数学七年级上册全册单元试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学七年级上册全册单元试卷培优测试卷
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.
(1)求证:∠EHC+∠GFE=180°.
(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.
(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG
∴FG∥EH,
∴∠GFE+∠HEF=180°,
∵AB∥CD
∴∠BEH=∠CHE
∴∠EHC+∠GFE=180°
(2)解:设∠EHM=x,
∵HG⊥HE,
∴∠GHK=90°-x,
∵MH平分∠CHG,
∴∠EHC=90°-2x,
∵AB∥CD
∴∠HMB=90°-x,
∴∠HMB=∠MHG=90°-x,
∵AB∥CD,
∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,
∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,
∴∠GHD=2∠EHM;
(3)解:延长FG,GK,交CD于R,交HE于S,如图,
∵AB∥CD,∠BFG=50°
∴∠HRG=50°
∵FG⊥HG,
∴∠GHR=40°,
∵HG⊥HE,
∴∠EHG=90°,
∴∠CHE=180°-90°-40°=50°,
∵AB∥CD,
∴∠FEH=∠CHE=50°,
∵EP是∠HEF的平分线,
∴∠SEP= ∠FEH=25°,
∵GH平分∠HGF,
∴∠HGS= ∠HGF=45°,
∴∠HSG=45°,
∵∠SEP+∠SPE=∠HSP=45°,
∴∠EPS=20°,即∠NPK=20°.
【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.
2.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°
(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.
∠DOE与∠AOB互补,
理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补
【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.
3.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t
(2)解:设点P运动x秒时,在点C处追上点Q (如图)
则AC=5x,BC=3x,
∵AC﹣BC=AB
∴5x﹣3x=14…
解得:x=7,
∴点P运动7秒时,在点C处追上点Q
(3)解:没有变化.分两种情况:
①当点P在点A.B两点之间运动时:
MN=MP+NP= AP+ BP= (AP+BP)= AB=7…
②当点P运动到点B的左侧时:
MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…
综上所述,线段MN的长度不发生变化,其值为7…
(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…
【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;
(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;
(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运
动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;
(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。

4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.
(1)若BC=15,
求a、b的值;
(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.
①用含t代数式表示PQ、 MN;
②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.
【答案】(1)∵BC=15,点C对应的数是10,
∴c-b=15,
∴b=-5,
∵c-b=b-a=15,
∴a=-20;
(2)①∵OQ=10+t,OP=20+2t,
∴PQ=(10+t)+( 20+2t)=30+3t;
∵OB=5, OQ=10+t,
∴BQ=15+t,
∵M为BQ的中点,
∴BM=7.5+0.5t,
∴OM=7.5+0.5t-5=2.5+0.5t.
∵OP=20+2t, N为OP的中点,
∴ON=10+t,
∴MN=OM+ON=12.5+1.5t;
②PQ-2MN=5.
∵PQ=30+3t,MN= 12.5+1.5t,
∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.
【解析】【分析】(1)利用数轴上所表示的数,右边的总比左边的大及数轴上任意两点间的距离等于这两点所表示数的差的绝对值,由BC=15,点C对应的数是10,即可算出点B 所表示的数,即b的值,进而根据 c-b=b-a 即可算出点A所表示的数a的值;
(2)① 根据路程等于速度乘以时间,得出PA=2t,CQ=t,所以OQ=OC+CQ=10+t,OP==OA+PA=20+2t, 进而根据PQ=OQ+OP,根据整式加减法法则算出PQ的长;根据BQ=OB+OQ得出 BQ=15+t, genuine线段中点的定义得出 BM=7.5+0.5t, ON=10+t, 根据MN=OM+ON ,由整式加减法法则即可算出答案;②PQ-2MN=5,理由如下:由
PQ=30+3t,MN= 12.5+1.5t,故利用整式家家爱你法法则即可算出PQ-2MN=5。

5.已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=
(1)若射线OE在∠BOC的内部(如图所示):
①若 =43°,求∠COD的度数;
②当∠AOD=3∠COE时,求∠COD的度数;
(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求的值.
