《轴对称全章教案》[上学期]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称
八年级数学(上)



临汾一中
2005-10-28
§14.1.1 轴对称(一)
教学目标
(一)教学知识点:在生活实例中认识轴对称图;分析轴对称图形,理解其概念.(二)能力训练要求
1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.
2.经历观察、分析的过程,训练学生观察、分析的能力.
(三)情感与价值观要求
通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.
重、难点轴对称图形的概念.能够识别轴对称图形并找出它的对称轴.
教学过程
Ⅰ.创设情境,引入新课
1.举实例说明对称的重要性和生活充满着对称。

2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一
些图形的特征,还可以使我们感受到自然界的美与和谐.
3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!
Ⅱ.导入新课
1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.
强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.
练习:从学生生活周围的事物中来找一些具有对称特征的例子.
2.观察:如图14.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•
再打开这张对折的纸,就剪出了美丽的窗花.
你能发现它们有什么共同的特点吗?
3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.
4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.(学生操作、讨论,教师指导)
归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
5.练习:你能找出它们的对称轴吗?分小组讨论.
思考:大家想一想,你发现了什么?
(屏幕显示)
学生讨论后小结得出:
6.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
(屏幕显示上图中的两个成轴对称图形的对称点)
Ⅲ.随堂练习
(一)课本P117练习
下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?(图略)
(二)P118练习
下面给出的每幅图中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点.
答案:图(1)(3)(4)中的两个图案是轴对称的,图(2)不是.•其对称轴及对称点如图.
Ⅳ.课时小结
这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.
Ⅴ.课后作业
(一)课本习题14.1─1、2、6、7、8题.
(二)预习课本P118~P120内容.
§14.1.2 轴对称(二)
第二课时
教学目标
(一)教学知识点
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
(二)能力训练要求
1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.
2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力.(三)情感与价值观要求
通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,•并使学生具有一些初步研究问题的能力.
重、难点 1.轴对称的性质. 2.线段垂直平分线的性质.3.体验轴对称的特征.
教学过程
Ⅰ.创设情境,引入新课
1.什么样的图形是轴对称图形呢?
2.轴对称图形有哪些性质,从图形中能得到结论?
Ⅱ.导入新课
1.如下图,△ABC和△A′B′C′关于直线MN对称,点A′、
B′、C′分别是点A、•B、C对称点,线段AA′、BB′、CC′与
直线MN有什么关系?为什么?
(学生思考并做小范围讨论)
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
2.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.(归纳得出)
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.
[探究1]
如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,
P3,…是L上的点,•分别量一量点P1,P2,P3,…到A与B的
距离,你有什么发现?
学生活动:
1.学生用平面图将上述问题进行转化,先作出线段AB,过
AB 中点作AB 的垂直平分线L ,在L 上取P 1、P 2、P 3…,连结AP 1、A P 2、BP 1、BP 2、CP 1、CP 2…
2.作好图后,用直尺量出AP 1、AP 2、BP 1、BP 2、CP 1、CP 2…讨论发现什么样的规律. 探究结果:
线段垂直平分线上的点与这条线段两个端点的距离相等.即A P 1=BP 1,AP 2=BP 2,…
[师]能用我们已有的知识来证明这个结论吗?
学生讨论给出证明.
证法一:利用判定两个三角形全等.
如下图,在△APC 和△BPC 中,
PC PC PCA PCB Rt AC BC =⎧⎪∠=∠=∠⎨⎪=⎩
⇒ △APC ≌△BPC ⇒ PA=PB.
证法二:利用轴对称性质.
由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段
PA 与PB 是重合的,•因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2]
如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易
的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的
方向与木棒垂直呢?为什么?
学生活动:
1.学生用平面图形将上述问题进行转化.作线段AB ,取其中点P ,过P 作L ,在L 上取点P 1、P 2,连结AP 1、AP 2、BP 1、BP 2.会有以下两种可能.
2.讨论:要使L 与AB 垂直,AP 1、AP 2、BP 1、BP 2应满足什么条件?
探究过程:
1.如上图甲,若A P 1≠BP 1,那么沿L 将图形折叠后,A 与B 不可能重合,也就是∠AP P 1≠∠BPP 1,即L 与AB 不垂直.
2.如上图乙,若A P 1=BP 1,那么沿L 将图形折叠后,A 与B 恰好重合,就有∠AP P 1
=
∠BPP1,即L与AB重合.当AP2=BP2时,亦然.
探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[•探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.•所以线段的垂直平分线可以看成是与线
段两端点距离相等的所有点的集合.
Ⅲ.随堂练习
(一)课本P121练习 1、2.
1.如下图,AD⊥BC,BD=DC,点C在AE的垂直平分
线上,AB、AC、CE的长度有什么关系?AB+BD与DE有什
么关系?
2.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?
(二)阅读课本P119~P120,然后小结.
Ⅳ.课时小结
这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直
平分线的有关性质,同学们应灵活运用这些性质来解决问题.
Ⅴ.课后作业
(一)课本习题14.1─3、4、9题.
(二)预习课本P121~P122内容.
