【易错题】七年级数学下期末一模试卷带答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【易错题】七年级数学下期末一模试卷带答案
一、选择题
1.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )
A .3<m≤4
B .4≤m<5
C .4<m≤5
D .4≤m≤5
2.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )
A .∠2=20°
B .∠2=30°
C .∠2=45°
D .∠2=50°
3.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )
A .103︒
B .106︒
C .74︒
D .100︒
4.已知方程组276359
632713x y x y +=⎧⎨+=-⎩
的解满足1x y m -=-,则m 的值为( )
A .-1
B .-2
C .1
D .2 5.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为
A .2
B .3
C .4
D .5
6.已知4<m <5,则关于x 的不等式组0
420x m x -<⎧⎨-<⎩
的整数解共有( )
A .1个
B .2个
C .3个
D .4个
7.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( ) A .1个
B .2个
C .3个
D .4个
8.不等式组12
12x x +>⎧⎨-≤⎩
的解集是( )
A .1x <
B .x ≥3
C .1≤x ﹤3
D .1﹤x ≤3
9.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( )
A .至少有一个内角是直角
B .至少有两个内角是直角
C .至多有一个内角是直角
D .至多有两个内角是直角
10.若0a <,则下列不等式不成立的是( ) A .56a a +<+
B .56a a -<-
C .56a a <
D .
65
a a
< 11.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( ) A .()5,2-
B .()2,5-
C .()5,2-
D .()2,5--
12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )
A .()2020,1
B .()2020,0
C .()2020,2
D .()2019,0
二、填空题
13.若关于x 、y 的二元一次方程组21
33x y m x y -=+⎧⎨+=⎩
的解满足x +y >0,则m 的取值范围
是____.
14.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°
15.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.
16.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.
17.已知2
1x y =⎧⎨=⎩
是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 18.二项方程32540x +=在实数范围内的解是_______________ 19.已知a >b ,则﹣4a +5_____﹣4b +5.(填>、=或<)
20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是________________________
三、解答题
21.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD 上的一个动点。

(1)如果点P 运动到C 、D 之间时,试探究∠PAC ,∠APB ,∠PBD 之间的关系,并说明理由。

(2)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),∠PAC ,∠APB ,∠PBD 之间 的关系是否发生改变?请说明理由。

22.如图①,已知AB ∥CD ,点E 、F 分别是AB 、CD 上的点,点P 是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E 作射线EH 交CD 于点N ,作射线FI ,延长PF 到G ,使得PE 、FG 分别平分∠AEH 、∠DFl ,得到图②.
(1)在图①中,过点P 作PM ∥AB ,当α=20°,β=50°时,∠EPM= 度,∠EPF= 度;
(2)在(1)的条件下,求图②中∠END 与∠CFI 的度数; (3)在图②中,当FI ∥EH 时,请直接写出α与β的数量关系.
23.已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.
(1)利用图①证明:EF=2BC.
(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.
24.解方程组:
12
0 3
4
311
236
x y
x y
-+

-=
⎪⎪

--
⎪-=
⎪⎩
25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
(1)该班总人数是;
(2)根据计算,请你补全两个统计图;
(3)观察补全后的统计图,写出一条你发现的结论.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】
表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可. 【详解】
不等式组解集为1<x <m ,
由不等式组有3个整数解,且为2,3,4,得到4<m≤5, 故选C . 【点睛】
此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.
2.D
解析:D 【解析】 【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,
∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
3.B
解析:B 【解析】 【分析】
先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案. 【详解】
解:∵134∠=︒,272∠=︒,
∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒ ∵//AB CD ,
∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补), ∴318018074106BAC ∠=︒-∠=︒-︒=︒, 故选B . 【点睛】
本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.
4.A
解析:A
【解析】
【分析】
观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.
【详解】
解:
276359 632713
x y
x y
+=


+=-



②-①得36x-36y=-72
则x-y=-2
所以m-1=-2
所以m=-1.
故选:A.
【点睛】
考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.
5.D
解析:D
【解析】
∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
解得a=5.故选D.
6.B
解析:B
【解析】
【分析】
先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.
【详解】
不等式组
0 420 x m
x
-<