【答案】(1)①∵∠BOC=180°−∠AOC,∠AOC=120°
∴∠BOC=180°−120°=60°
∵∠COE=∠BOC−∠BOE,∠BOE=n=43°
∠COD=∠DOE−∠COE,∠DOE=50°
∴∠COD=50°−(60°−43°)=33°
②当∠DOE在∠BOC之间时,设∠COD=x,则由题意可得:120+x=3(50+x)无解;
当OD在∠AOC之间时,设∠COD=x,则由题意可得120-x=3(50-x)解得x=15°
所以当∠AOD=3∠COE时,∠COD=15°
(2)解:如图,
当OE1平分∠BOC时,
∵∠AOC=120°
∴∠BOC=180°−120°=60°
∴n=∠BOE1= ∠BOC=30°;
如图,
当OE2平分∠BOD2时,
n=∠BOE2=∠D2OE=50°;
如图,
当OE3平分∠COD3时,
∵∠E3OC=∠D3OE3=50°,∠BOC=180°−∠AOC=180°−120°=60°
∴n=∠BOE3=∠BOC+∠E3OC=60°+50°=110°;
如图,
当OE4平分∠AOC时,
∵∠COE4= ∠AOC= ×120°=60°
∠BOC=180°−∠AOC=180°−120°=60°
∴n=∠BOE4=∠BOC+∠COE4=60°+60°=120°
【解析】【分析】(1) ① 根据平角的定义,由∠BOC=180°−∠AOC 算出∠BOC的度数,根据角的和差,由∠COE=∠BOC−∠BOE ,∠COD=∠DOE−∠COE ,算出∠COD的度数;②扶摇分类讨论:当∠DOE在∠BOC之间时,设∠COD=x,则∠AOD=120+x,∠COE=50+x,根据∠AOD=3∠COE 列出方程,求解即可;当OD在∠AOC之间时,设∠COD=x,则则∠AOD=120-x,∠COE=50-x,根据∠AOD=3∠COE 列出方程,求解即可,综上所述即可得出答案;
(2)需要分类讨论:①当OE1平分∠BOC时,根据平角的定义算出∠BOC 的度数,根据角平分线的定义得出n=∠BOE1= ∠BOC=30°;② 当OE2平分∠BOD2时,n=∠BOE2=∠D2OE=50°;③ 当OE3平分∠COD3时, n=∠BOE3=∠BOC+∠E3OC ,④ 当OE4平分∠AOC时, n=∠BOE4=∠BOC+∠COE4,综上所述即可得出答案。

6.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,
(1)如图2中A′落在ED′上,求∠FEG的度数;
(2)如图3中∠A′ED′=50°,求∠FEG的度数;
(3)如图4中∠FEG=85°,请直接写出∠A′ED′的度数;
(4)若∠A′ED'=n°,直接写出∠FEG的度数(用含n的代数式表示).
【答案】(1)解:由翻折知△EAF≌△EA′F,△EDG≌△ED′G,
∴∠A′EF=∠AEA′,∠D′EG=∠DED′,
∵∠AEA′+∠DED′=180°,
∴∠FEG=∠A′EF+∠D′EG=(∠AEA′+∠DED′)=90°;
(2)解:由(1)知∠A′EF=∠AEA′,∠D′EG=∠DED′,
∵∠A′ED′=50°,
∴∠AEA′+∠DED′=130°,
∴∠A′EF+∠D′EG= ×(∠AEA′+∠DED′)=65°,
∴∠FEG=∠A′ED′+∠A′EF+∠D′EG=115°;
(3)解:∵∠FEG=85°,
∴∠AEF+∠DEG=95°,
∴∠A′EF+∠D′EG=95°,
则∠A′ED′=∠A′EF+∠D′EG﹣∠FEG=95°﹣85°=10°;
(4)解:如图3,∵∠A′ED′=n°,
∴∠AEA′+∠DED′=180°﹣∠A′ED′=(180﹣n)°,
∵2∠A′EF=∠AEA′,2∠D′EG=∠DED′,
∴∠A′EF+∠D′EG=,
∴∠FEG=∠A′EF+∠D′EG+∠A′ED′= +n°=;
见图4,∵∠AEA′+∠DED′﹣∠A′ED′=180°,∠A′ED′=n°,
∴∠AEA′+∠DED′=180°+n°,
∵2∠A′EF=∠AEA′,2∠D′EG=∠DED′,
∴∠A′EF+∠D′EG=,
∴∠FEG=∠A′EF+∠D′EG﹣∠A′ED′=﹣n°=;
综上,∠FEG的度数为或 .
