高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)及解析
一、带电粒子在磁场中的运动专项训练
1.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=
3
2
mv 02。
两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7
2
R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;
(2)如果某次实验时将磁场O 的圆心往上移了2
R
,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。
【答案】(1) 02v v =;02mv B eR =(2) 0336
l π++≥ 【解析】 【详解】
解:(1)对于单个质子进入加速电场后,则有:22
0011eU mv mv 22
=- 又:2
003eU mv 2
=
解得:0v 2v =;
根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为
轨迹的圆心,如图所示,并可知轨迹半径r=R
根据洛伦磁力提供向心力有:2
v evB m
r
=
可得磁场磁感应强度:0
2mv B eR
=
(2)磁场O 的圆心上移了
R
2
,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心
由于磁场上移了R 2,故sin ∠COF=R
2R
=12,∠COF=π6,∠DOF=∠FKD=π
3
对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,
下方粒子到达C 后最先到达D 点的粒子所需时间为00
(2)
(4)2
224R
R H R R t v v π
π++
-+'==
而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0
l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为
(
)0
00π1
R Rsin 2πR 62π3336t R 2v 2v -+-=
+=
要使两质子束相碰,其运动时间满足t t t '≤+∆ 联立解得0π336
l ++≥
2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、
Q 两点之间的距离为
2
L
,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;
(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。
【答案】(1)2U E L =
,M eU
v m
=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3
348M R L m t v eU
ππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】
(1)在加速电场中,从P 点到Q 点由动能定理得:2
012
eU mv = 可得02eU
v m
=
电子从Q点到M点,做类平抛运动,
x轴方向做匀速直线运动,
02
L m t L
v eU ==
y轴方向做匀加速直线运动,2
1
22
L eE
t
m
=⨯
由以上各式可得:
2U
E
L
=
电子运动至M点时:22
()
M
Ee
v v t
m
=+
即:2
M
eU
v
m
=
设v M的方向与x轴的夹角为θ,
2
cos
2
M
v
v
θ==
解得:θ=45°。
(2)如图甲所示,电子从M点到A点,做匀速圆周运动,因O2M=O2A,O1M=O1A,且O2A∥MO1,所以四边形MO1AO2为菱形,即R=L
由洛伦兹力提供向心力可得:
2
M
M
v
ev B m
R
=
即
2
M
mv mv
B
eR L e
==
3
3
4
8
M
R L m
t
v eU
ππ
==
(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于2R',即222
R L
'=
因电子在磁场中的运动具有周期性,如图丙所示,电子到达N 点且速度符合要求的空间条件为:2(2)2n R L '
=(n =1,2,3,…) 电子在磁场中做圆周运动的轨道半径0
M
mv R eB '=
解得:022n emU
B eL
=
(n =1,2,3,…) 电子在磁场变化的半个周期内恰好转过
1
4
圆周,同时在MN 间的运动时间是磁场变化周期的整数倍时,可使粒子到达N 点且速度满足题设要求,应满足的时间条件是014
2
T T = 又00
2m
T eB π=
则T 的表达式为22T n emU
=
(n =1,2,3,…)。
3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.
(1)求电场强度大小E;
(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;
(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.
【答案】(1)
2
mv
E
qL
=(2)
4nmv
B
qL
=n=1、2、3 (3)
2
L
t
v
π
=
【解析】
本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.
(1)带电粒子在电场中做类平抛运动有:0
L v t
=,2
1
22
L
at
=,qE ma
=
联立解得:
2
mv
E
qL
=
(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan x
y
v
v
θ==l
速度大小0
2
sin
v
v v
θ
==
设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足
L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为
2
π
;当满足
L=(2n+1)x时,粒子轨迹如图乙所示.
若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为
2
π
.则有2R,此时满足L=2nx
联立可得:
22
R
n
=
由牛顿第二定律,洛伦兹力提供向心力,则有:
2
v
qvB m
R
=
得:0
4nmv
B
qL
=,n=1、2、3....
轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为
2
π
.则有222x R =,此时满足()2
21L n x =+
联立可得:()2212
R n =
+
由牛顿第二定律,洛伦兹力提供向心力,则有:2
22
v qvB m R =
得:()0
2221n mv B qL
+=
,n=1、2、3....
所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =
,n=1、2、3....或()0
2221n mv B qL
+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×
2
π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==
若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220
(42)(42)2n n m L
t T qB v ππππ++=⨯
== 粒子从进入磁场到坐标(-L ,0)点所用的时间为0
2222n n m L
t T qB v ππππ=⨯
==或2220
(42)(42)2n n m L
t T qB v ππππ++=⨯
==
4.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:
(1)小球两次在圆盘上运动的时间之比;
(2)框架以CD为轴抬起后,AB边距桌面的高度.