-<



由①得x<m;
由②得x>2;
∵m的取值范围是4<m<5,
∴不等式组
420
x m
x
-<


-<

的整数解有:3,4两个.
故选B.
【点睛】
本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的
取值范围是本题的关键.
7.C
解析:C
【解析】
【分析】
根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】
解:①两点之间,线段最短,正确.
②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.
③经过直线外一点,有且只有一条直线与这条直线平行,正确.
④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.
故选C.
【点睛】
本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.D
解析:D
【解析】
【分析】
【详解】
解:
12
12
x
x
+>


-≤



,由①得x>1,由②得x≤3,
所以解集为:1<x≤3;
故选D.
9.B
解析:B
【解析】
【分析】
本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】
根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.
故选B.
【点睛】
本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.
10.C
解析:C
【解析】 【分析】
直接根据不等式的性质进行分析判断即可得到答案. 【详解】
A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;
B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;
C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;
D .
65
a a <是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C . 【点睛】
本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;
不等式两边同乘以(或除以)同一个负数,不等号的方向改变.
11.A
解析:A 【解析】 【分析】
先根据点B 所在的象限确定横纵坐标的符号,然后根据点B 与坐标轴的距离得出点B 的坐标. 【详解】
∵点B 在第四象限内,∴点B 的横坐标为正数,纵坐标为负数 ∵点B 到x 轴和y 轴的距离分别是2、5 ∴横坐标为5,纵坐标为-2 故选:A 【点睛】
本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的: 第一象限内,则横坐标为正,纵坐标为正; 第二象限内,则横坐标为负,纵坐标为正; 第三象限内,则横坐标为负,纵坐标为负; 第四象限内,则横坐标为正,纵坐标为负.
12.B
解析:B 【解析】 【分析】
观察可得点P 的变化规律,
“()()()()44 1 4243 4, 041
, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】
观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,
, 发现规律:()()()()44 1 4243 4, 041
, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .
∵20204505=⨯
∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】
本题考查了规律型中的点的坐标,解题的关键是找出规律
“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然
数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.
二、填空题
13.m>-2【解析】【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >
解析:m >-2
【解析】 【分析】
首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围. 【详解】
解:2133x y m x y -=+⎧⎨+=⎩

