式传感器已装于应变传感器模板上。
传感器中4片应变片和加热电阻已连接在实验模板左上方的、、、和加热器上。
传感器左上角应变片为;右下角为;右上角为;左下角为。
当传感器托盘支点受压时,、阻值增加,、阻值减小,可用数显万用表进行测量判别。
常态时应变片阻值====,加热丝阻值为左右。
2、放大器输出调零:将图2-1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i =0),调节入放大器的增益电位器大约到中间位置(先逆时针旋到底,再顺时针旋转2圈),将主机箱电压表的量程切换开关到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器,使主机箱电压表显示为零。
机械测试技术实验
机械测试技术实验指导书测控技术与仪器教研室2003年9月实验一:应变片的粘贴一、实验目的:1.熟悉应变片的工作原理 2.掌握应变片的粘贴工艺 3.加深对传感器结构的认识二、实验仪器:锯条、导线、电阻应变片、丙酮、药棉、502胶水、铁砂布、绝缘胶布、电烙铁、万用表等。
三、实验原理:1.金属的电阻应变效应当金属丝在外力作用下方式机械变形时,其电阻值将发生变化,这种现象称为属的电阻应变效应。
设有一根长度为l 、截面积为S 、电阻率为ρ的金属丝,在未受力时,原始电阻为: lR Sρ= (1-1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值的变化R ∆。
对式(1-1)全微分,并用相对变化量来表示,则有:R l S R l S ρρ∆∆∆∆=-+ (1-2) 式中的l l∆为电阻丝的轴向应变,用ε表示,常用单位με(61110/mm mm με-=⨯)。
若径向应变为rr∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为:()r l r l μ∆∆=-,因为2S rS r∆∆=,则(1-2)式可以写成:0(12)(12)R l l l l k R l l l lρρμμρρ∆∆∆∆∆∆∆=++=++÷= (1-3) 式(1-3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(1-3)可见,0k 受两个因素影响,一个是(12)μ+,它是材料的几何尺寸变化引起的,另一个是ρρε∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则012k μ≈+,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属电阻丝拉伸比例极限内,电阻相对变化欲轴向应变成正比。
通常金属丝的灵敏系数02k =左右。
2.应变片的测量原理用应变片测量受力应变时,将应变片粘贴于被测对象表面上。
在外力作用下,被测对象表明产生微小机械变形时,应变片也随同变形,其电阻值发生相应变化。
机械工程测试技术概述
机械工程测试技术概述机械工程测试技术是机械工程领域中不可或缺的一部分,它涉及到对机械设备和系统进行各种测试、检测和评估的过程。
通过测试技术的应用,可以确保机械设备的安全性、性能可靠性以及生产效率的提高。
本文将对机械工程测试技术进行概述,并介绍其中常用的测试方法和工具。
一、机械工程测试的意义机械工程测试是确保机械设备安全运行和性能可靠性的重要手段,具有以下几个方面的意义:1. 保证机械设备安全性:通过对机械设备的各项性能指标进行测试,可以发现潜在的安全隐患,及时采取措施进行修复,确保设备运行的安全性。
2. 提高机械设备性能:通过测试技术的应用,可以评估机械设备的性能指标,发现问题并进行优化改进,提高机械设备的运行效率和性能水平。
3. 确保产品质量:机械工程测试技术可以对机械产品的关键性能指标进行检测与评估,以确保产品质量符合设计和制造要求,满足客户的需求。
二、机械工程测试的常用方法在机械工程领域,有许多不同的测试方法可供选择,下面将介绍其中常用的几种测试方法:1. 功能测试:功能测试是对机械设备的各项功能进行测试,以验证其是否符合设计要求。
通过模拟实际工作场景,测试设备的各项功能是否正常,例如启停、加速度、力矩等。
2. 耐久性测试:耐久性测试是检测机械设备在长时间使用过程中是否能够保持其性能和可靠性。
通过模拟设备的使用寿命、重复工作等条件,测试设备在不同工况下的使用寿命和故障率。
3. 环境适应性测试:环境适应性测试是模拟机械设备在不同环境条件下的工作状况,以验证其在不同温度、湿度、振动等环境条件下的可靠性和适应性。
4. 可靠性试验:可靠性试验是对机械设备进行长时间的稳定运行,以检测其在实际工作条件下的可靠性和寿命。
通过对设备进行连续运行、负载测试等,评估其使用寿命和可靠性。
三、机械工程测试的常用工具在机械工程测试过程中,还需要使用一些专用的测试工具和设备,以辅助完成测试任务。
下面介绍几种常用的机械工程测试工具:1. 传感器:传感器是用于检测和测量设备各种物理量的装置,如温度传感器、压力传感器、振动传感器等。
机械工程测试技术
机械工程测试技术什么是机械工程测试技术机械工程测试技术是指应用各种测试方法和设备对机械工程中的零部件、装配件和整机进行性能测试和可靠性评估的一种技术。