【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起
后,AB
边距桌面的高度为
2
22v
g
.
【解析】
【分析】
【详解】
(1)小球在磁场中做匀速圆周运动,
由几何知识得:r2+r2=L2,
解得:r=
2
2
L,
小球在磁场中做圆周运的周期:T=
2r
v
π
,
小球在磁场中的运动时间:t1=
1
4
T=
2
4
L
v
π
,
小球在斜面上做类平抛运动,
水平方向:x=r=v0t2,
运动时间:t2=
2
2
L
v
,
则:t1:t2=π:2;
(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,
位移:r=2
2
1
2
at,解得,加速度:a=
2
22v
L
,
对小球,由牛顿第二定律得:a=mgsin
m
θ
=g sinθ,
AB边距离桌面的高度:h=L sinθ=
2
22v
g
;
5.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.
求:(1)电场强度的大小.
(2)两种情况中粒子由P运动到Q点所经历的时间之比.
【答案】
2
2
B qL
E
m
=;
2
B
E
t
t
π
=
【解析】
【分析】
【详解】
(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,则有
2
v
qv B m
R
=
由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为
1
4
圆周,
故有
2
R=
以E表示电场强度的大小,a表示粒子在电场中加速度的大小,t E表示粒子在电场中由p 点运动到Q点经过的时间,则有qE ma
=
水平方向上:2
1
2E
R at
=
竖直方向上:0E
R v t
=
由以上各式,得
2
2
B qL
E
m
=且E
m
t
qB
=
(2)因粒子在磁场中由P点运动到Q点的轨迹为1 4
圆周,即
1
42
B
t T
m
qB
π
==所以2
B
E
t
t
π
=
6.如图甲所示,在直角坐标系0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M 、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.
(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;
(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;
(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.
【答案】(1)(2)(3)(n=1,2,3…)
(n=1,2,3…)
【解析】
(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.
由速度关系可得:
解得:
由速度关系得:v y=v0tanθ=v0
在竖直方向:
而水平方向:
解得:
(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L
根据牛顿第二定律:
解得:
根据几何关系得电子穿出圆形区域时位置坐标为(,-)
(3)电子在在磁场中最简单的情景如图2所示.
在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;
在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于
2r.
综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:
解得:(n=1,2,3…)
应满足的时间条件为: (T0+T′)=T
而:
解得(n=1,2,3…)
点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过
n 次这样的循环后恰恰从N 点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.
7.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.
(1)求第I 象限内磁场的磁感应强度B 1;
(2)计算说明速率为5v 、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mv
B qL
=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL
=
-2(17317)'4mv
B qL +=),垂直坐标平面向外
【解析】 【详解】
(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①
由牛顿运动定律得2
1v qvB m R
=②
得1mv B qL
=
③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式
222()R L y R -+=④
得这两种粒子在y 轴上的交点到O 的距离分别为3L 17L ⑤ 故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥
(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有
15172917L L R L L
-= 又221
(9)9v q vB m R ⋅=⑨
解得2217(517)mv B qL
=
-(或2(51717)4mv
B qL =)⑩
若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里
同理:21732917L L
R L L
-=
2
22
(9)9'v q vB m R ⋅=
解得2217'(173)m B qL
=
-2(17317)'mv
B +=)
8.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:
(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)
3E
B
(2)2.4B 【解析】试题分析:(
1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d d
r sin sin α=
==︒ 根据2
00mv qv B r =得0233qBd
v m
=
粒子在第一象限中做类平抛运动,则有2
1602qE r cos t m -︒=(); 00
y v qEt tan v mv α==
联立解得03E
v B
=
(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.
