浙江省绍兴市高二下学期期末数学试卷(理科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省绍兴市高二下学期期末数学试卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2016高一下·南阳期末) 若某公司从5位大学毕业生甲、乙、丙、丁、戊中录用3人,这5人被录用的机会均等,则甲、乙同时被录用的概率为()
A .
B .
C .
D .
2. (2分)若随机变量x~B(n,0.6),且E(x)=3,则p(x=1)的值是()
A .
B .
C .
D .
3. (2分) (2017高二下·仙桃期末) 设随机变量x服从正态分布N(2,9),若P(x>m﹣1)=P(x<2m+1),则m=()
A .
B .
C .
D . 2
4. (2分)人的年龄x与人体脂肪含量的百分数y的回归方程为=0.577x-0.448,如果某人36岁,那么这个
人的脂肪含量()
A . 一定20.3%
B . 在20.3%附近的可能性比较大
C . 无任何参考数据
D . 以上解释都无道理
5. (2分) (2017高二下·兰州期中) 现有8名青年,其中5名能任英语翻译工作,4名能胜任电脑软件设计工作,且每人至少能胜这两项工作中的一项,现从中选5人,承担一项任务,其中3人从事英语翻译工作,2人从事软件设计工作,则不同的选派方法有()
A . 60种
B . 54种
C . 30种
D . 42种
6. (2分)除以9的余数为()
A . 8
B . 7
C . 6
D . 5
7. (2分)同时抛三枚普通的硬币,出现“两个正面一个反面”的概率是()
A .
B .
C .
D .
8. (2分)已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax•g(x),(a>0,且a≠1),+=,在有穷数列{}(n=1,2,…10)中,任意取正整数k(1≤k≤10),则前k项和大于地概率是()
A .
B .
C .
D .
9. (2分)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()
A . 33
B . 34
C . 35
D . 36
10. (2分)一个口袋内有带标号的7个白球,3个黑球,作有放回抽样,连摸2次,每次任意摸出1球,则2次摸出的球为一白一黑的概率是()
A .
B .
C .
D .
11. (2分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()
A . 243
B . 252
C . 261
D . 279
12. (2分) (2015高二下·周口期中) 观察(x2)′=2x,(x4)′=4x3 ,(cosx)′=﹣sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=()
A . ﹣g(x)
B . f(x)
C . ﹣f(x)
D . g(x)
二、填空题 (共4题;共6分)
13. (2分) (2017高二下·临沭开学考) 以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是________和________.
14. (1分) (2015高三上·苏州期末) 连续2次抛掷﹣枚骰子(六个面上分别标有数字1,2,3,4,5,6).则事件“两次向上的数字之和等于7”发生的概率为________ .
15. (1分)(2017·菏泽模拟) 已知(﹣)5的常数项为15,则函数f(x)=log (x+1)﹣
在区间[﹣,2]上的值域为________.
16. (2分)已知集合A={x|x2+ax+b=0}中仅有一个元素1,则a=________,b=________.
三、解答题 (共6题;共45分)
17. (5分) (2017高二下·南昌期末) 已知的展开式的各项系数之和等于展开式中的常数项,求展开式中含的项的二项式系数.
18. (5分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下
表所示:
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:K2=
P(K2>k0)0.100.05
0.005
0.01
7.879
k0 2.706 3.841
6.635
19. (10分)(2017·广东模拟) 现有4名同学去参加校学生会活动,共有甲、乙两类活动可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪类活动,掷出点数为1或2的人去参加甲类活动,掷出点数大于2的人去参加乙类活动.
(1)求这4个人中恰有2人去参加甲类活动的概率;
(2)用X,Y分别表示这4个人中去参加甲、乙两类活动的人数.记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望E(ξ).
20. (10分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)
写出所有个位数字是5的“三位递增数”;
(2)
若甲参加活动,求甲得分X的分布列和数学期望EX.
21. (10分)(2017·福建模拟) 已知曲线C1在平面直角坐标系中的参数方程为(t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ﹣4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.
22. (5分)在平面直角坐标系中,已知直线l的参数方程为,在以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=3.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若P(﹣1,2),直线l与曲线C分别交于M,N两点,求|PM|•|PN|的值.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共6分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共45分) 17-1、
18-1、
19-1、
19-2、
20-1、
20-2、
21-1、21-2、
22-1、。

相关文档
最新文档