【解析】【分析】(1)由翻折性质知△EAF≌△EA′F,△EDG≌△ED′G,据此得∠A′EF=∠AEA′,∠D′EG=∠DED′,结合∠AEA′+∠DED′=180°可得答案;(2)由∠A′ED′=50°知
∠AEA′+∠DED′=130°,据此得∠A′EF+∠D′EG= ×(∠AEA′+∠DED′)=65°,根据∠FEG=∠A′ED′+∠A′EF+∠D′EG可得答案;(3)由∠FEG=85°知∠A′EF+∠D′EG=95°,根据∠A′ED′=∠A′EF+∠D′EG﹣∠FEG可得答案;(4)分别结合图3和图4两种情况,先表示出∠A′EF+∠D′EG的度数,再分别根据∠FEG=∠A′EF+∠D′EG+∠A′ED′和∠FEG=
∠A′EF+∠D′EG﹣∠A′ED′求解可得.
7.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.
(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=________度(答案直接填写在答题卡的横线上);在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,请你直接写出t的值为多少.
【答案】(1)90°,
OM平分∠CON.理由如下:
∵∠BOC=135°,
∴∠MOC=135°-90°=45°,
而∠MON=45°,
∴∠MOC=∠MON
(2)∠AOM=∠CON.
理由如下:如图3,
∵∠MON=45°,
∴∠AOM=45°-∠AON,
∵∠AOC=45°,
∴∠NOC=45°-∠AON,
∴∠AOM=∠CON
(3)解:t= ×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).
故答案为90°;4.5秒或40.5秒.
【解析】【分析】(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°-∠AON和∠NOC=45°-∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速
度公式计算t的值.
8.在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.
(1)运动前线段AB的长度为________;
(2)当运动时间为多长时,点A和线段BC的中点重合?
(3)试探究是否存在运动到某一时刻,线段AB= AC?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.
【答案】(1)16
(2)解:设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有
﹣6+3t=11+t,
解得t=
故当运动时间为秒长时,点A和线段BC的中点重合
(3)解:存在,理由如下:设运动时间为y秒,
①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,
﹣6+3×7=15;
②当点A在线段BC上时,依题意有(3y-6)-(10+y)=
解得y=
-6+3 =19
综上所述,符合条件的点A表示的数为15或19
【解析】【分析】(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B、C的中点,再设当运动时间为x秒长时,点A和线段BC的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y秒,分两种情况:①当点A在点B的左侧时,②当点A在线段AC上时,列出方程求解即可.
9.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”
概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)
(1)∠ABO的度数为________,△AOB________(填“是”或“不是”)“和谐三角形”;
(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.
(3)应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B 的度数.
【答案】(1)30;是
(2)证明:∵∠MON=60°,∠ACB=80°,
∵∠ACB=∠OAC+∠MON,
∴∠OAC=80°-60°=20°,
∵∠AOB=60°=3×20°=3∠OAC,
∴△AOC是“和谐三角形”;
(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,
∴∠EFC=∠ADC,
∴AD∥EF,
∴∠DEF=∠ADE,
∵∠DEF=∠B,
∴∠B=∠ADE,
∴DE∥BC,
∴∠CDE=∠BCD,
∵AE平分∠ADC,
∴∠ADE=∠CDE,
∴∠B=∠BCD,
∵△BCD是“和谐三角形”,
∴∠BDC=3∠B,或∠B=3∠BDC,
∵∠BDC+∠BCD+∠B=180°,
∴∠B=36°或∠B= .
【解析】【解答】解:(1)∵AB⊥OM,
∴∠OAB=90°,
∴∠ABO=90°-∠MON=30°,
∵∠OAB=3∠ABO,
∴△AOB为“和谐三角形”,
故答案为:30;是;
【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“和谐三角形”的概念判断;(2)根据“和谐三角形”的概念证明即可;应用拓展:根据比较的性质得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“和谐三角形”的定义求解即可.
