第2讲 平行四边形的判定
平行四边形的判定与性质
![平行四边形的判定与性质](https://img.taocdn.com/s3/m/aa1c590b30126edb6f1aff00bed5b9f3f90f721c.png)
平行四边形的判定与性质判定方式平行四边形的判定可以根据其定义和性质进行确认。
下面是一些常用的判定方式:1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。
1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。
1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。
2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。
2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。
2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。
3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。
3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。
3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。
性质平行四边形具有以下性质:1.对边相等性质:平行四边形的对边长度相等。
1.对边相等性质:平行四边形的对边长度相等。
1.对边相等性质:平行四边形的对边长度相等。
2.同位角相等性质:平行四边形的同位角相等。
2.同位角相等性质:平行四边形的同位角相等。
2.同位角相等性质:平行四边形的同位角相等。
3.内角和性质:平行四边形的内角和为180度。
3.内角和性质:平行四边形的内角和为180度。
3.内角和性质:平行四边形的内角和为180度。
4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。
4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。
4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。
示例以下是一个平行四边形的示例图:A ----------- BD ----------- C在这个示例中,ABCD是一个平行四边形,因为AB和CD平行,AD和BC平行,并且同位角A和C相等,B和D相等。
平行四边形(第2课时)(课件)八年级数学下册(苏科版)
![平行四边形(第2课时)(课件)八年级数学下册(苏科版)](https://img.taocdn.com/s3/m/6d57e6063069a45177232f60ddccda38376be167.png)
探究新知 证明猜想
猜想1.两组对边分别相等的四边形是平行四边形.
已知:如图,四边形ABCD中,AD=BC,AB=DC. 求证:四边形ABCD是平行四边形.
A
分析:先证△ABD≌△CDB,再证AD∥BC,AB∥DC,
得四边形ABCD是平行四边形.
B
D C
探究新知
证明: 如图,连接BD. ∵AB=CD,AD=CB,BD=DB, ∴△ABD≌△CDB, ∴∠1=∠2,∠3=∠4, ∴AB∥CD,AD∥CB, ∴四边形ABCD是平行四边形.
D
F
C A.2个
C.4个
G
H
B.3个 D.5个
A
E
B
分析:▱ABCD 、▱DEBF 、▱AECF 、▱EHFG
课堂练习
3.如图,四边形AEFD和EBCF都是平行四边形. 求证: 四边形ABCD是平行四边形.
A E
B
证明:∵四边形AEFD是平行四边形, D
∴AD//EF,ADEF. F
∵四边形EBCF是平行四边形, C
课堂练习
2.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,
BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的
选法是
(C )
A.AB∥CD,AB=CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC=AD
D.AB=CD,BC=AD
课堂练习
2.如图,E,F分别是▱ABCD的边AB,CD的中点,则图 中平行四边形的个数共有( C).
A
B
C
方法一:
探究新知
A
D
B
C
方法依据:两组对边分别平行的四边形是平行四边形.
18-1-2 第2课时 平行四边形的判定(2)课件
![18-1-2 第2课时 平行四边形的判定(2)课件](https://img.taocdn.com/s3/m/9b40e564e418964bcf84b9d528ea81c758f52e9d.png)
边
形
一组对边平行且相等的四边形是平行四边形
的
判
定
角 两组对角分别相等的四边形是平行四边形
对角线 对角线互相平分的四边形是平行四边形
课堂检测: 1.在▱ABCD中,E、F分别在BC、AD上,若想要使四边
形AFCE为平行四边形,需添加一个条件,这个条件不
可以是( B )
A.AF=CE
B.AE=CF
C.∠BAE=∠FCD
A
D
证明:∵在△ABC中,AB=5,AC=4,BC=3
∴AC2+BC2=AB2,∴△ABC是直角三角形,且
∠ACB=90°
∵ AD∥BC
∴∠DAC=∠ACB=90°
B
C
∵CD=5, AC=4,∴AD=3
∴AD∥BC 且AD=BC
∴四边形ABCD是平行四边形
∴ AB∥CD.
课后作业:
必做题:50页6题 选做题:51页15题
证明:∵四边形AEFD和EBCF都是
平行四边形,
A
D
∴AD∥ EF,AD=EF, EF∥ BC, EF=BC.
E
F
∴AD∥ BC,AD=BC.
B
C
∴四边形ABCD是平行四边形.
课堂小结:
判定一个四边形是平行四边形的方法:
平
两组对边分别平行的四边形是平行四边形
形
四
边 两组对边分别相等的四边形是平行四边形
核心素养目标:
掌握用一组对边平行且相等来判定平行四边形的方法;
会综合运用平行四边形的四种判定方法和性质来证明 问题;
通过平行四边形的性质与判定的应用,启迪学生的思 维,提高分析问题的能力.
情境引入: 数学来源于生活,高铁被外媒誉为我国新四大发明之 一,我们知道铁路的两条直铺的铁轨互相平行,那么 铁路工人是怎样的确保它们平行的呢?
平行四边形的判定第二课时
![平行四边形的判定第二课时](https://img.taocdn.com/s3/m/42fc495630b765ce0508763231126edb6e1a764d.png)
∴ AB = CD,EB∥FD.
D
F
C
又∵ EB = 1 AB ,FD = 1 CD,
2
2
∴ EB = FD .
A
E
B
∴ 四边形 EBFD 是平行四边形.
练一练
1.已知四边形 ABCD 中有四个条件:AB∥CD,AB =
CD,BC∥AD,BC = AD,从中任选两个,不能使四
边形ABCD 成为平行四边形的选法是
∴ BE + EC = CF + EC,即 BC = EF.
又∵ ∠B = ∠DEF,∠ACB = ∠F,
AD
∴ △ABC≌△DEF, ∴ AB = DE.
P
∵∠B = ∠DEF,
∴ AB∥DE.
BE
CF
∴四边形 ABED 是平行四边形.
3. 如图,△ABC 中,AB = AC = 10,D 是 BC 边上的
(C)
A.AB∥CD,AB = CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC = AD
D.AB = CD,BC = AD
2. 如图,点 A,B,C,D 在同一条直线上,点 E,F
分别在直线 AD 的两侧,AE = DF,∠A = ∠D,
AB = DC. 求证:四边形 BFCE 是平行四边形. 证明:∵ AB = CD,
探究新知 知识点1: 一组对边平行且相等的四边形是平行四边形
猜想一:一组对边相等的四边形是平行四边形.