②,
①+②得2x +2y =2m +4, 则x +y =m +2, 根据题意得m +2>0, 解得m >﹣2. 故答案是:m >﹣2. 【点睛】
本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式.
14.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质
解析:57°.
【解析】
【分析】
根据平行线的性质和三角形外角的性质即可求解.
【详解】
由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.
【点睛】
本题考查平行线的性质及三角形外角的性质.
15.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可
解析:2
【解析】
【分析】
根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.
【详解】
解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,
∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,
∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;
故答案为2.
16.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能
解析:25
【解析】
【分析】
【详解】
设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:
85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560
x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.
故答案为25.
【点睛】
本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.
17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4
解析:4;
【解析】
试题解析:把21x y =⎧⎨=⎩
代入方程组得:25{21a b b a ++=①=②, ①×
2-②得:3a=9,即a=3, 把a=3代入②得:b=-1,
则a-b=3+1=4,
18.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x 值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键
解析:x=-3
【解析】
【分析】
由2x 3+54=0,得x 3=-27,解出x 值即可.
【详解】
由2x 3+54=0,得x 3=-27,
∴x=-3,
故答案为:x=-3.
【点睛】
本题考查了立方根,正确理解立方根的意义是解题的关键.
19.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a >b∴﹣4a <﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都
解析:<
【解析】
【分析】
根据不等式的基本性质即可解决问题.
【详解】
解:∵a >b ,
∴﹣4a <﹣4b ,
∴﹣4a +5<﹣4b +5,
故答案为<.
【点睛】
本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
20.【解析】【分析】设绳索长为x 尺竿子长为y 尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy 的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等 解析:5152
x y x y +⎧⎪⎨-⎪⎩== 【解析】
【分析】
设绳索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.
【详解】 解:根据题意得:5152
x y x y +⎧⎪⎨-⎪⎩==. 故答案为:5152
x y x y +⎧⎪⎨-⎪⎩==. 【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
三、解答题
21.(1)P 点在C 、D 之间运动时,则有∠APB =∠PAC+∠PBD ,理由详见解析;(2)详见解析.
【解析】
【分析】
(1)当P 点在C 、D 之间运动时,首先过点P 作1PE l P ,由12l l P ,可得12PE l l P P ,根据两直线平行,内错角相等,即可求得: ∠APB =∠PAC+∠PBD ;
(2)当点P 在C 、D 两点的外侧运动时,则有两种情形,由直线12l l P ,根据两直线平行,
内错角相等,同位角相等与三角形外角的性质,可分别求得:∠APB=∠PAC-∠PBD和
∠APB=∠PBD-∠PAC.
【详解】
解:(1)若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:
如图,过点P作PE∥l1,则∠APE=∠PAC,
又因为l1∥l2,所以PE∥l2,
所以∠BPE=∠PBD,
所以∠APE+∠BPE=∠PAC+∠PBD,
即∠APB=∠PAC+∠PBD.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:
①如图1,有结论:∠APB=∠PAC-∠PBD.理由是:
过点P作PE∥l1,则∠APE=∠PAC
又因为l1∥l2,所以PE∥l2
所以∠BPE=∠PBD
所以∠APB=∠APE-∠BPE
即∠APB=∠PAC-∠PBD.
②如图2,有结论:∠APB=∠PBD-∠PAC.理由是:
过点P作PE∥l2,则∠BPE=∠PBD
又因为l1∥l2,所以PE∥l1
所以∠APE=∠PAC
所以∠APB=∠BPE-∠APE
即∠APB=∠PBD-∠PAC.
【点睛】
本题主要考查平行线的性质与三角形外角的性质.此题难度适中,解题的关键是掌握两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.
22.(1)20,70;(2)80°;(3)90°;
【解析】
【分析】
(1)由PM∥AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∥CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;
(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∥BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;
(3)由(2)可得,∠CFI=180°-2β,由AB∥CD,可得∠END=2α,当FI∥EH时,
∠END=∠CFI,据此即可得α+β=90°.
【详解】
(1)∵PM∥AB,α=20°,
∴∠EPM=∠AEP=20°,
∵AB∥CD,PM∥AB,
∴PM∥CD,
∴∠MPF=∠CFP=50°,
∴∠EPF=20°+50°=70°,
故答案为20,70;
(2)∵PE平分∠AEH,
∴∠AEH=2α=40°,
∵AD∥BC,
∴∠END=∠AEH=40°,
又∵FG平分∠DFI,
∴∠IFG=∠DFG=β=50°,
∴∠CFI=180°-2β=80°;
(3)由(2)可得,∠CFI=180°-2β,
∵AB∥CD,
∴∠END=∠AEN=2α,
∴当FI∥EH时,∠END=∠CFI,
即2α=180°-2β,
∴α+β=90°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键. 23.(1)详见解析;(2)成立,证明见解析.
【解析】
【分析】
(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得
∠CAF=30°,则CF=AC,从而证明结论;
(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.
【详解】
(1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,
∴EF=2BC.
(2)成立.证明如下:
∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.
∵EF=2BC,∴BE+CF=BC.
又∵AH+CH=AC,AC=BC,∴AH=BE.
【点睛】
本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF=2BC是解题的关键.
24.
4
2 x
y
=⎧

=⎩
【解析】
【分析】
本题应对两个方程进行化简,把分数化为整数,然后运用加减消元法进行运算.【详解】
解:原方程组化为:
12
0 34
311
236 x y
x y
-+

-=⎪⎪

--
⎪-=⎪⎩

4310 328
x y
x y
-


-

=①
=②
将①×2-②×3,得x=4.将x=4代入①,得y=2.
∴原方程组的解为
4
2 x
y
=⎧

=⎩
25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.
【解析】
【分析】
(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为
2255%=40
÷;(2)第四次优秀人数为:4085%=34
⨯,第三次优秀率为
32
40
×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.
【详解】
解:(1)由题意可得:
该班总人数是:22÷55%=40(人);
故答案为:40;
(2)由(1)得,第四次优秀的人数为:40×85%=34(人),
第三次优秀率为:32
40
×100%=80%;
如图所示:

(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.
【点睛】
此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。

相关文档
最新文档