10.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;
(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;
(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)
(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)
【答案】(1)21°
(2)14°
(3)解:∵∠BOA=90°,∠OBA=α,
∴∠BAD=∠BOA+∠ABO=90°+α,
∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD ∴∠GAD=30°+ α,∠EOA=30°,
∴∠OGA=∠GAD−∠EOA= α.
(4)解:当∠EOD:∠COE=1:2时,
∴∠EOD=30°,
∵∠BAD=∠ABO+∠BOA=α+90°,
∵AF平分∠BAD,
∴∠FAD= ∠BAD,
∵∠FAD=∠EOD+∠OGA,
∴2×30°+2∠OGA=α+90°,
∴∠OGA= α+15°;
当∠EOD:∠COE=2:1时,则∠EOD=60°,
同理得到∠OGA= α−15°,
即∠OGA的度数为α+15°或α−15°.
【解析】解:(1)∵∠BOA=90°,∠OBA=42°,
∴∠BAD=∠BOA+∠ABO=132°,
∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,
∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;
故答案为21°;
⑵∵∠BOA=90°,∠OBA=42°,
∴∠BAD=∠BOA+∠ABO=132°,
∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,
∴∠OGA=∠GAD−∠EOA=44°−30°=14°;
故答案为14°;
【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;
(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;
(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;
(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,
则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.
11.课题学习:平行线的“等角转化功能.
(1)问题情景:如图1,已知点是外一点,连接、,求
的度数.
天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.
又∵,∴ .
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.
(2)问题迁移:如图2,,求的度数.
(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.
【答案】(1)∠EAB;∠DAC
(2)解:过C作CF∥AB,
∵AB∥DE,∴CF∥DE∥AB,
∴∠D=∠FCD,∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°,
(3)解:如图3,过点E作EF∥AB,
∵AB∥CD,∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;
【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)
如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,
∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.
12.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)请判断AB与CD的位置关系,并说明理由;
(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD.当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点
Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有何数量关系?直接写出结论,其数量关系为________.
【答案】(1)解:AB∥CD;理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)解:∠BAE+∠MCD=90°;理由如下:
过E作EF∥AB,如图2所示:
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD
∴∠ECD=∠MCD
∴∠BAE+∠MCD=90°
(3)∠BAC=∠CPQ+∠CQP
【解析】【解答】解:(3)∠BAC=∠CPQ+∠CQP;理由如下:
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠CPQ+∠CQP+∠PCQ=180°,
即(∠CPQ+∠CQP)+∠ACD=180°,
∴∠BAC=∠CPQ+∠CQP.
故答案为:∠BAC=∠CPQ+∠CQP.
【分析】(1)由角平分线的性质得出∠BAC=2∠EAC,∠ACD=2∠ACE,推出∠BAC+∠ACD=180°,即可得出结论;
(2)过E作EF∥AB,则EF∥AB∥CD,得出∠BAE=∠AEF,∠FEC=∠DCE,由∠AEC=
90°,推出∠BAE+∠ECD=90°,∠ECD=∠MCD,得出∠BAE+∠MCD=90°;
(3)由平行线的性质得出∠BAC+∠ACD=180°,由三角形内角和定理得出∠CPQ+∠CQP +∠PCQ=180°,即可得出结果.
13.如(图1),在平面直角坐标系中,,,,且满足
,线段交轴于点.
(1)填空: ________, ________;
(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;
(3)求点的坐标;
(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.
【答案】(1)-3;3
(2)解:∵AB∥DE,∴∠ODE+∠DFB=180°,∵,∴∠DFB=∠AFO=180°-140°=40°,∴∠FAO=50°,∵分别平分,∴∠OAN=
∠FAO=25°,∠NDM=∠ODE=70°,∴∠DNM=∠ANO=90°-25°=65°,∴∠AMD=180°−∠DNM-∠NDM=45°
(3)解:连结OB,如图,设F(0,t),∵△AOF的面积+△BOF的面积=△AOB的面积,∴ ×3×t+ ×t×3= ×3×3,解得t=,∴F点坐标为(0,);
(4)解:存在,∵,∴△的面积= ,设Q(0,y),
∵△ABQ的三角形=△AQF的面积+△BQF的面积,∴•|y− |•3+•|y− |•3=,解得y=5或y=−2,∴此时Q点坐标为(0,5)或(0,−2);
【解析】【解答】解:(1)∵(a+b)2+|b-a-6|=0,
∴a+b=0,b-a-6=0,
∴a=−3,b=3,
故答案为:-3,3;
【分析】(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=
180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=∠FAO=25°,∠NDM=
∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°−∠DNM-∠NDM=45°;(3)①连结OB,如图3,设F(0,t),根据△AOF
的面积+△BOF的面积=△AOB的面积得到 ×3×t+ ×t×3= ×3×3,解得t=,则可得
到F点坐标为(0,);(4)先计算△ABC的面积=,利用△ABQ的三角形=△AQF 的面积+△BQF的面积得到•|y− |•3+•|y− |•3=,解出y即可.
