人教版七年级数学上册《二章 整式的加减 2.2 整式的加减 2.2 整式的加减(通用)》优质课教案_22

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:2.2整式的加减(1)
教学目标:
1、理解同类项的概念
3、通过类比数的运算探究合并同类项的法则,从中体会“数式通性”和类比思想。

教学重点:1、同类项的概念及合并同类项的法则,感受“数式通性”和类比思想。

教学难点:正确判断同类项,准确合并同类项。

1、创设情景,引入课题
问题1在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?
(学生尝试解答)
教师归纳:在实际生活中经常遇到含有字母的式子的运算问题,学习含有字母的式子的运算是实际的需要。

整式的运算是建立在数的运算基础之上的。

设计意图:引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要,理解化简100t+252t的方法是运用有理数的运算律分配律,初步体会数式通性,促使学生的学习形成正迁移。

2、类比探究,学习新知
(1)问题2整式的运算是建立在数的运算基础之上的,对于有理数
的运算是怎样做的呢?整式的运算与有理数的运算有什么联系? (1)100×2+252×2 =
(2)100×(-2)+252×(-2) = 师生活动:学生尝试回答,根据分配律运算
设计意图:通过分配律进行有理数运算,帮助学生理解用分配律 (2)类比式子 100t +252t 的运算,化简下列式子:
① ② ③ 观察多项式 100t+252t , 100t-252t , 3x 2+2x 2 , 3ab 2-4ab 2 (1)上述各多项式的项有什么共同特点?
(2)上述多项式的运算有什么共同特点?你能从中得出什么规律? 3、定义和法则:
(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项.
(2)把多项式中的同类项合并成一项,叫做合并同类项. (3)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.
你能写出两个单项式是同类项的例子吗?
4、例题:找出多项式 中的同类项,并进行合并 。

如果x=-1,你能求出该多项式的值吗?
2232x x +100252t t -22
34ab ab
-22427382x x x x +++--
3 1 2 1 5、练习:判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”
(1) 与 是同类项( ) (2) 2ab 与 是同类项( )
(3) 与 是同类项( )
(4) 与 是同类项( )
(5) 与 是同类项( )
6、限时练习
2.2整式的加减(1)目标检测(100分)
班级 姓名 得分
(10分)1、下列各组中的两项属于同类项的是( )
A. a 2与a
B. -0.5ab 与 ba
C. a 2b 与ab 2
D. a 与b
(10分)2、下列运算正确的是( )
A. 3a+2b=5ab
B. 3a 2b-3ba 2=0
C. 2x 3+3x 2=5x 5
D. 5y 2-4y 2=1
(20分)3、若单项式-3a m b 2
与单项式 a 3b n
是同类项,则m= .n= .
4、化简下列各式
(20分) ⑴-a+0.5a+2.5a (20分)⑵7a+3a 2-2a-a 2+3
(20分)⑶ 3x 3-3x 2-y 2+5y+x 2-5y+y 2
3x 3mx 5ab -2
3xy 2
12y x -25a b 22a bc -322
3
自我评价:
我的收获:
我的不足:
2.2整式的加减(1)学案
整式加减课(1)后反思
本节的亮点是
1、重难点突出,学生容易把握知识点
2、设计课堂限时检测,对本节课教学效果及时测评,学生收获较显著。

本节课的不足是
1、本节课教学重点是认识同类项并会合并同类项,教学中通过一个问题引入新课内容,但是作为引入的情景问题难度太大,并且没有设计梯度问题,导致学生回答问题不够流畅,这是教学设计中的一个不足点。

如果该问题通过下面的分析过程,问题以填空形式出现,就降低了学生思考的难度,而且问题的指向会更加明显。

情景问题在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?
分析:冻土段速度是km/h,非冻土段速度km/h 若冻土段时间是h ,则非冻土段时间是h
冻土段路程是km, 非冻土段路程是km
全长是
2、同类项概念的引入,是通过师生总结得到,如果调整一下教学思路,概念由学生分组讨论形成结论,教学效果会不会更好呢?。

相关文档
最新文档