铜梁区三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜梁区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数⎩⎨
⎧≤>=)0(|
|)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
2. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45
B .90
C .120
D .360
3. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则
的值为( )
A .﹣2或﹣1
B .1或2
C .±2或﹣1
D .±1或2
4. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )
A .y=x+2
B .y=
C .y=3x
D .y=3x 3
5. 已知函数f (x )=Asin (ωx ﹣
)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角
形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )
A .向左平移个长度单位
B .向右平移个长度单位
C .向左平移个长度单位
D .向右平移
个长度单位
6. 已知表示数列
的前项和,若对任意的
满足
,且
,则
( )
A .
B .
C .
D .
7. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )
A .
B .
C .
D .
8. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A .
B .(4+π)
C .
D .
9. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
A.20,2 B.24,4 C.25,2 D.25,4
10.实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是()
A.(1,1) B.(0,3) C.(,2) D.(,0)
11.设a,b为实数,若复数,则a﹣b=()
A.﹣2 B.﹣1 C.1 D.2
12.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为()
A.B.
C.D.
二、填空题
13.在△ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是.
14.若全集,集合,则
15.下列命题:
①函数y=sinx和y=tanx在第一象限都是增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;
④在△ABC中,A>B的充要条件是cos2A<cos2B;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是(把所有正确命题的序号都写上).
16.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点
②经过空间任意三点有且只有一个平面
③过两平行直线有且只有一个平面
④在空间两两相交的三条直线必共面
其中正确命题的序号是.
17.经过A(﹣3,1),且平行于y轴的直线方程为.
18.如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是.
三、解答题
19.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x
(1)当x<0时,求f(x)的解析式.
(2)作出函数f(x)的图象,并指出其单调区间.
20.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
21.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
22.(本小题满分12分)
已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.
(1)求证://EF 平面ABC ; (2)求证:平面 AEF 平面B B AA 11.
23.已知函数f (x )=ax 2+lnx (a ∈R ).
(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;
(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g
(x )为f 1(x ),f 2(x )的“活动函数”.已知函数
+2ax .若在区间(1,+∞)上,函数f (x )
是f 1(x ),f 2(x )的“活动函数”,求a 的取值范围.
24.已知椭圆
+
=1(a >b >0)的离心率为
,且a 2
=2b .
(1)求椭圆的方程;
(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2
=5上,若存
在,求出m 的值;若不存在,说明理由.
铜梁区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D

Ⅱ卷(共100分)[.Com]
2.【答案】B
【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,
所以由分步计数原理有:C62C42C22=90个不同的六位数,
故选:B.
【点评】本题考查了分步计数原理,关键是转化,属于中档题.
3.【答案】C
【解析】解:由题设知a1≠0,当q=1时,S4=4a1≠10a1=5S2;q=1不成立.
当q≠1时,S n=,
由S4=5S2得1﹣q4=5(1﹣q2),(q2﹣4)(q2﹣1)=0,(q﹣2)(q+2)(q﹣1)(q+1)=0,
解得q=﹣1或q=﹣2,或q=2.
==q,
∴=﹣1或=±2.
故选:C.
【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键.
4.【答案】C
【解析】解:模拟程序框图的运行过程,得;
该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);
这组数对对应的点在函数y=3x的图象上.
故选:C.
【点评】本题考查了程序框图的应用问题,是基础题目.
5.【答案】A
【解析】解:∵△EFG是边长为2的正三角形,
∴三角形的高为,即A=,
函数的周期T=2FG=4,即T==4,
解得ω==,
即f(x)=Asinωx=sin(x﹣),g(x)=sin x,
由于f(x)=sin(x﹣)=sin[(x﹣)],
故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.
故选:A.
【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.
6.【答案】C
【解析】
令得,所以,即,所以是以1为公差的等差数列,首项为,
所以,故选C
答案:C
7.【答案】C
【解析】解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为,外接球的体积为,
故选C.
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
8.【答案】D
【解析】解:由三视图知,几何体是一个组合体,
是由半个圆锥和一个四棱锥组合成的几何体,
圆柱的底面直径和母线长都是2,
四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=,
∴几何体的体积是=,
故选D.
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
9.【答案】C
【解析】
考点:茎叶图,频率分布直方图.
10.【答案】D
【解析】解:由题意作出其平面区域,
将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,
故由图象可知,
使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(,0)在直线y=3﹣2x上但不在阴影区域内,
故不成立;
故选D.
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.11.【答案】C
【解析】解:,因此.a﹣b=1.
故选:C.
12.【答案】B
【解析】解:∵函数的周期为T==,
∴ω=
又∵函数的最大值是2,相应的x值为
∴=,其中k∈Z
取k=1,得φ=
因此,f(x)的表达式为,
故选B
【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.
二、填空题
13.【答案】.
【解析】解:由于角A为锐角,
∴且不共线,
∴6+3m>0且2m≠9,解得m>﹣2且m.
∴实数m的取值范围是.
故答案为:.
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
14.【答案】{|0<<1}
【解析】∵,∴{|0<<1}。

