尧都区第二中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尧都区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)
2. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
3. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )
4. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在
5. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .250
6. 与函数 y=x 有相同的图象的函数是( ) A .
B .
C .
D .
7. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( ) A

B

C

D

8. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )
A .6
B .5
C .3
D .4
9. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是(

A .4π
B .12π
C .16π
D .48π 10.若a >b ,则下列不等式正确的是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A

B .a 3>b 3
C .a 2>b 2
D .a >|b|
11.某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )
A .5
B .7
C .9
D .11
12.若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞)
C .(2,+∞)
D .(﹣1,0)
二、填空题
13.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆
的面积12
S =, 则边c 的最小值为_______.
【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.
14.下列结论正确的是
①在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;
②以模型y=ce kx 去拟合一组数据时,为了求出回归方程,设z=lny ,其变换后得到线性回归方程z=0.3x+4,则c=e 4;
③已知命题“若函数f (x )=e x ﹣mx 在(0,+∞)上是增函数,则m ≤1”的逆否命题是“若m >1,则函数f (x )=e x ﹣mx 在(0,+∞)上是减函数”是真命题;
④设常数a ,b ∈R ,则不等式ax 2﹣(a+b ﹣1)x+b >0对∀x >1恒成立的充要条件是a ≥b ﹣1.
15.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1
),
+
=.若数列
{}的前n 项和大于62,则n 的最小值
为 .
16.曲线y=x 2与直线y=x 所围成图形的面积为 .
17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.
18.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫

⎬⎩⎭
项中 的最大值为_________.
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程.
在直角坐标系中,曲线C 1:⎩
⎪⎨⎪⎧x =1+3cos α
y =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐
标系,C 2的极坐标方程为ρ=
2sin (θ+π4

.
(1)求C 1,C 2的普通方程;
(2)若直线C 3的极坐标方程为θ=3π
4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面
积.
20.已知f (x )=|﹣x|﹣|+x|
(Ⅰ)关于x 的不等式f (x )≥a 2
﹣3a 恒成立,求实数a 的取值范围;
(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.
21.将射线y=x (x ≥0)绕着原点逆时针旋转后所得的射线经过点A=(cos θ,sin θ).
(Ⅰ)求点A 的坐标;
(Ⅱ)若向量=(sin2x ,2cos θ),=(3sin θ,2cos2x ),求函数f (x )=•,x ∈[0,]的值域.
22.已知函数
,(其中常数m >0)
(1)当m=2时,求f (x )的极大值;
(2)试讨论f (x )在区间(0,1)上的单调性;
(3)当m ∈[3,+∞)时,曲线y=f (x )上总存在相异两点P (x 1,f (x 1))、Q (x 2,f (x 2)),使得曲线y=f (x )在点P 、Q 处的切线互相平行,求x 1+x 2的取值范围.
23.已知函数x
x x f --
-=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+
(1)求A B ,B A C R ⋂)(;
(2)若B C B =,求实数a 的取值范围.
24.已知函数f (x )=2x 2﹣4x+a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[﹣1,3m]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1) ①求实数a 的值;
②设t 1=f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.
尧都区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】D
【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.
若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),
若f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,
由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a<0,由f′(x)>0得<x<0,此时函数递增,
由f′(x)<0得x<或x>0,此时函数单调递减,
即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),
若存在唯一的零点x0,且x0>0,
则f()>0,即2a()3﹣3()2+1>0,
()2<1,即﹣1<<0,
解得a<﹣1,
故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
2.【答案】A
【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,
则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,
由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,
若数列 {a n }不是公差为d 的等差数列,则不存在n ∈N *
,使得a n+2﹣a n+1≠d ,
即前者可以推出后者,前者是后者的充分条件, 即后者可以推不出前者, 故选:A .
【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.
3. 【答案】C 【解析】
试题分析:由题意得,当01t <≤时,()21
22
f t t t t =
⋅⋅=,当12t <≤时, ()1
12(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符
合,故选C.
考点:分段函数的解析式与图象. 4. 【答案】C
【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论.
【解答】解:设直线2x+y+7=0的倾斜角为θ, 则tan θ=﹣2, 则θ为钝角. 故选:C .
5. 【答案】A
【解析】解:分层抽样的抽取比例为=