探究:(可提出反例)
猜想不成立
等腰梯形
猜想二:一组对边平行的四边形是平行四边形.
探究:(可提出反例)
猜想不成立
梯形
猜想三:一组对边平行且相等的四边形是平行四边形.
(完整版)判定平行四边形的五种方法
![(完整版)判定平行四边形的五种方法](https://img.taocdn.com/s3/m/b140abbe767f5acfa0c7cd42.png)
鉴识平行四边形的基本方法怎样鉴识一个四边形是平行四边形呢 ?下面举例予以说明 .一、运用“两条对角线互相均分的四边形是平行四边形”判别例 1 如图 1,在平行四边形 ABCD 中,E、F 在对角线 AC 上,A D 且 AE =CF ,试说明四边形 DEBF 是平行四边形 .E解析:由于已知条件与对角线有关,故考虑运用“两条对角线互相均分的四边形是平行四边形”进行鉴识 .为此 ,需连接 BD.解:连接 BD 交 AC 于点 O.OF B C图 1由于四边形 ABCD 是平行四边形 ,因此 AO =CO,BO=DO . 又 AE= CF,因此 AO -AE=CO -CF ,即 EO= FO .因此四边形 DEBF 是平行四边形 .二、运用“两组对边分别相等的四边形是平行四边形”鉴识例 2 如图 2,是由九根完满同样的小木棒搭成的图形,请A F E你指出图中所有的平行四边形,并说明原由 .解析:设每根木棒的长为 1 个单位长度,则图中各四边形的B C D边长即可求得,故应试虑运用“两组对边分别相等的四边形是平图 2行四边形”进行鉴识 .解:设每根木棒的长为 1 个单位长度,则AF = BC=1, AB= FC=1,因此四边形 ABCF 是平行四边形 .同样可知四边形 FCDE 、四边形 ACDF 都是平行四四边形 .由于 AE=DB=2, AB=DE=1,因此四边形 ABDE 也是平行四边形.D C 三、运用“一组对边平行且相等的四边形是平行四边形”判F别E 例 3 如图 3,E、F 是四边形 ABCD 的对角线 AC 上的两A B点,AE=CF,DF =BE,DF ∥BE,试说明四边形 ABCD 是平行四边图 3形.解析: 题目给出的条件都不能够直接鉴识四边形 ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ ADF ≌△CBE,由此即可获得鉴识平行四边形所需的“一组对边平行且相等”的条件 .解:由于 DF∥BE,因此∠ AFD =∠CEB .由于 AE =CF,因此 AE+ EF= CF+ EF ,即 AF= CE .又 DF = BE, 因此△ ADF ≌△CBE,因此 AD=BC,∠DAF =∠BCE,因此 AD ∥BC .因此四边形 ABCD 是平行四边形 .1四、运用 “两组对边分别平行的四边形是平行四边形 ”鉴识 例 4 如图 4,在平行四边形 ABCD 中,∠ DAB 、∠BCD 的均分线分别交 BC 、AD 边于点 E 、F ,则四边形 AECF 是平行 四边形吗?为什么?AF1 3D解析:由平行四边形的性质易得 AF ∥EC ,又题目中给出 的是有关角的条件,借助角的条件可获得平行线,故本题应试2B E C虑运用 “两组对边分别平行的四边形是平行四边形 ”进行鉴识 . 图 4解:四边形 AECF 是平行四边形 .原由:由于四边形 ABCD 是平行四边形,因此 AD ∥BC , ∠DAB =∠BCD ,因此 AF ∥EC .又由于∠ 1= 1 2∠DAB ,∠2= 1 2∠BCD ,因此∠ 1=∠2.由于 AD ∥BC ,因此∠ 2=∠3, 因此∠ 1=∠3,因此 AE ∥CF. 因此四边形 AECF 是平行四边形 .判断平行四边形的五种方法平行四边形的判断方法有: (1)证两组对边分别平行; (2)证两组对边分别相等; (3)证一组对边平行且相等; (4)证对 角线互相均分; (5)证两组对角分别相等。
平行四边形的判定定理
![平行四边形的判定定理](https://img.taocdn.com/s3/m/57716cc7cd22bcd126fff705cc17552707225eb5.png)
平行四边形的判定定理平行四边形是一种特殊的四边形,具有以下特点:对边平行且对角线相等。
在数学中,判定一个四边形是否为平行四边形有多种方法。
方法一:利用对边平行的性质判定一个四边形ABCD是否为平行四边形时,可以先利用对边平行的性质进行判断。
步骤:1.检查边AB和边CD是否平行。
2.检查边BC和边AD是否平行。
如果边AB和边CD以及边BC和边AD都是平行的,则可以断定四边形ABCD是一个平行四边形。
方法二:利用对角线相等的性质判定一个四边形ABCD是否为平行四边形时,可以利用对角线相等的性质进行判断。
步骤:1.计算对角线AC的长度。
2.计算对角线BD的长度。
如果对角线AC的长度等于对角线BD的长度,则可以断定四边形ABCD是一个平行四边形。
方法三:利用对边比例相等的性质判定一个四边形ABCD是否为平行四边形时,还可以利用对边比例相等的性质进行判断。
步骤:1.计算边AB与边CD的长度比(AB/CD)。
2.计算边BC与边AD的长度比(BC/AD)。
如果边AB与边CD的长度比等于边BC与边AD的长度比,即AB/CD = BC/AD,那么四边形ABCD是一个平行四边形。
方法四:利用四个角的性质判定一个四边形ABCD是否为平行四边形时,也可以利用四个角的性质进行判断。
步骤:1.检查角A与角C是否相等。
2.检查角B与角D是否相等。
如果角A与角C相等,并且角B与角D相等,则可以断定四边形ABCD是一个平行四边形。
总结通过以上四种方法,我们可以判定一个四边形是否为平行四边形。
可以根据实际情况选择其中一种或多种方法来进行判定,以便快速准确地得出结论。
请注意,以上的判定定理仅适用于四边形,其他多边形无法用这些方法判定是否为平行四边形。
在实际应用中,合理选择合适的方法,结合几何定理,可以更好地解决相关问题。
希望本文能对你理解和应用平行四边形的判定定理有所帮助。
平行四边形的判定说课稿(通用8篇)
![平行四边形的判定说课稿(通用8篇)](https://img.taocdn.com/s3/m/9cb56034a7c30c22590102020740be1e650ecc8f.png)
平行四边形的判定说课稿平行四边形的判定说课稿(通用8篇)作为一名老师,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。
快来参考说课稿是怎么写的吧!下面是小编整理的平行四边形的判定说课稿范文,仅供参考,欢迎大家阅读。
平行四边形的判定说课稿篇1一、说教材本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。
它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。
二、说学情八年级的学生已经学习了初中阶段包括全等三角形的相关知识、平行四边形的性质在内的绝大多数几何概念及定理。
学生的抽象思维能力、逻辑推理能力有了很大的提高,学生对于新鲜的知识也充满着好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。
因此,由教师组织教学,让学生自主探索平行四边形的判定定理不仅成为可能,又可以作为初中几何知识综合能力的一次检验、一次再提升!三、教学目标【知识技能目标】1、运用类比的方法,通过学生的合作探究,得出平行四边形的第三个判定方法。
2、理解平行四边形的这两种判定方法,并学会简单运用。
【过程与方法目标】1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
【情感态度与价值观目标】1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。
2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。
3、通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。
四、教学重点、难点【重点】平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。
平行四边形的性质和判定讲义(教师版)
![平行四边形的性质和判定讲义(教师版)](https://img.taocdn.com/s3/m/46fd981c53d380eb6294dd88d0d233d4b14e3ff7.png)