则有:x=v 0t , 2
y v y t =
得
03
222
y v y tan x v α===
由几何知识可得 y=r-rcosα= 132r d = 则得
2
3
x d =
所以粒子在第三、四象限圆周运动的半径为1253
23d d R d sin α⎛⎫+ ⎪⎝⎭==
粒子进入第三、四象限运动的速度00432v qBd
v v cos α=
==
根据2
'v qvB m R
=
得:B′=2.4B
考点:带电粒子在电场及磁场中的运动
9.如图所示,在矩形区域abcd 内充满垂直纸面向里的匀强磁场,磁感应强度为B 。
在ad 边中点O 的粒子源,在t=0时刻垂直于磁场发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od 的夹角分布在0~180°范围内。
已知沿Od 方向发射的粒子在t=t 0时刻刚好从磁场边界cd 上的p 点离开磁场,ab=1.5L ,bc=L 3,粒子在磁场中做圆周运动的半径R=L ,不计粒子的重力和粒子间的相互作用,求:
(1)粒子在磁场中的运动周期T ; (2)粒子的比荷q /m ;
(3)粒子在磁场中运动的最长时间。
【答案】(1)06t T =;(2)03Bt m q π=;(3)max 02t t =。
【解析】
试题解析:(1)(4分)
初速度沿Od 方向发射的粒子在磁场中运动的轨迹如图1,其圆心为θ, 由几何关系有:2
3
=
θsin 所以:θ=60°
︒
=
3600θT t 解得:
06t T = (2)(4分)粒子做圆周运动的向心力由洛仑兹力提供, 根据牛顿第二定律得:R v m qvB 2
= T
R v π2=
所以:qB m
T π2=
解得0
3Bt m q π= (3)(4分)如图2所示,在磁场中运动时间最长的粒子的轨迹的弦Ob=L 3,圆轨迹的直径为2L
所以:Ob 弦对应的圆心角为120° 粒子在磁场中运动的最长时间023t T t max ==
考点:带电粒子在磁场中的运动,牛顿第二定律。
10.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量11
10
m kg -=,电荷量
710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴
时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:
①带电粒子第一次经过x 轴时的横坐标是多少?
②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.
【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;
②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯
【解析】 【分析】
(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x 轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;
(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E ,三个过程的总时间即为总时间. 【详解】
①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2
v qvB m R
=,
半径0.4mv
R m Bq
=
=, 根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90, 则第一次经过x 轴时的横坐标为120.420.57x R m m =≈
②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O 处,其运动轨迹如图所示.
由几何关系可得,第二次进入电场中的位移为22R , 在垂直电场方向的位移11s vt =, 运动时间4112410s R t s v v
-=
==⨯ 在沿电场方向上的位移2
2112
s at =, 又因22s R = 得722
21
2110/s a m s t =
=⨯ 根据牛顿第二定律Eq a m
= 所以电场强度3110/ma
E V m q
=
=⨯ 粒子从第一次进入电场到再返回磁场的时间422410v
t s a
-=
=⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期
42410m
T s Bq
ππ-=
=⨯ 所以粒子从出发到再回到原点的时间为3
12 2.110t t t T s -=++≈⨯
【点睛】
本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.
11.如图为一装放射源氡的盒子,静止的氡核经过一次α衰变成钋Po ,新核Po 的速率约为2×105m/s .衰变后的α粒子从小孔P 进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B =0.1T .之后经过A 孔进入电场加速区域Ⅱ,加速电压U =3×106V .从区域Ⅱ射出的α粒子随后又进入半径为r 3
的圆形匀强磁场区域Ⅲ,该区域磁感应强度
B 0=0.4T 、方向垂直纸面向里.圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M 和圆形磁场的圆心O 、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为
q
m
=5×107C/kg .
(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置. 【答案】(1)
2222184
86
842Rn Po He →
+ 1×107 m/s
(2)1×106V/m (3)
6
π
×10-7s (4)打在荧光屏上的M 点上方1 m 处 【解析】 【分析】
(1)根据质量数守恒和电荷数守恒写出方程,根据动量守恒求解速度; (2)根据速度选择器的原理求解电场强度的大小;
(3)粒子在磁场中匀速圆周运动,并结合几何知识进行求解即可; 【详解】
(1)根据质量数守恒和电荷数守恒,则衰变方程为:
2222184
86
842Rn Po He →
+ ①
设α粒子的速度为0v ,则衰变过程动量守恒:100Po He m v m v =- ②
联立①②可得:7
0110/v m s =⨯ ③
(2)α粒子匀速通过电磁场区域Ⅰ:0qE qv B =④ 联立③④可得:6110/E V m =⨯ ⑤ (3)α粒子在区域Ⅱ被电场加速:2201122
qU mv mv =- 所以得到:7210/v m s =⨯⑥
α粒子在区域Ⅲ中做匀速圆周运动: 2v qvB m R
= 所以轨道半径为:1R m =⑦
而且:2R
T v
π=
⑧ 由图根据几何关系可知:α粒子在磁场中偏转角60θ=︒,所以α粒子在磁场中的运动时
间1
6
t T =
⑨ 联立⑧⑨可得:7106
t s π
=
⨯-;
(4)α粒子的入射速度过圆心,由几何关系可知,出射速度方向也必然过圆心O ,几何关系如图: 60x
tan r
︒=
,所以1x m =,α粒子打在荧光屏上的M 点上方1m 处.