总体个数为3500+1500=5000,
∴样本容量n=5000×=100.
故选:A .
6. 【答案】D
【解析】解:A :y=的定义域[0,+∞),与y=x 的定义域R 不同,故A 错误
B :与y=x 的对应法则不一样,故B 错误
C :=x ,(x ≠0)与y=x 的定义域R 不同,故C 错误
D :,与y=x 是同一个函数,则函数的图象相同,故D 正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题
7. 【答案】B
【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,
这三个事件是相互独立的,
第一次不被抽到的概率为,
第二次不被抽到的概率为,
第三次被抽到的概率是,
∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,
故选B .
8. 【答案】D
【解析】解:∵等比数列{a n }中a 4=2,a 5=5, ∴a 4•a 5=2×5=10,
∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8 =lg (a 1•a 2…a 8)=lg (a 4•a 5)4 =4lg (a 4•a 5)=4lg10=4 故选:D .
【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.
9. 【答案】B 【解析】解:由三视图可知几何体是底面半径为2的圆柱,
∴几何体的侧面积为2π×2×h=12π,解得h=3,
∴几何体的体积V=π×22
×3=12π.
故选B .
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
10.【答案】B
【解析】解:∵a >b ,令 a=﹣1,b=﹣2,代入各个选项检验可得:
=﹣1, =﹣,显然A 不正确. a 3=﹣1,b 3=﹣6,显然 B 正确. a 2 =1,b 2=4,显然C 不正确. a=﹣1,|b|=2,显然D 不正确.
故选 B .
【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
11.【答案】C
【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点 则前n 年的年平均产量即为直线OP 的斜率
由图易得当n=9时,直线OP的斜率最大
即前9年的年平均产量最高,
故选C
12.【答案】C
【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,
令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,
结合函数的定义域知,f′(x)>0的解集为(2,+∞).
故选:C.
二、填空题
13.【答案】1
14.【答案】①②④
【解析】解:①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0)则正态曲线关于x=1对称.若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率P=2×0.35=0.7;故①正确,
②∵y=ce kx,
∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,
令z=lny,可得z=lnc+kx,
∵z=0.3x+4,
∴lnc=4,
∴c=e4.故②正确,
③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,
则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上不是增函数”,
若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则f′(x)≥0恒成立,
即f′(x)=e x﹣m≥0在(0,+∞)上恒成立,
即m≤e x,
∵x>0,∴e x>1,
则m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③错误,
④设f(x)=ax2﹣(a+b﹣1)x+b,
则f(0)=b>0,f(1)=a﹣(a+b﹣1)+b=1>0,
∴要使∀x>1恒成立,
则对称轴x=,
即a+b﹣1≤2a,即a≥b﹣1,
即不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.故④正确,
故答案为:①②④
15.【答案】1.
【解析】解:∵x为实数,[x]表示不超过x的最大整数,
∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,
再左右扩展知f(x)为周期函数.
结合图象得到函数f(x)=x﹣[x]的最小正周期是1.
故答案为:1.
【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.
16.【答案】.
【解析】解:先根据题意画出图形,得到积分上限为1,积分下限为0
直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx
而∫01(x﹣x2)dx=(﹣)|01=﹣=
∴曲边梯形的面积是
故答案为:.
17.【答案】1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,)
【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 18.【答案】 【解析】

点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,n n a a d n S 五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公
式在解题中起到变量代换作用,而1,a d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.
三、解答题
19.【答案】
【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos α
y =2+3sin α
(α为参数)
得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9, 由C 2:ρ=
2sin (θ+π
4