平行四边形的性质和判定【知识梳理】一、什么是平行四边形?两组对边分别平行的四边形就是平行四边形.如图四边形ABCD ,AB CD AD BC ∥,∥,四边形ABCD 就是平行四边形二、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形的对称性平行四边形是中心对称图形平行四边形的周长与面积周长:邻边之和的2倍面积:底乘高(常利用面积相等来求线段的长)三、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形四、三角形中位线性质:三角形的中位线平行且等于第三边长的一半判定:点E 是三角形ABC △的中点,且DE BC ∥,则点D 为AB 中点【诊断自测】1.下列说法错误的是()A .对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.3.四边形ABCD中,AB=7cm,BC=5cm,CD=7cm,当AD=cm时,四边形ABCD 是平行四边形.4.如图所示,DE∥BC,DF∥AC,EF∥AB,图中共有个平行四边形.【考点突破】类型一:平行四边形的性质例1、如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13B.17C.20D.26答案:B解析:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.例2、如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.答案:50°.解析:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.例3、如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.答案:1<a<7.解析:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=4,OD=BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.例4、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.类型二:平行四边形的判定例5、如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A 出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s答案:B解析:设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选B.例6、四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①∠ABC=∠ADC,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC,其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组答案:B解析:如图,①∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形;②∵AB=CD,AD=BC,∴四边形ABCD是平行四边形;③∵AO=CO,BO=DO,∴四边形ABCD是平行四边形;④∵AB∥CD,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.∴其中一定能判定这个四边形是平行四边形的条件有3组.故选B.例7、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.答案:见解析解析:证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.例8、如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.答案:见解析解析:证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.类型三:平行四边形的性质和判定例9、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.答案:见解析解析:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.例10、如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.例11、如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.答案:见解析解析:证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.类型三:中位线定理例12、如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE答案:B解析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.例13、如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).答案:见解析解析:证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).【易错精选】1.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°2.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.63.已知:A(﹣2,1),B(﹣3,﹣1),C(0,﹣1).点D在坐标平面内,且以A、B、C、D四个点构成的四边形是平行四边形,则这样的D点有个.4.如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.【精华提炼】一、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形是中心对称图形二、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形【本节训练】训练【1】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC ⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm训练【2】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DCB.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE训练【3】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC 为对角线的平行四边形ADCE中,DE的最小值是.训练【4】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.基础巩固一.填空题1.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE 的面积为cm2.2.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是cm.3.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.4.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.5.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为cm.二、选择题1.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5B.7C.9D.112.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm3.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.724.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE 的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m5.如图,在▱ABCD中,AB=3,AD=5,AM平分∠BAD,交BC于点M,点E,F分别是AB,CD的中点,DM与EF交于点N,则NF的长等于()A.0.5B.1C.D.2三、简答题1.如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=2DE,连接CF.判断四边形BCFE的形状,并证明.2.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.巅峰突破1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.2.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.3.