安阳县二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安阳县二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. (﹣6≤a ≤3)的最大值为( )
A .9
B .
C .3
D .
2. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)
3. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④
D .①③
4. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )
A .4π
B .12π
C .16π
D .48π
5. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直
6. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )
A .0
B .1
C .﹣1
D .2
7. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与
sin sin 0bx B y C -+=的位置关系是( )
A .平行
B . 重合
C . 垂直
D .相交但不垂直 8. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]
9. 求值: =( )
A .tan 38°
B .
C .
D .﹣
10.如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )
A .
B .1
C .
D .
11.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )
A .向左平移个单位得到
B .向右平移个单位得到
C .向左平移
个单位得到 D .向左右平移
个单位得到
12.将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )
A .
B .﹣
C .﹣
D .
二、填空题
13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .
14.下列说法中,正确的是 .(填序号)
①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;
②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=(
)﹣x
是增函数;
④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.
15.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.
16.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .
17.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .
18.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x
C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.
三、解答题
19.(本小题满分10分)选修4-1:几何证明选讲
如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.
(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2
.
20.设集合{}
()(
){
}
2
2
2
|320,|2150A x x x B x x a x a =-+==+-+-=.
(1)若{}2A B =,求实数的值;
(2)A B A =,求实数的取值范围.1111]
21.设函数,若对于任意x ∈[﹣1,2]都有f (x )<m 成立,求实数m 的取值范围.
22.求下列函数的定义域,并用区间表示其结果.
(1)y=+
;
(2)y=.
23.(本小题满分12分)已知椭圆1C :14
82
2=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M .
(1)求点M 的轨迹2C 的方程;
(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.
24.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R . (1)当a=1时,解方程f (x )﹣1=0;
(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围; (3)若函数f (x )有零点,求实数a 的取值范围.
安阳县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f
(a)的最大值为,
故(﹣6≤a≤3)的最大值为=,
故选B.
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.
2.【答案】A
【解析】解:∵f(0)=﹣2<0,f(1)=1>0,
∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).
故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
3.【答案】B
【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:
在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;
在②中:若α∥β,β∥γ,则α∥γ,
∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;
在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;
在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.
故选:B.
4.【答案】B
【解析】解:由三视图可知几何体是底面半径为2的圆柱,
∴几何体的侧面积为2π×2×h=12π,解得h=3,
∴几何体的体积V=π×22×3=12π.
故选B.
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
5.【答案】A
【解析】解:由题意可得直线l 1的斜率k 1=
=1,
又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1, 显然满足k 1•k 2=﹣1,∴l 1与l 2垂直 故选A
6. 【答案】A
【解析】解:由题意=,∴1+x=
,解得x=0
故选A
【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.
7. 【答案】C 【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 8. 【答案】B
【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0}, ∴f (x 1)=f (f (x 1))=0, ∴f (0)=0, 即f (0)=m=0, 故m=0;
故f (x )=x 2
+nx ,
f (f (x ))=(x 2+nx )(x 2+nx+n )=0, 当n=0时,成立;
当n ≠0时,0,﹣n 不是x 2
+nx+n=0的根, 故△=n 2
﹣4n <0,
故0<n <4;
综上所述,0≤n+m <4; 故选B .
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
9.【答案】C
【解析】解:=tan(49°+11°)=tan60°=,
故选:C.
【点评】本题主要考查两角和的正切公式的应用,属于基础题.
10.【答案】D
【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,
∴直角三角形的直角边长是,
∴直角三角形的面积是,
∴原平面图形的面积是1×2=2
故选D.
11.【答案】C
【解析】解:y=sin2x+cos2x=sin(2x+),
y=sin2x﹣cos2x=sin(2x﹣)=sin[2(x﹣)+)],
∴由函数y=sin2x﹣cos2x的图象向左平移个单位得到y=sin(2x+),
故选:C.
【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.12.【答案】D
【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣
)的图象,
∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,
故选:D.
二、填空题
13.【答案】[1,5)∪(5,+∞).
【解析】解:整理直线方程得y﹣1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y 轴上,而该椭圆关于原点对称,
故只需要令x=0有 5y 2=5m
得到y 2
=m
要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是
y 2≥1
得到m ≥1
∵椭圆方程中,m ≠5
m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
14.【答案】 ②④
【解析】解:①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1或k=0,故错误; ②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称,故正确; ③y=(
)﹣x
是减函数,故错误;
④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0,故正确. 故答案为:②④
【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.
15.【答案】2]
(02x #,02y #)上的点(,)x y 到定点(2,2),最大值为2,故MN 的取值
范围为2].
2
2
y
x
B
16.【答案】 [,1] .