14.已知将一副三角板(直角三角板OAB和直角三角板OCD∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)
(1)如图1摆放,点O,A,C在一直线上,则∠BOD的度数是多少?
(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?
(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点Q任意转动,∠M0N的度数是否发生变化?如果不变,求其值;如果变化,说明理由。

【答案】(1)解:∠BOD=∠AOB−∠COD=90 −60 =30
(2)解:∵OB平分∠COD,
∴∠BOC= ∠COD= ×60 =30 ,
∴∠AOC=∠AOB−∠BOC=90 −30 =60
(3)解:∠BOD+∠AOC=90∘−∠COD=90 −60 =30 ,
(∠BOD+∠AOC)= ×30 =15 ,
∠MON= (∠BOD+∠AOC)+∠COD=15∘+60 =75 .
即∠MON的度数不会发生变化,总是75 .
【解析】【分析】(1)根据余角的性质和含义即可得到答案;
(2)根据角平分线的性质计算得到∠BOC的度数为30°,由余角的性质即可得到答案;
(3)由角平分线的性质即可得到∠BOD和∠AOC的度数和的,由角的和差关系进行计算得到答案即可。

15.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC=50°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。

(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠BON=________度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,若第t秒时,OA,OC,ON三条射线恰好构成相等的角,则t的值为________(直接写出结果)
【答案】(1)25
(2)解:∠AOM与∠NOC之间满足等量关系为:∠AOM-∠NOC=40°,
理由如下:∵∠MON=90°,∠AOC=50°,
∴∠AOM+∠NOA=90°
∠AON+∠NOC=50°
∴∠AOM-∠NOC=40°
(3)13秒,34秒,49秒或64秒。

【解析】【解答】解:(1)∵∠AOC=50°,
∴∠BOC=180°-∠AOC=130°,
∵OM平分∠BOC,
∴∠BOM=∠BOC÷2=130°÷2=65°,
∴∠BON=90°-∠BOM=90°-65°=25°;
故答案为:25.
(3)如图,有四种情况:
1)当∠AON1=∠CON1,
∵∠AOC=50°,
∴∠AON1=∠CON1=(360°-∠AOC)÷2=155°,
∴∠NON1=155°-90°=65°,
∴t=65°÷5=13(秒);
2)当∠AOC=∠CON2,
∴∠NON2=360°-∠AON-2∠AOC=360°-90°-2×50°=170°,
∴t=170°÷5=34(秒);
3)当∠AON3=∠CON3,
∵∠NON3=∠NOB+∠AOB-∠AON3=90°+180°-50°÷2=245°,
∴t=245°÷5=49(秒);
4)当∠COA=∠AON4,
∠NON4=∠NOB+∠AOB+∠AON4=90°+180°+50°=320°,
∴t=320°÷5=64(秒).
故答案为:13秒,34秒,49秒或64秒.
【分析】(1)已知∠AOC的度数,根据补角的性质可求∠BOC的度数,结合OM平分∠BOC,则∠BOM的角度可求,于是根据余角的性质即可确定∠BON的大小;
(2)∠AOM和∠NOA互余,∠AON与∠NOC之和等于50°,两式联立消去∠AON,可得∠AOM和∠NOC的数量关系;
(3)因为OA,OC,ON三条射线恰好构成相等的角,分四种情况讨论,依次为当∠AON1=
∠CON1,当∠AON3=∠CON3,当∠COA=∠AON4,当∠AOC=∠CON2,根据已知角的大小,结合角的关系分别求出∠NON1,∠NON2 ,∠NON3,∠NON4的大小,则t可求.。

相关文档
最新文档