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN ∥AB,连接NH,如果∠D=68°,则∠CHN=.4.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.5.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.参考答案【诊断自测】1、D解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.2、解:可以添加:AD∥BC(答案不唯一).3、5.解:当AD=5cm时,四边形ABCD是平行四边形,∵AB=7cm,BC=5cm,CD=7cm,AD=5cm,∴四边形ABCD是平行四边形,故答案为:5.4、3个.解:由两组对边分别平行的四边形是平行四边形,可得图中的平行四边形有▱ADFE、▱BFED、▱CFDE三个.故答案为:3个【易错精选】1、C解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.2、C解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.3、3解:如图,D点共有3个,故答案为:3.4、.解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.【本节训练】1、B解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.2、D解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.3、4解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.4、2解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.基础巩固一、填空题1、解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.2、解:∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.3、解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.4、解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.5、解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.二、选择题1、解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.2、解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.3、解:作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=BC=AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF==,∴S▱ABCD=BC•FD=10×=72.故选D.4、解:∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.5、解:过点M作MG∥AB交AD于点G,∵AD∥BC,AB∥MG,∴四边形ABMG是平行四边形,∴∠AGM=∠ABM.∵AM平分∠BAD,∴∠GAM=∠MAB,∴∠AMB=∠AMG.在△AGM与△ABM中,,∴△AGM≌△ABM,∴AB=AG=3,∴四边形ABMG是菱形,∴MC=5﹣3=2.∵EF∥BC,点E,F分别是AB,CD的中点,∴NF是△DCM的中位线,∴NF=MC=1.故选B.三、简答题1、证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.2、(1)证明:∵AD平分∠BAC ∴∠BAD=∠DAE∵AD⊥BD∴∠ADB=∠ADE=90°在△ADB与△ADE中∴△ADB≌△ADE∴BD=DE(2)∵△ADB≌△ADE∴AE=AB=12∴EC=AC﹣AE=8∵M是BC的中点,BD=DEDM=EC=4巅峰突破1、解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.2.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.3.解:连接MH,∵AH⊥CD于H,M为AD的中点,∴MH=AD=DM,∴∠D=∠MHD=68°,∵MN∥AB,∴∠NMH=∠MHD=68°,又∵MN=AB=AD,∴MN=MH,∴∠MHN=(180°﹣68°)÷2=56°,∴∠CHN=180°﹣∠DHM﹣∠MHN=56°.故答案为:56°4.解:(1)∵四边形PQDC是平行四边形∴DQ=CP当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t∴16﹣t=21﹣2t解得t=5当P从C运动到B时,∵DQ=AD﹣AQ=16﹣t,CP=2t﹣21∴16﹣t=2t﹣21,解得t=,∴当t=5或秒时,四边形PQDC是平行四边形;(2)若点P、Q分别沿AD、BC运动时,即解得t=9(秒)若点P返回时,CP=2(t﹣),则解得t=15(秒).故当t=9或15秒时,以C ,D ,Q ,P 为顶点的梯形面积等60cm 2;(3)当PQ=PD 时作PH ⊥AD 于H ,则HQ=HD∵QH=HD=QD=(16﹣t )由AH=BP 得解得秒;当PQ=QD 时QH=AH ﹣AQ=BP ﹣AQ=2t ﹣t=t ,QD=16﹣t ,∵QD 2=PQ 2=t 2+122∴(16﹣t )2=122+t 2解得(秒);当QD=PD 时DH=AD ﹣AH=AD ﹣BP=16﹣2t ,∵QD 2=PD 2=PH 2+HD 2=122+(16﹣2t )2∴(16﹣t )2=122+(16﹣2t )2即3t 2﹣32t+144=0∵△<0,∴方程无实根,当点P 从C 向B 运动时,观察图象可知,只有PQ=PD ,由题意:2t ﹣26=(16﹣t ),t=.综上可知,当秒或秒或秒时,△PQD是等腰三角形.5.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.第31/31页。
冀教版初中数学八年级下册教学课件 第二十二章 四边形 平行四边形的判定(第2课时)
![冀教版初中数学八年级下册教学课件 第二十二章 四边形 平行四边形的判定(第2课时)](https://img.taocdn.com/s3/m/d4924da3c67da26925c52cc58bd63186bceb9220.png)
解:(1)已知:如图所示,在四边形ABCD中,BC=AD,AB=CD. 求证:四边形ABCD是平行四边形.
AB CD,
(2)证明:连接BD,在△ABD和△CDB中,
平行四边形的判定定理: (1)两组对边分别平行的四边形是平行四边形. (2)一组对边平行且相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)两条对角线互相平分的四边形是平行四边形.
(教材第127页例3)已知:如图所示,▱ABCD的两条对角线AC,BD相 交于点O,E,F分别为OA,OC的中点. 求证四边形EBFD是平行四边形.
③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.
④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.
A.①和②
B.①③和④ C.②和③ D.②③和④
解析:∵一组对边平行且相等的四边形是平行四边形,∴①不正 确;∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠BAD=∠BCD,∴∠ABC +∠BAD=180°,∴AD∥BC,∴四边形ABCD是平行四边形,∴②正 确;∵AB∥CD,∴△AOB∽△COD,∴AO∶CO=BO∶DO,∵AO=CO, ∴BO=DO,∴四边形ABCD是平行四边形,∴③正 确;∵∠DBA=∠CAB,∴AO=BO,∵AB∥CD,∴△AOB∽△COD,∴A O∶CO=BO∶DO,∵AO=BO,∴CO=DO,∴四边形ABCD不一定是平 行四边形,∴④不正确.故选C.
分析:由题意可得OB=OD,OA=OC,再由OE=
平行四边形的判定方法
![平行四边形的判定方法](https://img.taocdn.com/s3/m/81d1db6aae45b307e87101f69e3143323868f554.png)
平行四边形的判定方法
平行四边形是指具有两组对边分别平行的四边形,它是几何学中的基本图形之一。
在日常生活和工程实践中,我们经常需要判定一个四边形是否为平行四边形。