§14.1.3 轴对称(三)
教学目标
(一)教学知识点:探索作出轴对称图形的对称轴的方法.
(二)能力训练要求
1.经历探究轴对称图形的对称轴的作法的过程,体会利用操作、•归纳获得数学结论的过程.
2.掌握轴对称图形对称轴的作法.
3.在探索的过程中,培养学生分析、归纳的能力.
(三)情感与价值观要求
通过提问、思考、归纳、探究来激发学生学习数学的兴趣,并使学生了解一些研究问题的经验和方法,开拓实践能力,培养创新精神.
重、难点轴对称图形对称轴的作法.探索轴对称图形对称轴的作法.
教学过程
Ⅰ.提出问题,引入新课
1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,•你能比较准备地作出轴对称图形的对称轴吗?
2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.
3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.
4.问题:如何作出线段的垂直平分线?
提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.
分组讨论我们用折纸的方法,根据折叠的过程中线段重合,说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两端点的距离相等.所以这个问题利用此性质就能完成.
Ⅱ.导入新课
1.要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么我们必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.
一学生上台来写出已知、求作、作法,体会作法中每一步的依据.
[师生共析]
[例]如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?
已知:线段AB[如图(1)].
求作:线段AB 的垂直平分线.
作法:如图(2)
(1).分别以点A 、B 为圆心,以大于12
AB 的长为半径作弧,两弧相交于C 和D 两点; (2).作直线CD .
直线CD 就是线段AB 的垂直平分线.
2.思考:(1)在上述作法中,为什么要以“大于
12
AB 的长”为半径作弧? (2)如果以12
AB 长为半径作弧,两弧只有一个交点,正好是线段AB 的中点.• 这样
就找不到到端点A 、B 距离相等的两点,也就作不
出线段AB 的垂直平分线.
(3)如果以小于
12
AB 长为半径,两弧就没有交点,这样找不到到A 、B 两端点 距离相等的点,也就作不出线段AB 的垂直平分线了.只有以大于12长为半径作弧才可以作出线段AB 的垂直平分线.
3.[例]下图中的五角星有几条对称轴?作出这些对称轴.
作法:1.找出五角星的一对对应点A 和A ′,连结AA ′.
2.作出线段AA ′的垂直平分线L .
则L 就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴,所以五角星有五条
对称轴.
Ⅲ.随堂练习
(一)课本P122练习 1、2、3
1.画出下列图形的一条对称轴,和同学比较一下,你们画
的一样吗?
2.如图,角是轴对称图形吗?如果是,它的对称轴是什么?
3.如图,与图形A 成轴对称的是哪个图形?画出它们的对称轴.
答案:与A 成轴对称的是图形D (或B ).
(二)阅读课本P121~P122,小结.
Ⅳ.课时小结
本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连结这对对应点,•作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.
Ⅴ.课后作业
课本P124习题─5、10、11、12题.
§14.2.1.1 轴对称变换(一)
教学目标
(一)教学知识点
1.通过实际操作,了解什么叫做轴对称变换.
2.如何作出一个图形关于一条直线的轴对称图形.
(二)能力训练要求
经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.
(三)情感与价值观要求
1.鼓励学生积极参与数学活动,培养学生的数学兴趣.
2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.
3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
重、难点:1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.3.作出简单平面图形关于直线的轴对称图形. 4.利用轴对称进行一些
图案设计
教学过程
Ⅰ.设置情境,引入新课
1.同学们思考一种作轴对称图形的方法?.
(1)将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.
(2)准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.
上述方法,行吗?为什么?.
Ⅱ.导入新课
1.连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.
2. 同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)
结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;
3. 新图形上的每一点,都是原图形上的某一点关于直线L的对称点;
连结任意一对对应点的线段被对称轴垂直平分.
4. 我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.
成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.
5.练习:取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.
(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.
(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?
(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.
投影仪演示学生的作品.
Ⅲ.随堂练习
(课件演示)
(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).
(1)猜一猜,将纸打开后,你会得到怎样的图形?
(2)这个图形有几条对称轴?
(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?
答案:(1)轴对称图形.
(2)这个图形至少有3条对称轴.
(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.
(二)回顾本节课内容,然后小结.
Ⅳ.课时小结
本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.
Ⅴ.课后作业
(课件演示)
(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.
(1)你会得怎样的图案?先猜一猜,再做一做.
(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.
(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?
(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?
(二)自己设计并制作一个花边.
(三)收集并欣赏1~2个对称的中国民间剪纸图案,你能找出它的对称轴吗?
§14.2.1.2 轴对称变换(二)
教学目标
(一)教学知识点
1.能够按要求作出简单平面图形经过轴对称后的图形.
2.轴对称的简单应用.
(二)能力训练要求
1.能够按要求作出简单平面图形经过轴对称后的图形.
2.培养学生运用轴对称解决实际问题的基本能力.
3.使学生掌握数学知识的衔接与各部分知识间的相互联系.
(三)情感与价值观要求
1.积极参与数学学习活动,对数学有好奇心和求知欲.
