苏科版数学九年级上册 全册期末复习试卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版数学九年级上册 全册期末复习试卷(Word 版 含解析)
一、选择题
1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6π B .12π
C .18π
D .24π
2.已知3
sin α=,则α∠的度数是( ) A .30° B .45° C .60° D .90° 3.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π
B .290cm π
C .2130cm π
D .2155cm π
4.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若
26ADC ∠=︒,则B 的度数为( )
A .30
B .42︒
C .46︒
D .52︒ 5.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2
B .2
C .-1
D .1
6.二次函数2
(1)3y x =-+图象的顶点坐标是( ) A .(1,3)
B .(1,3)-
C .(1,3)-
D .(1,3)--
7.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )
A .30°
B .35°
C .40°
D .50° 8.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5π B .10π C .20π D .40π 9.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )
A .4
B .4.5
C .5
D .6
10.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .
13
B .
14
C .
15
D .
16
11.如图,
O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直
线PB 于点C ,则ABC 的最大面积是 ( )
A .
12
B .1
C .2
D .2
12.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .有一个根是x =1
D .不存在实数根 13.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( )
A .中位数是3,众数是2
B .中位数是2,众数是3
C .中位数是4,众数是2
D .中位数是3,众数是4
14.方程x 2=4的解是( )
A .x=2
B .x=﹣2
C .x 1=1,x 2=4
D .x 1=2,x 2=﹣2 15.如图,在矩形中,
,
,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )
A .点
B .点
C .点
D .点
二、填空题
16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.
17.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.
18.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.
19.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 20.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.
21.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米; 22.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.
23.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.
24.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.
25.二次函数2
y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两
点,则1y ____2y (填“>”、“<”、“=”).
26.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.
27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =12
13
,BC =12,则AD 的长_____.
28.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)
29.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.
30.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.
三、解答题
31.解方程:
(1)x2+4x﹣21=0
(2)x2﹣7x﹣2=0
32.某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量y (件)与销售单价x(元/件)的关系如下表:
()
x元/件⋯15202530⋯
y()
件⋯550500450400⋯
设这种产品在这段时间内的销售利润为w(元),解答下列问题:
(1)如y是x的一次函数,求y与x的函数关系式;
(2)求销售利润w与销售单价x之间的函数关系式;
(3)求当x为何值时,w的值最大?最大是多少?
33.如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),
(1)半径 BP 的长度范围为;
(2)连接 BF 并延长交 CD 于 K,若 tan ∠KFC = 3 ,求 BP;
(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究PM
BP
是否为定值,若是求出
该值,若不是,请说明理由.
34.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.
(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率
为 ;
(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.
35.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.
12月17日
12月18日 12月19日 12月20日 12月21日
最高气温(℃) 10 6
7 8 9
最低气温(℃)
1 0 ﹣1 0 3
四、压轴题
36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.
小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:
(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.
(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?
(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.
37.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.
(1) 求抛物线的解析式;
(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,
连GD .是否存在点P ,使
2GD
GO
P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.
38.如图,已知抛物线2
34
y x bx c =
++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线3
34y x t
=
-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.
(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);
(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.
39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;
(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求
tan ACB ∠;
(3)若5
tan 2
CDE ∠=
,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.
40.如图,在边长为5的菱形OABC中,sin∠AOC=4
5
,O为坐标原点,A点在x轴的正半
轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:
(1)当CP⊥OA时,求t的值;
(2)当t<10时,求点P的坐标(结果用含t的代数式表示);
(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】
根据圆锥的侧面积公式:πrl=π×2×6=12π,
故选:B.
【点睛】
本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.C
解析:C
【解析】
【分析】
根据特殊角三角函数值,可得答案.
【详解】
解:由
3
sinα=,得α=60°,
故选:C.
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3.B
解析:B 【解析】 【分析】
先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】
解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】
本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.
4.D
解析:D 【解析】 【分析】
连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】 连接CO , ∵26ADC ∠=︒ ∴∠AOC=252ADC ∠=︒ ∵//OA BC ∴∠OCB=∠AOC=52︒ ∵OC=BO , ∴
B =∠OCB=52︒
故选D.
【点睛】
此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.
5.D
解析:D
【分析】
根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可. 【详解】
解:把x=2代入程x 2+bx-6=0得4+2b-6=0, 解得b=1. 故选:D . 【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
6.A
解析:A 【解析】 【分析】
根据二次函数顶点式即可得出顶点坐标. 【详解】
∵2
(1)3y x =-+,
∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】
本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).
7.C
解析:C 【解析】 【分析】
根据圆周角与圆心角的关键即可解答. 【详解】 ∵∠AOC =80°, ∴1
02
ABC AOC 4.
故选:C. 【点睛】
此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8.B
解析:B 【解析】
利用圆锥面积=Rr 计算. 【详解】
Rr =
2510,
故选:B. 【点睛】
此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.