下面将介绍几种判定平行四边形的方法。
1. 对角线互相平分。
判定一个四边形是否为平行四边形的一个简单方法是检查其对角线。
如果一个四边形的对角线互相平分,即相交于中点,那么这个四边形就是平行四边形。
这是因为平行四边形的对角线互相平分是其特征之一。
2. 对边互相平行。
平行四边形的定义就是具有两组对边分别平行的四边形。
因此,判定一个四边形是否为平行四边形的方法之一就是检查其对边是否互相平行。
如果一个四边形的对边分别平行,则它就是平行四边形。
3. 对角线长度相等。
另一个判定平行四边形的方法是检查其对角线的长度。
如果一个四边形的对角线长度相等,那么它就是平行四边形。
这是因为平行四边形的对角线长度相等是其特征之一。
4. 内角相等。
最后一个判定平行四边形的方法是检查其内角是否相等。
如果一个四边形的内角相等,那么它就是平行四边形。
这是因为平行四边形的内角相等是其特征之一。
综上所述,判定一个四边形是否为平行四边形有多种方法,可以根据具体情况选择合适的方法进行判定。
在实际应用中,可以结合多种方法进行判定,以确保结果的准确性。
希望以上介绍能够帮助您更好地理解和判定平行四边形。
《平行四边形的判定》教案(人教新课标八年级下)
![《平行四边形的判定》教案(人教新课标八年级下)](https://img.taocdn.com/s3/m/ebd95469793e0912a21614791711cc7931b778af.png)
19.1.2 平行四边形的判定(一)教学目标知识与技能1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力. 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点理解和掌握平行四边形的判定定理.难点几何推理方法的应用.教学过程备注教学设计与师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示.提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形.平行四边形判定2 对角线互相平分的四边形是平行四边形.第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:(1) ∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理B′A=C′A,A′B=C′B.∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.第三步:随堂练习1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)第四步:课后练习:1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形.()2、在四边形ABCD中,AC交BD 于点O,若OC= 且,则四边形ABCD是平行四边形.3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(c)一组对角相等;(D)对角线相等;3、下列条件中能判断四边形是平行四边形的是().A、对角线互相垂直B、对角线相等C对角线互相垂直且相等D 对角线互相平分4、已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形.(用两种方法)5、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.6、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN .7.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF课后小结与反思:。
平行四边形的判定6种方法
![平行四边形的判定6种方法](https://img.taocdn.com/s3/m/acca9634c4da50e2524de518964bcf84b9d52d96.png)
平行四边形的判定6种方法
七个判定:1、两组对边分别平行的四边形是平行四边形;2、两组对边分别相等的四边形是平行四边形;3、对角线互相平分的四边形是平行四边形;4、一组对边平行且相等的四边形是平行四边形;5、两组对角分别相等的四边形是平行四边形;6、平行四边形的邻角互补;7、平行四边形是中心对称图形。
平行四边形的性质:
1、如果一个四边形就是平行四边形,那么这个四边形的两组对边分别成正比。
2、如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
3、如果一个四边形就是平行四边形,那么这个四边形的邻角优势互补。
4、夹在两条平行线间的平行的高相等。
5、如果一个四边形就是平行四边形,那么这个四边形的两条对角线互相平分。
6、连接任意四边形各边的中点所得图形是平行四边形。
7、平行四边形的面积等同于底和低的积。
8、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
9、平行四边形就是中心对称图形,对称中心就是两对角线的交点。
10、平行四边形不是轴对称图形,但平行四边形是中心对称图形。
矩形和菱形是轴对称图形。
数学教案-平行四边形及其性质 第二课时
![数学教案-平行四边形及其性质 第二课时](https://img.taocdn.com/s3/m/43313c780622192e453610661ed9ad51f01d54d4.png)
数学教案-平行四边形及其性质第二课时一、教学目标1.理解平行四边形的定义及其性质。
2.掌握平行四边形判定定理的应用。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重难点1.重点:平行四边形的性质及其判定定理。
2.难点:运用平行四边形的性质和判定定理解决实际问题。
三、教学过程1.导入新课师:同学们,上一节课我们学习了平行四边形的定义和性质,那么如何判定一个四边形是平行四边形呢?这节课我们就来学习平行四边形的判定定理。
2.学习平行四边形的判定定理(1)引导学生回顾平行四边形的定义和性质。
师:请同学们回忆一下,平行四边形有哪些性质?生:平行四边形的对边平行且相等,对角相等,邻角互补。
(2)讲解平行四边形的判定定理。
①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分。
(3)举例说明判定定理的应用。
师:下面我们来看几个例子,运用平行四边形的判定定理来解决问题。
例1:已知四边形ABCD中,AD∥BC,AB=CD,求证:ABCD是平行四边形。
例2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD是平行四边形。
3.练习师:同学们,下面我们来做一些练习题,巩固一下平行四边形的判定定理。
(1)练习题1:已知四边形ABCD中,AB∥CD,AD∥BC,求证:ABCD是平行四边形。
(2)练习题2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD 是平行四边形。
4.课堂小结师:通过这节课的学习,我们掌握了平行四边形的判定定理,可以运用这些定理来解决实际问题。
在今后的学习中,我们要熟练运用这些定理,提高解题能力。
5.作业布置(1)课后作业1:完成教材P页的练习题。
四、教学反思本节课通过讲解平行四边形的判定定理,让学生掌握了判定一个四边形是平行四边形的方法。
在教学过程中,注重引导学生回顾已学的知识,充分发挥学生的主体作用,让学生在练习中巩固所学知识。
但在教学过程中,发现部分学生对判定定理的应用还不够熟练,需要在今后的教学中加强训练。
平行四边形的判定课件人教版数学八年级下册2
![平行四边形的判定课件人教版数学八年级下册2](https://img.taocdn.com/s3/m/caa3f5dc250c844769eae009581b6bd97f19bc87.png)
∵点G是AB的中点,BE=EF
G
∴GE是△ABF的一条中位线,
A
∴GE∥AF,即CE∥AF,
C
E O F
H
D
同理可得 CF∥AE, ∴四边形AFCE是平行四边形. ∴OA=OC,OE=OF, 又∵BE=DF, ∴OB=OD, ∴四边形ABCD是平行四边形.
B G A
C
E O F
H
D
归纳新知
平 行 四 边 形 的 判 定
D
A
B
O
C
2.如图, 在平行四边形 ABCD 中,EF 过对角线 BD 的中
点 O. 求证:四边形 BFDE 是平行四边形.
证明:∵四边形 ABCD 是平行四边形
A
FD
∴OB=OD,AD//BC
O
∵ AD//BC ∴∠FDO=∠EBO
BE
C
∵ ∠FDO=∠EBO,OD=OB, ∠FOD=∠EOB
∴△FDO≌△EBO,OF=OE
(1)求证:四边形DEBF是平行四边形; (2)当DE=DF时,求EF的长.