ρ(sin θ+cos θ)=2, 即x +y -2=0,
即C 2的普通方程为x +y -2=0.
(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π
4代入上式得
ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4, ∴|MN |=|ρ1-ρ2|=
(ρ1+ρ2)2-4ρ1ρ2=3 2.
C 3:θ=3
4
π(ρ∈R )的直角坐标方程为x +y =0,
∴C 2与C 3是两平行直线,其距离d =2
2
= 2.
∴△PMN 的面积为S =12|MN |×d =1
2×32×2=3.
即△PMN 的面积为3. 20.【答案】
【解析】解:(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,即|﹣x|﹣|+x|≥a 2
﹣3a 恒成立.
由于f (x )=|﹣x|﹣|+x|=,故f (x )的最小值为﹣2,
∴﹣2≥a 2
﹣3a ,求得1≤a ≤2.
(Ⅱ)由于f (x )的最大值为2,∴f (m )≤2,f (n )≤2,
若f (m )+f (n )=4,∴m <n ≤﹣,∴m+n <﹣5.
【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.
21.【答案】
【解析】解:(Ⅰ)设射线y=x (x ≥0)的倾斜角为α,则tan α=,α∈(0,
).
∴tan θ=tan (α+)==,
∴由解得,
∴点A 的坐标为(,).
(Ⅱ)f (x )=•=3sin θ•sin2x+2cos θ•2cos2x=sin2x+
cos2x
=
sin (2x+

由x ∈[0,],可得2x+∈[

],
∴sin (2x+
)∈[﹣
,1],
∴函数f (x )的值域为[﹣

].
【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.
22.【答案】
【解析】解:(1)当m=2时,
(x>0)
令f′(x)<0,可得或x>2;
令f′(x)>0,可得,
∴f(x)在和(2,+∞)上单调递减,在单调递增

(2)(x>0,m>0)
①当0<m<1时,则,故x∈(0,m),f′(x)<0;
x∈(m,1)时,f′(x)>0
此时f(x)在(0,m)上单调递减,在(m,1)单调递增;
②当m=1时,则,故x∈(0,1),有恒成立,
此时f(x)在(0,1)上单调递减;
③当m>1时,则,
故时,f′(x)<0;时,f′(x)>0
此时f(x)在上单调递减,在单调递增
(3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2)
即⇒
∵x1≠x2,由不等式性质可得恒成立,
又x1,x2,m>0
∴⇒对m∈[3,+∞)恒成立
令,则
对m∈[3,+∞)恒成立
∴g(m)在[3,+∞)上单调递增,


从而

对m ∈[3,+∞)恒成立”等价于


∴x 1+x 2
的取值范围为
【点评】运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键
23.【答案】(1){}210A B x =<<U ,(){}
2310R C A B x x x =<<≤<I 或7;(2)1a ≤-或9
22
a ≤≤。

【解析】
试题分析:(1)由题可知:30
70x x -≥⎧⎨->⎩
,所以37x ≤<,因此集合{}37A x x =≤<,画数轴表示出集合A ,
集合B ,观察图形可求,{}210A B x =<<U ,观察数轴,可以求出{}
37R C A x x x =<≥或,则
(){}2310R C A B x x x =<<≤<I
或7;(2)由B C B =U 可得:C B ⊆,分类讨论,当B φ=时,
21a a ≥+,解得:1a ≤-,当B φ≠时,若C B ⊆,则应满足21
22110a a a a <+⎧⎪
≥⎨⎪+≤⎩,即1292
a a a ⎧
⎪>-⎪≥⎨⎪⎪≤
⎩,所以922a ≤≤,因此满足
B C B =U 的实数a 的取值范围是:1a ≤-或9
22
a ≤≤。

试题解析:(1):由3070
x x -≥⎧⎨->⎩得:
37x ≤<
A={x|3x<7}≤
A B {x |2x 10}=<<, B A C R
⋂)(={x|2<x<3x<10}
≤或7
(2)当B=φ时,21,a -1a a ≥+≤
当B φ≠时,21
22110
a a a a <+⎧⎪
≥⎨⎪+≤⎩
,922a ≤≤
即-1a ≤或922
a ≤≤。

考点:1.函数的定义域;2.集合的运算;3.集合间的关系。

24.【答案】
【解析】解:(1)因为抛物线y=2x 2﹣4x+a 开口向上,对称轴为x=1, 所以函数f (x )在(﹣∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[﹣1,3m]上不单调,
所以3m>1,…(2分)
得,…(3分)
(2)①因为f(1)=g(1),所以﹣2+a=0,…(4分)
所以实数a的值为2.…
②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,
t2=g(x)=log2x,
t3=2x,
所以当x∈(0,1)时,t1∈(0,1),…(7分)
t2∈(﹣∞,0),…(9分)
t3∈(1,2),…(11分)
所以t2<t1<t3.…(12分)
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.。

相关文档
最新文档