【解析】
解:设两个向量的夹角为θ,
因为|2
﹣|=1,
|﹣
2|=1,
所以
,
,
所以
,
=
所以5
=1,所以
,所以5a 2
﹣
1∈
[
],
[
,1],
所以; 故答案为:[
,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.
17.【答案】 {1,﹣1} .
【解析】解:合M={x||x|≤2,x ∈R}={x|﹣2≤x ≤2}, N={x ∈R|(x ﹣3)lnx 2=0}={3,﹣1,1}, 则M ∩N={1,﹣1}, 故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
18.【答案】-4-ln2
【解析】
点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,
再根据点在线上(或点在曲线上),就可以求出对应的参数值。
三、解答题
19.【答案】(1)证明见解析;(2)证明见解析. 【
解
析
】
11
11]
试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,
∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形
又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥
又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2
,由(1)知PH 是线段AF 的垂直平分线,
∴PF PA =,从而PC PB PF ⋅=2
(10分)
考点:与圆有关的比例线段.
20.【答案】(1)1a =或5a =-;(2)3a >. 【解析】
(2){}{}1,2,1,2A A
B == .
①()()
2
2
,2150B x a x a =∅+-+-=无实根,0∆<, 解得3a >;
② B 中只含有一个元素,()()
222150x a x a +-+-=仅有一个实根,
{}{}0,3,2,2,1,2a B A B ∆===-=-故舍去;
③B 中只含有两个元素,使 ()()
2
2
2150x a x a +-+-= 两个实根为和,
需要满足()2
212121=a 5
a ⎧+=--⎪⎨⨯-⎪⎩方程组无根,故舍去, 综上所述3a >]
考点:集合的运算及其应用. 21.【答案】 【解析】解:
∵
,
∴f ′(x )=3x 2
﹣x ﹣2=(3x+2)(x ﹣1),
∴当x ∈[﹣1
,﹣),(1,2]时,f ′(x )>0; 当x ∈
(﹣,1)时,f ′(x )<0;
∴f (x )在[﹣1
,﹣),(1,2]
上单调递增,在(﹣,1)上单调递减;
且f (﹣)=﹣﹣×+2×+5=5+,f (2)=8﹣×4﹣2×2+5=7;
故f max (x )=f (2)=7;
故对于任意x ∈[﹣1,2]都有f (x )<m 成立可化为7<m ;
故实数m 的取值范围为(7,+∞).
【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.
22.【答案】
【解析】解:(1)∵y=+
,
∴
,
解得x ≥﹣2且x ≠﹣2且x ≠3,
∴函数y 的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴
, 解得x ≤4且x ≠1且x ≠3,
∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].
23.【答案】(1)x y 82
=;(2)9
64. 【解析】
试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积22b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直
线BD 的方程为()21
--
=x k
y .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .
利用四边形ABCD 面积BD AC S 2
1
=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.
(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,
则直线BD 的斜率为k
1
-,直线AC 的方程为)2(-=x k y ,联立⎪⎩⎪⎨⎧=+-=148
)2(22y x x k y ,得0888)12(2
222=-+-+k x k x k .111]
∴2
2
21218k k x x +=+,22212188k k x x +-=.
12)1(324)(1||22212
212++=-+⋅+=k k x x x x k AC .由于直线BD
的斜率为k 1-,用k
1-代换上式中的。
可得2
)
1(32||2
2++=k k BD . ∵BD AC ⊥,∴四边形ABCD 的面积)
12)(2()1(16||||21222
2+++=⋅=k k k BD AC S .
由于222222
2
]2)1(3[]2)12()2([)12)(2(+=+++≤++k k k k k ,∴9
64≥S ,当且仅当1222
2+=+k k ,即
1±=k 时取得等号.
易知,当直线AC 的斜率不存在或斜率为零时,四边形ABCD 的面积8=S . 综上,四边形ABCD 面积的最小值为9
64. 考点:椭圆的简单性质.1
【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得||||2MF MP =,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当AC 或BD 中的一条与轴垂直而另一条与轴重合时,四边形面积为2
2b .当直线
AC 和BD 的斜率都存在时,分别设出BD AC ,的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得
BD AC ,,从而利用四边形的面积公式求最值.
24.【答案】
【解析】解:(1)a=1时,f (x )=4x ﹣22x +2, f (x )﹣1=(2x )2﹣2•(2x )+1=(2x ﹣1)2=0, ∴2x =1,解得:x=0;
(2)4x ﹣a •(2x+1﹣1)+1>0在(0,1)恒成立, a •(2•2x ﹣1)<4x +1,
∵2x+1>1,
∴a>,
令2x=t∈(1,2),g(t)=,
则g′(t)===0,
t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,
而g(1)=2,g(2)=,
∴a≥2;
(3)若函数f(x)有零点,
则a=有交点,
由(2)令g(t)=0,解得:t=,
故a≥.
【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.。