解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又∵∠DOF= ∠BOE,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,又∵DF∥BE,∴四边形 DEBF是平行四边形
(2)∵DE=DF,四边形 DEBF 是平行四边形,∴四边形 DEBF 是菱形,∴ DE=BE,EF⊥BD,OE=OF,设 AE=x,则 DE=BE=8-x,在 Rt△ADE 中,根据勾股定理,有 AE2+AD2=DE2,∴x2+62=(8-x)2,解得 x=74 ,∴ DE=8-74 =245 ,在 Rt△ABD 中,根据勾股定理,有 AB2+AD2=BD2,∴BD = 62+82 =10,∴OD=12 BD=5,在 Rt△DOE 中,根据勾股定理,有 DE2 - OD2=OE2,∴OE= (245)2-52 =145 ,∴EF=2OE=125
平行四边形的判定定理(基础)知识讲解
![平行四边形的判定定理(基础)知识讲解](https://img.taocdn.com/s3/m/2100e6e583c4bb4cf6ecd180.png)
平行四边形的判定定理(基础)【学习目标】1.平行四边形的四个判定定理及应用,会应用判定定理判断一个四边形是不是平行四边形.2.会综合应用平行四边形的性质定理和判定定理解决简单的几何问题.【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.【典型例题】类型一、平行四边形的判定1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF 都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG∥HE可用来证明四边形EGFH为平行四边形.【答案与解析】证明:∵四边形AECF为平行四边形,∴AF∥CE.∵四边形DEBF为平行四边形,∴BE∥DF.∴四边形EGFH为平行四边形.【总结升华】平行四边形的定义既包含平行四边形的性质,又可以用来判定一个四边形是平行四边形,即平行四边形的两组对边分别平行,两组对边分别平行的四边形是平行四边形.举一反三:【变式】(2015•厦门校级一模)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.(【答案】证明:∵∠BAD的平分线交直线BC于点E,∴∠1=∠2,∵AB∥CD,∴∠1=∠F,∵CE=CF,∴∠F=∠3,∴∠1=∠3,∴∠2=∠3,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形.2、(2016青海)如图,在ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【思路点拨】△1)根据全等三角形的判定方法,判断出ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(△1),可得ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【总结升华】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.3、(2015•张掖校级模拟)已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明.【答案与解析】证明:连接BD交AC与O点,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,又∵AP=CQ,∴AP+AO=CQ+CO,即PO=QO,∴四边形PBQD是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.试说明:D是BC的中点.【答案】证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∵ ⎨∠AEF =∠DEB , ⎪ AE =DE , ( ∴AE=DE ,在△AEF 和△DEB 中,⎧∠AFE =∠DBE , ⎪ ⎩∴△AEF ≌△DEB (AAS ),∴AF=BD ,∵AF=DC ,∴BD=DC ,∴D 是 BC 的中点.类型二、平行四边形的性质定理与判定定理的综合运用4、如图,在平行四边形 ABCD 中,E 、F 是对角线 AC 上的点,且 AE=CF .(1)猜想探究:BE 与 DF 之间的关系: ________________.(2)请证明你的猜想.【思路点拨】 1)BE 平行且等于 DF ;(2)连接 BD 交 AC 于 O ,根据平行四边形的性质得出 OA=OC ,OD=OB ,推出 OE=OF ,得出平 行四边形 BEDF 即可.【答案与解析】(1)解:BE 和 DF 的关系是:BE=DF ,BE ∥DF ,故答案为:平行且相等.(2)证明:连接 BD 交 AC 于 O ,∵ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,∴BFDE 是平行四边形,∴BE=DF ,BE ∥DF .【总结升华】本题考查了平行四边形的性质和判定的应用,能否熟练地运用平行四边形的性 质和判定进行推理是你解决本题的关键,题型较好,通过此题培养了学生分析问题和解决问 题的能力,同时培养了学生的观察能力和猜想能力.举一反三:变式:如图,在ABCD 中,E 、F 分别在 AD 、BC 边上,且 AE=CF .请你猜想 BE 与 DF 的关 系,并说明理由.(【答案】解:猜想 BE 与 DF 的关系是 BE=DF ,BE ∥DF ,理由是:∵四边形 ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∵AE=CF ,∴AD-AE=BC-CF ,即 DE=BF ,∵DE ∥BF ,∴四边形 BFDE 是平行四边形,∴BE=DF ,BE ∥DF .5、如图,四边形 ABCD 的对角线 AC 、BD 交于点 P ,过点 P 作直线交 AD 于点 E ,交 BC 于点 F .若 PE=PF ,且 AP+AE=CP+CF .(1)求证:PA=PC .(2)若 AD=12,AB=15,∠D AB=60°,求四边形 ABCD 的面积.【思路点拨】 1)首先在 PA 和 PC 的延长线上分别取点 M 、N ,使 AM=AE ,CN=CF ,可得 PN=PM , 则易证四边形 EMFN 是平行四边形,则可得 ME=FN ,∠EMA=∠CNF ,即可证得△EAM ≌△FCN , 则可得 PA=PC ;(2)由 PA=PC ,EP=PF ,可证得四边形 AFCE 为平行四边形,易得△PED ≌△PFB ,则可得四 边形 ABCD 为平行四边形,由 AB=15,AD=12,∠DAB=60°,即可求得四边形 ABCD 的面积.【答案与解析】(1)证明:在 PA 和 PC 的延长线上分别取点 M 、N ,使 AM=AE ,CN=CF .∵AP+AE=CP+CF ,∴PN=PM .∵PE=PF ,∴四边形 EMFN 是平行四边形.∴ME=FN ,∠EMA=∠CNF .又∵∠AME=∠AEM ,∠CNF=∠CFN ,∴△EAM ≌△FCN .∴AM=CN .∵PM=PN ,∴PA=PC .(2)解:∵PA=PC ,EP=PF ,∴四边形 AFCE 为平行四边形.∴AE ∥CF .∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,∴△PED≌△PFB.∴DP=PB.由(1)知PA=PC,∴四边形ABCD为平行四边形.∵AB=15,AD=12,∠DAB=60°,∴四边形ABCD的面积为903.【总结升华】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.。
平行四边形的性质与判定(2)
![平行四边形的性质与判定(2)](https://img.taocdn.com/s3/m/3a6eeb3d83c4bb4cf7ecd1ca.png)
平行四边形的判定与性质(2)知识点梳理1.判别方法一:有两组对边分别平行的四边形是平行四边形,这是平行四边形的定义,也是判别平行四边形的根本方法,也是其他判别方法的基础。
2.判别方法二:两条对角线互相平分的四边形是平行四边形。
3.判别方法三:一组对边平行且相等的四边形是平行四边形。