【点睛】
本题实质是考查带电粒子在电场和磁场中的运动,解决类似习题方法是洛伦兹力提供向心力,同时结合几何知识进行求解,同时画出图形是解题的关键.
12.如图甲所示,两金属板M 、N 水平放置组成平行板电容器,在M 板中央开有小孔O ,再将两个相同的绝缘弹性挡板P 、Q 对称地放置在M 板上方,且与M 板夹角均为60°,两挡板的下端在小孔O 左右两侧.现在电容器两板间加电压大小为U 的直流电压,在M 板上方加上如图乙所示的、垂直纸面的交变磁场,以方向垂直纸面向里为磁感应强度的正值,其值为B 0,磁感应强度为负值时大小为B x ,但B x 未知.现有一质量为m 、电荷量为q (q >0),不计重力的带电粒子,从N 金属板中央A 点由静止释放,t =0时刻,粒子刚好从小孔O 进入上方磁场中,在t 1时刻粒子第一次撞到左挡板P 上,紧接着在t 1+t 2时刻粒子撞到了右挡板Q 上,然后粒子又从O 点竖直向下返回平行金属板间,接着再返回磁场做前面所述的运动.粒子与挡板碰撞前后电荷量不变,沿板面的分速度不变,垂直于板面的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.图中t 1,t 2未知,求:
(1)粒子第一次从A 到达O 点时的速度大小; (2) 粒子从O 点第一次撞到左挡板P 的时间t 1的大小; (3)图乙中磁感应强度B x 的大小; (4)两金属板M 和N 之间的距离d . 【答案】(1)v 2Uq m (2)t 1=03m
B q π(3)B x =2B 0(4)d ()035224n Um B q
π+,n =0,1,2,3
【解析】【分析】粒子在电场间做匀加速直线运动,由动能定理求出粒子刚进入磁场的速度,在磁场中做圆周运动,由几何关系得圆心角求出运动时间,粒子在整个装置中做周期性的往返运动,由几何关系得半径求出磁感应强度B x 的大小,在t 1~(t 1+t 2)时间内,粒子做匀速圆周运动,由周期关系求出在金属板M 和N 间往返时间,再求出金属板M 和N 间的距离。
解:(1) 21
Uq=mv -02
解得2Uq
m
(2)由2
qvB=mv r 得
00r =
mv
B q
01022T =
=r m
v B q
ππ 1101t =T =63m B q
π (3)由2qvB=mv r
得,粒子做匀速圆周运动的半径00r =mv B q , x x r =mv B q
粒子在整个装置中做周期性的往返运动,运动轨迹如图所示
由图易知: 0=2x r r 解得 0=2x B B
(4)在t 1~(t 1+t 2)时间内,粒子做匀速圆周运动的周期
202T =
=x m
m
B q B q
ππ 2201t =T =22m B q
π
设粒子在金属板M 和N 间往返时间为t ,有
0+d=
22
v t ⨯ 且满足: ()2120,1,2,3t t n t t n ⋯⋯=++,= 联立可得金属板M 和N 间的距离:
23+5=
0,1,2,324m
U n d n B q
π(),=
13.如图,直线MN 上方有平行于纸面且与MN 成45。
的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B 。
今从MN_上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45。
角的带正电粒子,该粒子在磁场中运动时的轨道半径为R 。
若该粒子从O 点出发记为第一次经过直线MN ,而第五次经过直线MN 时恰好又通过O 点。
不计粒子的重力。
求:
(1)电场强度的大小;
(2)该粒子从O 点出发,第五次经过直线MN 时又通过O 点的时间
(3)该粒子再次从O点进入磁场后,运动轨道的半径;
【答案】(1);(2)(3)
【解析】
试题分析:粒子的运动轨迹如图,先是一段半径为R的1/4圆弧到a点,接着恰好逆电场线匀减速运动到b点速度为零再返回a点速度仍为v,再在磁场中运动一段3/4圆弧到c 点,之后垂直电场线进入电场作类平抛运动。
(1)易知,
类平抛运动的垂直和平行电场方向的位移都为
①
所以类平抛运动时间为
②
又③
再者④
由①②③④可得
⑤
粒子在磁场中的总时间:
粒子在电场中减速再加速的时间:
故粒子再次回到O点的时间:
(3)由平抛知识得
所以[或]。