2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
重、难点:能够按要求作出简单平面图形经过轴对称后的图形.应用轴对称解决实际问题.教学过程
Ⅰ.提出问题,创设情境
1.上节课我们学习了轴对称变换的概念,•知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操
作呢?这就是我们这节课要学习的.•
下面同学们来仔细观察一个图案.
以虚线为对称轴画出图的另一半:
Ⅱ.导入新课
1. 如何作一个图形经过轴对称后
的图形呢?我们知道:任何一个图形都
是由点组成的.因为我们来作一个点关
于一条直线的对称点.由已经学过的知
识知道:•对应点的连线被对称轴垂直平
分.所以,已知对称轴L和一个点A,要画出点A关于L•的对应
点A′,可采取如下方法:
(1)过点A作对称轴L的垂线,垂足为B;
(2)在垂线上截取BA′,使BA′=AB.
点A′就是点A关于直线L的对应点.
好,大家来动手画一点A关于直线L对称的对应点,教师口
述,大家来画图,要注意作图的准确性.
……
2. 现在我们会画一点关于已知直线的对称点,那么一个图形呢?•大家请看大屏幕. [例1]如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.
作法:如图(2).
(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线L的对称点;
(2)类似地,作出点B、C关于直线L的对称点B′、C′;
(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.
[师]大家做完后,•我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:
几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.
Ⅲ.随堂练习
(一)课本P129练习 1、2.
1.如图,把下列图形补成关于直线L对称的图形.
2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,•看看哪些部分能够重合,哪些部分不能重合.
(二)阅读课本P127~P130,然后小结.
Ⅳ.课时小结
本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.Ⅴ.课后作业
(一)课本P133习题─1、5、8、9题.
(二)预习内容P130~P132.
§14.2.2 用坐标表示轴对称
教学目标
(一)教学知识点
1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.
2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y•轴对称的图形.(二)能力训练要求
1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识. 2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)情感与价值观要求
在探索规律的过程中,提高学生的求知欲和强烈的好奇心.
重、难点: 1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.
2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.
教学过程
Ⅰ.提出问题,创设情境
1.如图:
(1)观察上图中两个圆脸有什么关系?
(2)已知右边图脸右眼的坐标为(4,3),
左眼的坐标为(2,3),嘴角两个端点,右端
点的坐标为(4,1),左端点的坐标为(2,1).
你能根据轴对称的性质写出左边圆脸上
左眼,右眼及嘴角两端点的坐标吗?
2.在平面直角坐标系中,将坐标为(2,
2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?
(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?
2.在直角坐标系中根据坐标描出四个点并
依次连结如图.A(2,2),B(4,2),•C(4,4),
D(2,4).
(1)纵坐标不变,横坐标乘以-1,得到相应
四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,
D1(-2,4).顺次连结所得到的图案和原图案比较,
不难发现它们是关于y轴对称的.
(2)横坐标不变,纵坐标乘以-1,得到相应
的四个点为A2(2,-2),B2(4,-2),C2(4,-4),
D2(2,-4).顺次连结所得到的图案和原图案比较,
可得它们是关于x轴对称的.
[师]A(2,2)与A1(-2,2)关于y轴对称,
B(4,2)与B1(-4,2)关于y轴对称,
C(4,4)与C1(-4,4)关于y轴对称,
D(2,4)与D1(-2,4)关于y轴对称.
那么关于y轴对称的点具有什么规律呢?
A(2,2)与A2(2,-2)关于x轴对称,
B(4,2)与B2(4,-2)关于x轴对称,
C(4,4)与C2(4,-4)关于x轴对称,
D(2,4)与D2(2,-4)关于x轴对称.
那么关于x轴对称的点有何规律呢?
这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.
Ⅱ.导入新课
在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.
1.已知点A(2,-3),B(-1,2),C(-6,-5),D(1
2
,1),E(4,0).
关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).
关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).
教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律.关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.
2. 作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.
观察结论并对照已知点的坐标,比较每对关于y轴的对称点坐标,你能发现什么规律?
强调:关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.
Ⅲ.随堂练习
[活动3]
练习:(教科书P133练习)
1.分别写出下列各点关于x轴和y轴对称的点的坐标:
(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.
3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x•轴和y 轴对称的图形.学生练习,教师巡视,师生共评.
补充练习:
1.将下图中的点(2,1),(5,1),(2,5)做如下变化:
(1)纵坐标不变,横坐标分别加2.
(2)横坐标不变,纵坐标分别加1.
(3)纵坐标不变,横坐标分别变为原来的2倍.
(4)横坐标不变,纵坐标分别变为原来的2倍.
(5)纵坐标不变,横坐标分别乘以-1.
(6)横坐标不变,纵坐标分别乘以-1.
(7)纵坐标、横都分别乘以-1,观察变化后的三角形与原三角形有什么变化?
学生练习,教师指导.
精析:行根据变化,把每次变化后的三个顶点坐标求出,•在平面直角坐标系中描出它们,连结成新三角形,然后与原有的三角形进行比较.
Ⅳ.课时小结
本节课的主要内容(由学生在教师的引导下共同回忆总结):
1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.
2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.
Ⅴ.课后作业
教科书习题14.2─2、3、4题,第6题、第7题(学有余力的同学做).。

相关文档
最新文档