通过测试和评估,可以验证设计和制造的准确性,发现潜在的问题,并提供数据支持,以改进产品的质量和可靠性。
机械工程测试技术的重要性机械工程测试技术在产品研发和制造过程中起着重要作用。
它可以帮助工程师和设计师更好地了解产品的性能和可靠性,为产品的改进和优化提供有力的依据。
以下是机械工程测试技术的几个重要方面:性能测试性能测试是机械工程测试技术最基本的部分之一。
通过对机械零部件、装配件和整机性能的测试,可以评估产品在各种工作条件下的表现。
性能测试包括力学性能测试、疲劳寿命测试、耐久性测试等。
可靠性评估机械工程测试技术也包括对机械产品可靠性的评估。
通过对产品进行可靠性测试和评估,可以确定其在设计寿命内的可靠性水平,并验证是否满足使用要求。
可靠性评估通常包括可靠性试验、加速寿命试验等。
故障分析当机械产品发生故障时,机械工程测试技术可以帮助确定故障原因。
通过对故障产品的测试和分析,可以找到故障的根本原因,进而进行改进和修复,提高产品的可靠性和性能。
质量控制机械工程测试技术在产品的制造过程中也起到重要的作用。
通过对原材料、加工工艺和成品的测试,可以保证产品的质量符合设计要求。
质量控制包括原材料的测试、加工工艺的控制和成品的检验等。
机械工程测试技术的应用领域机械工程测试技术在各个领域都有广泛的应用。
以下是几个常见的应用领域:汽车工程机械工程测试技术在汽车工程领域有着广泛的应用。
通过对汽车零部件和整车性能的测试,可以评估汽车的安全性、操控性和舒适性,并提供数据支持,以改进汽车的设计和制造质量。
航空航天工程在航空航天工程中,机械工程测试技术用于对航空器和航天器的性能进行测试和评估。
通过对各种航空航天器的测试,可以确保其在各种极端条件下的可靠性和安全性。
动力机械机械工程测试技术也广泛应用于动力机械领域,如发动机、液压系统和传动系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告(理工类)课程名称: 机械工程测试技术课程代码: 8204381 学生所在学院: 机械工程与自动化学院年级/专业/班: 2009级机电4班学生姓名: 田璐学号: 312009********* 实验总成绩: 任课教师: 宋春华开课学院: 机械工程与自动化学院实验中心名称: 机械工程专业实验中心西华大学实验报告(机械类)开课学院及实验室:机械工程与自动化学院 实验时间:2012年5月10 日1 实验目的1. 学习使用Matlab ,学会用Matlab 提供的函数对信号进行频谱分析;2. 加深了解信号分析手段之一的傅立叶变换的基本思想和物理意义;3. 观察和分析由多个频率、幅值和相位成一定关系的正弦波叠加的合成波形;。
4. 观察和分析频率、幅值相同,相位角不同的正弦波叠加的合成波形;5. 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义。
2 实验原理按富立叶分析的原理,任何周期信号都可以用一组三角函数0sin(2)nf t π、0(2)con nf t π的组合表示0001()(cos 2sin 2)nn n x t a anf t b nf t ππ∞==++∑ (n=1,2,3,…)也就是说,我们可以用一组正弦波和余弦波来合成任意形状的周期信号。
对于典型的方波,其时域表达式为:根据傅立叶变换,其三角函数展开式为:00001411()[sin(2)sin(6)sin(10)]3541sin(2)n Ax t f t f t f t A nf t nππππππ∞==+++⋅⋅⋅⋅⋅⋅=∑由此可见,周期方波是由一系列频率成分成谐波关系,幅值成一定比例的正弦波叠加合成的。
那么,我们在实验过程中就可以通过设计一组奇次谐波来完成波形的合成和分解过程,达到对课程教学相关内容加深了解的目的。
3 实验内容1.用Matlab编程,绘出7次谐波叠加合成的方波波形图及幅值谱;2.用Matlab编程,改变上述7次谐波中其中两项谐波的幅值绘出合成波形及幅值谱;3.用Matlab编程,改变上述7次谐波中其中一项谐波的相位绘出合成波形及幅值谱。
4 实验过程记录1、(1)实验代码:t=0:0.001:0.512;y=sin(2*pi*50*t)+sin(3*2*pi*50*t)/3+sin(5*2*pi*50*t)/5+sin(7*2*pi*50*t)/7;Y=fft(y);Mx=abs(Y)/400;f=1000*(0:255)/512;subplot(211),plot(t(1:60),y(1:60)),title('Time-domain signal')subplot(212),plot(f,Mx (1:256)),title('Spectrum')(2)Matlab运行仿真图像:2、(1)实验代码:t=0:0.001:0.512;y=3*sin(2*pi*50*t)+7*sin(3*2*pi*50*t)/3+sin(5*2*pi*50*t)/5+sin(7*2*pi*50*t)/7;Y=fft(y);Mx=abs(Y)/400;f=1000*(0:255)/512;subplot(211),plot(t(1:60),y(1:60)),title('Time-domain signal')subplot(212),plot(f,Mx(1:256)),title('Spectrum')(2)Matlab运行仿真图像:3、(1)实验代码:t=0:0.001:0.512;y=sin(8*pi*50*t)+sin(3*2*pi*50*t)/3+sin(5*2*pi*50*t)/5+sin(7*2*pi*50*t)/7; Y=fft(y);Mx=abs(Y)/400;f=1000*(0:255)/512;subplot(211),plot(t(1:60),y(1:60)),title('Time-domain signal')subplot(212),plot(f,Mx(1:256)),title('Spectrum')(2)Matlab运行仿真图像:西华大学实验报告(机械类)开课学院及实验室:机械工程与自动化学院 实验时间:2012年5月10 日1. 