4.判别方法四:两组对边分别相等的四边形是平行四边形.提示:(1)当题目中涉及四边形的边比较多时,往往借助于这种方法说明一个四边形是平行四边形.(2)必须是两组对边分别相等,而不是邻边.5.判别方法五:两组对角分别相等的四边形是平行四边形.提示:这种方法需要把握住两点:(1)“两组对角分别相等”,只有“一组对角相等”结论不成立.(2)必须是对角,而不是邻角.6.平行四边形判别方法的选择例1.能判别一个四边形是平行四边形的是()A.一组对边相等,另一组对边平行B.对角线相等C.对角线互相垂直平分D.一条对角线平分另一条对角线变式:1.已知四边形ABCD中,对角线AC、BD相交于O,且OA=OC,OB=OD,下列结论不成立的是()A. AB=ACB.AB∥CDC. ∠A=∠CD.AD=BC2.四边形ABCD中,AD平行且等于CB,则下列结论中错误的是()A. ∠A=∠BB.AB=CDC. AB∥CDD.对角线互相平分3.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边平行B.两条对角线互相平分C. 一组对边平行D.两条对角线互相垂直例2.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD ,所以ABCD 是平行四边形.( ) (2)因为AB∥CD,AD=BC ,所以ABCD 是平行四边形.( ) (3)因为AD∥BC,AD=BC ,所以ABCD 是平行四边形.( ) (4)因为AB∥CD,AD∥BC,所以ABCD 是平行四边形.( ) (5)因为AB=CD ,AD=BC ,所以ABCD 是平行四边形.( ) (6)因为AD=CD ,AB=AC ,所以ABCD 是平行四边形.( )平行四边形的判定1.两组对边分别平行的四边形为平行四边形例3.如图,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗.为什么.变式:1.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD 是不是平行四边形.2.如图所示:四边形ABCD 是平行四边形,DE 平分BF ADC ,∠平分ABC ∠.试证明四边形BFDE 是平行四边形.提高:如图,在平行四边形ABCD 中,AC 的平行线MN 交DA 的延长线于M,交DC 的延长线于N,交AB,BC 于P ,Q.(1) 请指出图中平行四边形的个数,并说明理由.(2) MP 与QN 能相等吗?2.两组对边分别相等的四边形为平行四边形NM Q PD C BA例4.如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM 、BL =DN ,则四边形KLMN 为平行四边形吗.说明理由.变式:已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,且AE=CF.求证:四边形EGFH是平四边形.3.一组对边平行且相对的四边形为平行四边形例5.如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE =21AB ,CF =21CD ,试证明AECF 为平行四边形.变式:1.如图所示,在ABCD 中,已知点E 和点F 分别在AD 和BC 上,且AE=CF ,连接CE 和AF ,试说明四边形AFCE 是平行四边形.2.如图14,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)⊿AFD ≌⊿CEB .(2)四边形ABCD 是平行四边形.4.两组对角分别相等的四边形为平行四边形BCG例6.如图,在平行四边形ABCD中,∠ABC的平分线交CD于E,∠ADC的平分线交AB于点F.试证明四边形DFBE为平行四边形.5.对角线互相平分的四边形为平行四边形例7.如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.变式:如图所示,在ABCD中,AC、BD相交于点O.E、F分别在OB、OD上,且OE=OF,又OC= ,所以是平行四边形,理由是 .应用:例8.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.变式:1.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.2.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE ,DF ,相交于点M .求证:CD=CM .3.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作ACED ,延长DC•交EB 于F ,求证:EF=FB .提高:1.已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,且BE=BC =CF.求证:AF⊥DE.2.已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.(1)猜想:DF与AE间的关系是______. (2)证明你的猜想.作业:E FB C1. 下列条件中,不能判别四边形是平行四边形的是()A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 对角线互相平分D. 一组对边平行且相等2. 下面是四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()A. 1:2:3:4B.2:2:3:4C. 2:3:2:3D. 2:3:3:23.四边形ABCD中,已知AB=CD,再添加一个条件可以判定四边形ABCD为平行四边形.4. 已知四边形ABCD,AD∥BC,分别添加下列条件:①AB∥CD;②AB=CD;③AD=BC;④∠A=∠C;⑤∠B=∠C,能使四边形ABCD为平行四边形的有(填序号).5.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。
《平行四边形的判定》PPT2
![《平行四边形的判定》PPT2](https://img.taocdn.com/s3/m/933ab99f50e79b89680203d8ce2f0066f5336403.png)
A13..1如8分米图,别B在.是四24边米A形PAB,CDR中P,对的角中线A点C和,BD当相交点于点PO在,ACC=DB上D,从M,CP,向N分D别移是动边A而B,点BC,RC不D的动中点时,Q,是M那N的么中点.
求证:四边形DEFG是平行四边形.
下列结论成立的是( C ) 14.(1)如图①所示,在四边形ABCD中,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N,且
(2)判定△OEF的形状.
1AA133....12如如80米图 图B=, ,.B在 在.1126四 四24边 边米CC形 形.DAA12BB,CCDDD中 .中∴, 8,对 对∠角 角线 线HAAECC和 和FBB=DD相相∠交 交于 于B点 点MOO, ,EAA,CC= =BB∠DD, ,HMM, ,FPPE, ,=NN分 分∠别 别是 是C边 边NAABBE, ,.BBCC又, ,CCDD∵的 的∠中 中点 点B, ,MQQ是 是EMMNN=的 的中 中点 点. . 1∠4.BM(1E)如=∠图∠C①CN所EN示,E,求,在证四:∴边AB形∠=ACBHDC;DE中F,=E,∠F分H别是FAED,,B∴C的E中H点,=连F接HFE,并延∴长,A分B别=与BCA,DCD的延长线交于点M,N,且
∠BME=∠CNE,求证:AB=CD;
A.线段EF的长逐渐增大
4.(泸州中考)如图,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,且AE+EO=4,则▱ABCD的周长为(
)
10 . (2020· 凉 山 州 ) 如 图 , ▱ ABCD 的 对 角 线 AC , BD 相 交 于 点 O , OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周 长等于_____1_6___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 平行四边形的判定一、【基础知识精讲】1、平行四边形的定义:定义:两组对边___________的四边形是平行四边形。
作用:判断一个四边形是平行的四边形。
2、平行四边形的性质(从六个方面入手) 平行四边形的对边_______; 平行四边形的对边_______;平行四边形的对角_______; 平行四边形的邻角_______;(3)、对角线 平行四边形的对角线_______ (4)、周长:四边相加,或邻边相加的和乘以2 (5)、面积:底乘以高,或与对角线分成的三角形有关 (6)、对称性:一般不是轴对称图形3、平行线的距离:平行线之间的距离处处相等,因此在做平行四边形的高时可以根据需要灵活选择位置。