15.【答案】②③④⑤
【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是
,,因此不是单调递增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,
=11a6<0,
∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;
④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.
其中正确命题的序号是②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
16.【答案】③.
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,
故正确命题的序号是③,
故答案为:③
17.【答案】x=﹣3.
【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.
故答案为:x=﹣3.
18.【答案】x+4y﹣5=0.
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
把P(x1,y1),Q(x2,y2)代入x2+4y2=36,
得,
①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,
∴k==﹣,
∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),
即为x+4y﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.
故答案为:x+4y﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
三、解答题
19.【答案】
【解析】解:(1)设x<0,则﹣x>0,
∵x>0时,f(x)=x2﹣2x.
∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x
∵y=f(x)是R上的偶函数
∴f(x)=f(﹣x)=x2+2x
(2)单增区间(﹣1,0)和(1,+∞);
单减区间(﹣∞,﹣1)和(0,1).
【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.
20.【答案】
【解析】解:(Ⅰ)由频率分布直方图,得:
10×(0.005+0.01+0.025+a+0.01)=1,
解得a=0.03.
(Ⅱ)由频率分布直方图得到平均分:
=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).
(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,
数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,
若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,
则所有的基本事件有:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),
(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,
如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,
则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.
【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.
21.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明. 22.【答案】(1)详见解析;(2)详见解析. 【




题解析:证明:(1)连接C A 1,∵直三棱柱111C B A ABC 中,四边形C C AA 11是矩形,
故点F 在C A 1上,且F 为C A 1的中点,
在BC A 1∆中,∵F E 、分别是11AC B A 、的中点,∴BC EF //. 又⊄EF 平面ABC ,⊂BC 平面ABC ,∴//EF 平面ABC .
考点:1.线面平行的判定定理;2.面面垂直的判定定理. 23.【答案】
【解析】解:(1)当
时,


对于x ∈[1,e],有f'(x )>0,∴f (x )在区间[1,e]上为增函数,



(2)在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,则f 1(x )<f (x )<f 2(x )

<0,对x ∈(1,+∞)恒成立,
且h (x )=f 1(x )﹣f (x )=<0对x ∈(1,+∞)恒成立,

1)若
,令p ′(x )=0,得极值点x 1=1,

当x 2>x 1=1,即
时,在(x 2,+∞)上有p ′(x )>0,
此时p (x )在区间(x 2,+∞)上是增函数,并且在该区间上有p (x )∈(p (x 2),+∞),不合题意;
当x 2<x 1=1,即a ≥1时,同理可知,p (x )在区间(1,+∞)上,有p (x )∈(p (1),+∞),也不合题意;
2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,
从而p(x)在区间(1,+∞)上是减函数;
要使p(x)<0在此区间上恒成立,只须满足,
所以≤a≤.
又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,
h(x)<h(1)=+2a≤0,所以a≤
综合可知a的范围是[,].
【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.
24.【答案】
【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,
解得a=,b=c=1
故椭圆的方程为x2+=1;
(2)设A(x1,y1),B(x2,y2),
线段AB的中点为M(x0,y0).
联立直线y=x+m与椭圆的方程得,
即3x2+2mx+m2﹣2=0,
△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,
x1+x2=﹣,
所以x0==﹣,y0=x0+m=,
即M(﹣,).又因为M点在圆x2+y2=5上,
可得(﹣)2+()2=5,
解得m=±3与m2<3矛盾.
故实数m不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.。

相关文档
最新文档