学习使用Matlab ,学会用Matlab 提供的函数对信号进行频谱分析;2. 掌握采样定理;3. 理解加窗对频谱分析的影响;4. 理解量化误差对频谱分析的影响;5. 掌握采样点数N 、采样频率s f 、数据长度对频谱分析的作用。
2 实验原理和实验设备原理:《机械工程测试技术与信号分析》第2章,特别是2.4离散傅立叶变换的内容。
设备:PC 机;软件:Matlab3 实验内容1. 画出x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。
采样频率fs=100Hz ,分别绘制N=128、1024点幅频图2. 用Mablab 设计一程序,能形象地验证离散傅里叶变换中的4个重要问题: (1)采样定理a )max 2f f s ≥,其频谱不失真,max 2f f s <其频谱失真;b )max 2f f s ≥(工程中常用m ax )4~3(f f s ≥),可从频域中不失真恢复原时域信号; (2)加窗、截断a )信号截断后,其频谱会产生泄漏,出现“假频”;b )信号截断后,降低了频率分辨率;c )采用适当的窗函数后,可以减少泄漏和提高频率分辨率。
(3)量化误差a )对信号()sin(2)x t ft π=进行采样,1000=s f Hz ,采集N =64点。
用3、8位量化器量化信号每点的幅值,画出原始波形和量化后的信号波形,得出结论。
(4)栅栏效应如何才能提高频率分辨率?采样点数N 、采样频率s f 起何作用?用例子说明。
4 实验过程记录1.画出x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。
采样频率fs=100Hz,分别绘制N=128、1024点幅频图程序:t=0:0.001:0.512;y=3*sin(2*pi*50*t)+7*sin(10*pi*50*t)+12*sin(12*pi*50*t);Y=fft(y);Mx=abs(Y)/400;f=1000*(0:255)/512;plot(f,Mx (1:256)),title('x(t)幅值频谱图')幅频图2、用Mablab设计一程序,能形象地验证离散傅里叶变换中的4个重要问题:(1)采样定理(1)试验代码fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;(2)Matlab运行仿真图像:用 100Hz 对信号进行采样源信号为 f(t)= 0.5*sin(2*pi*15*t1)+2*sin(2*100Hz 的频率对 f(t)进行采样,其采样图如图 1 所示,程序如下:(1)、试验代码:fs1=100;t1=-0.1:1/fs1:0.1;fa=0.5*sin(2*pi*15*t1)+2*sin(2*pi*40*t1) ; %x=0.5*sin(2*pi*15*t)+2*sin (2*pi*40*t)figure(1);plot(t1,fa),xlabel('fs1=100Hz 时,fa 采样时域图')pi*40*t1)对信号进行快速离散傅立叶变换将采样信号进行快速离散傅立叶变换(FFT) ,用300Hz 的频率对 f(t)进行采样,其采样后快速傅立叶变换频谱图如上图f=40;fs=100;N=100;k=0:N-1;t=-0.1:1/fs:0.1;w1=500*k/N;fa=0.5*sin(2*pi*f*t)+2*sin(2*pi*f*t);xfa=fft(fa,N);xf1=(xfa);figure(1);plot(w1,xf1),xlabel('fs=100Hz 时,fa 经过 fft 后频谱图.单位:Hz')信号的重建我们可以通过利用内插法把原信号从采样信号中恢复出来,观察信号在满足怎样的采样条件下能够恢复原信号,下图为恢复后的信号.程序如下Wm=180*pi;Wc=Wm;fs=100;Ws=2*pi*fs;n=-800:800;nTs=n/fs;fa=0.5*sin(2*pi*15*nTs)+2*sin(2*pi*40*nTs);Dt=1/fs;t1=-0.1:Dt:0.1;fa1=fa/fs*Wc/pi*sinc((Wc/pi)*(ones(length(nTs),1)*t1-nTs'*ones(1,length(t1)))); figure(1);plot(t1,fa1);axis([-0.1 0.1 -8 8]);xlabel('fs=100Hz,fa');由抽样定理可知,抽样后的信号频谱是原信号频谱以抽样频率为周期进行周期延拓形成的,周期性在上面两个图中都有很好的体现。