4.平行四边形的判定方法: ① 两组对边分别平行②两组对边分别相等③ 一组对边平行且相等 ④ 两组对角分别相等⑤ 对角线互相平分5.平行四边形性质的运用: ① 直接运用平行四边形性质解决某些问题,如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍分等.② 判别一个四边形为平行四边形,从而得到两直线平行.③ 先判别—个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题.二、【例题精讲】例1.(1)根据下列条件,不能判别四边形是平行四边形的是( )A .一组对边平行且相等的四边形B .两组对角分别相等的四边形C .对角线相等的四边形D .对角线互相平分的四边形 (2)下列条件中不能确定四边形ABCD 是平行四边形的是( )A .AB=CD ,AD ∥BCB .AB=CD ,AB ∥CDC .AB ∥CD ,AD ∥BC D .AB=CD ,AD=BC例2.已知:如图,□ABCD 中,点E 、F 在对角线上,且AE =CF .求证:四边形BEDF 是平行四边形.的四边形是平行四边形 (1)、边(2)、角A B CD E F例3.如图,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F ,G 是OA 的中点,H 是OC的中点,求证:四边形EGFH 是平行四边形.例4.已知平行四边形ABCD 中,对角线AC 和BD 相交于点O ,AC=10,BD=8. (1)若AC ⊥BD ,试求四边形ABCD 的面积 ;(2)若AC 与BD 的夹角∠AOD=60,求四边形ABCD 的面积;例5、如图,已知在平行四边形ABCD 中,AB=21BC,延长AB 至F ,使BF=AB ,再延长BA 至E ,使AE=BA ,请你判断EC 与FD 的位置关系,并说明理由。
例6、如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE 。
已知∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF 。
(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形。
例7、如图,在平行四边形ABCD 中,E 在AC 上,AE=2EC,F 在AB 上, DF=2AF 如果△DEF 的面积为2,求平行四边形ABCD 的面积。
ME F DCA B DA CBFEOC DB A例8、如图,已知等边△ABC 的边长为8,P 是△ABC 内一点,P D ∥AD,PF ∥BC, 点D,E,F 分别在AB,BC,AC ,则PD+PE+PF=________三、【同步练习】 A 组1.如图,四边形ABCD ,AC 、BD 相交于点O ,若OA=OC,OB=OD, 则四边形ABCD 是 ,根据是 . 2.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A .88°,108°,88°B .88°,104°,108°C .88°,92°,92°D .88°,92°,88°3.如图,过□ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的□AEMG 的面积1S 与□HCFM 的面积2S 的大小关系是( ) A.1S >2S B..1S <2S C.1S =2S D.21S =2S 4.如图,四边形ABCD 中,AD=BC ,DE ⊥AC ,BF ⊥AC ,垂足分别是E 、F ,AF=CE .求证:四边形ABCD 是平行四边形.5.已知如图:在□ABCD 中,延长AB 到E ,延长CD 到F ,使BE=DF ,则线段AC 与EF 是否互相平分?说明理由.6.如图,在□ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK=CM 、BL=DN ,求证:四边形KLMN 为平行四边形.1S2SCABP DFEEFADCB7.如图,在□ABCD 中,点E 、F 在对角线AC 上,并且OE=OF . (1)OA 与OC ,OB 与OD 相等吗? (2)四边形BFDE 是平行四边形吗?(3)若点E ,F 在OA ,OC 的中点上,你能解决上述问题吗?B组1.在□ABCD 中,∠ABC=750,AF ⊥BC 于F ,AF 交BD 于E ,若DE=2AB ,则∠AED 等于( )A 、600B 、650C 、700D 、7502.(2012南宁)如图,在□ABCD 中,AB=3,BC=5,对角线AC ,BD 相交于点O ,则OA 的取值范围是( ) A.3<OA <5 B.2<OA <8 C.1<OA <4 D.3<OA <83.(2013年四川宜宾)如图,在△ABC 中,∠ABC=90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG=BD ,连接BG 、DF .若AG=13,CF=6,则四边形BDFG 的周长为 .4.如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 做BE 的 平行线与线段ED 的延长线交于点F ,连接AE ,CF. (1)求证:AF=CE(2)若AC=EF ,证明AF ⊥AE4.如图,□ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q ,.四边形MQNP 是平行四边形吗?为什么?5.(2012广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.6.(2012沈阳)已知,如图,在□ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.7.(2013宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连接CE,CP,已知∠A=60°.(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值;(2)是探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?8.在□ABCD 中,∠BAD 的角平分线交直线BC 于点E ,交直线DC 的延长线于点F. (1)在图①中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图②),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE,分别连接DB ,DG(如图③),求∠BDG 的度数.图① 图② 图③家庭作业1、 如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O,分别与AB,CD 的延长线交于点E,F.求证:四边形AECF 是平行四边形.2、 如图,已知: ABCD中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =.A B CDE FG3.如图,已知在四边形ABFC 中ACB ∠=90BC ,︒的垂直平分线EF 交BC 于点D,交AB 于点E,且CF=AE. (1)试探究,四边形BECF 是什么特殊的四边形并证明之; (2)若四边形BECF 的面积是62cm 且BC+AC=105cm 时,求AB.4.已知:如图,在梯形ABCD 中,AD ∥BC ,AD=24cm ,BC=30cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 截梯形为两个四边形.问当P ,Q 同时出发,几秒后其中一个四边形为平行四边形?☆5.(2013培优)如图,已知□ABCD ,AD=a,BE ∥AC ,DE 交AC 的延长线于F 点,交BE 于E 点.(1)求证:DF=FE ;(2)若AC=2CF ,∠ADC=60°,AC ⊥DC ,求BE 的长; (3)在(2)的条件下,求四边形ABED 的面积.8.在□ABCD中,∠BAD的角平分线交直线BC于点E,交直线DC的延长线于点F.(4)在图①中证明CE=CF;(5)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(6)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图①图②(1) 证明:如图1.∵ AF 平分∠BAD ,∴∠BAF=∠DAF , ∵ 四边形ABCD 是平行四边形, ∴ AD//BC ,AB//CD 。
∴ ∠DAF=∠CEF ,∠BAF=∠F , ∴ ∠CEF=∠F ,∴ CE=CF 。
(2) ∠BDG=45︒.(3) [解] 分别连结GB 、GE 、GC(如图2).∵ AB//DC ,∠ABC=120︒, ∴ ∠ECF=∠ABC=120︒, ∵ FG //CE 且FG=CE, ∴ 四边形CEGF 是平行四边形. 由(1)得CE=CF, ∴□CEGF 是菱形, ∴ EG=EC ,∠GCF=∠GCE=21∠ECF=60︒. ∴ △ ECG 是等边三角形. ∴ EG=CG… , ∠GEC=∠EGC=60︒, ∴∠GEC=∠GCF,∴∠BEG=∠DCG… , 由AD//BC 及AF 平分∠BAD 可得∠BAE=∠AEB ,∴AB=BE. 在□ ABCD 中,AB=DC. ∴BE=DC…●,由 ●得△BEG ≅ △DCG. ∴ BG=DG ,∠1=∠2, ∴ ∠BGD=∠1+∠3=∠2+∠3=∠EGC=60︒. ∴ ∠BDG=21(180︒-∠BGD)=60︒.。