9.C
解析:C 【解析】 【分析】
首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可. 【详解】
由3、4、6、7、x 的平均数是5, 即(3467)55++++÷=x 得5x =
这组数据按照从小到大排列为3、4、5、6、7,则中位数为5. 故选C 【点睛】
此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.
10.A
解析:A 【解析】 【分析】
根据红球的个数以及球的总个数,直接利用概率公式求解即可. 【详解】
因为共有6个球,红球有2个, 所以,取出红球的概率为2163
P ==, 故选A. 【点睛】
本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.
11.B
解析:B 【解析】 【分析】
连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302
APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.
【详解】
解:连接OA 、OB ,如图1,
2OA OB ==,2AB =,
OAB ∴为等边三角形,
60AOB ∴∠=︒,
1302
APB AOB ∴∠=∠=︒, 60PAC ∠=︒
90ACP ∴∠=︒
2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,
作ABC 的外接圆D ,如图2,连接CD ,
90ACB ∠=︒,点C 在D 上,AB 是D 的直径,
当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,
CD AB ∴⊥,1CD =,
12ABC S ∴=⋅AB ⋅CD 12112
=⨯⨯=, ABC ∴的最大面积为1.
故选B .
【点睛】
本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰
直角三角形的面积公式.
12.A
解析:A
【解析】
【分析】
直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.
【详解】
∵x =﹣1为方程x 2﹣8x ﹣c =0的根,
1+8﹣c =0,解得c =9,
∴原方程为x 2-8x +9=0,
∵24b ac ∆=-=(﹣8)2-4×9>0,
∴方程有两个不相等的实数根.
故选:A .
【点睛】
本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()2
00++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.
13.A
解析:A
【解析】
【分析】
先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.
【详解】
解:将这组数据从小到大排列为:
2,2,2,3,5,6,8,
最中间的数是3,
则这组数据的中位数是3;
2出现了三次,出现的次数最多,
则这组数据的众数是2;
故选:A.
【点睛】
此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.
14.D
解析:D
x2=4,
x=±2.
故选D.
点睛:本题利用方程左右两边直接开平方求解.
15.C
解析:C
【解析】
【分析】
连接AC,利用勾股定理求出AC的长度,即可解题.
【详解】
解:如下图,连接AC,
∵圆A的半径是4,AB=4,AD=3,
∴由勾股定理可知对角线AC=5,
∴D在圆A内,B在圆上,C在圆外,
故选C.
【点睛】
本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.
二、填空题
16.3
【解析】
【分析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴
解析:3
【解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴影部分的面积为πx2×80
360
=
2
9
×πx2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.
17.24π
【解析】
【分析】
利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.
【详解】
解:∵圆锥母线长为5cm,圆锥的高为4cm,
∴底
解析:24π
【解析】
【分析】
利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.
【详解】
解:∵圆锥母线长为5cm,圆锥的高为4cm,
∴底面圆的半径为3,则底面周长=6π,
∴侧面面积=1
2
×6π×5=15π;
∴底面积为=9π,
∴全面积为:15π+9π=24π.
故答案为24π.
【点睛】
本题利用了圆的周长公式和扇形面积公式求解.18.50
【解析】
连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.
【详解】
解:连接AC ,
∵四边形ABCD 是半圆的内接四边形,
∴
∵DC=CB ∴
∵AB 是直
解析:50
【解析】
【分析】
连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.
【详解】
解:连接AC ,
∵四边形ABCD 是半圆的内接四边形,
∴DAB 180DCB 80∠∠=︒-=︒
∵DC=CB
∴1CAB 402
DAB ∠=∠=︒ ∵AB 是直径
∴ACB 90∠=︒
∴ABC 90CAB 50∠∠=︒-=︒
故答案为:50.
【点睛】
本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 19.2
【解析】
【分析】
先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.
解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,
根据根与系数的关系,得,x1+x2=
解析:2
【解析】
【分析】
先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.
【详解】
解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,
根据根与系数的关系,得,x1+x2=-3,x1x2=-5,
则 x1+x2-x1x2=-3-(-5)=2,
故答案为2.
【点睛】
本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.20.-3
【解析】
【分析】
观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线. 【详解】
解:∵ A(3,﹣
解析:-3
【解析】
【分析】
观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.
【详解】
解:∵ A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,
∴A,B两点关于对称轴对称,
根据中点坐标公式可得线段AB的中点坐标为(-3,-2),
∴抛物线的对称轴是直线x= -3.
【点睛】
本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.
21.6
【解析】
【分析】
现将函数解析式配方得,即可得到答案.
【详解】
,
∴当t=1时,h 有最大值6.
故答案为:6.
【点睛】
此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6
【解析】
【分析】
现将函数解析式配方得2
21266(1)6h t
t t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,
∴当t=1时,h 有最大值6.
故答案为:6.
【点睛】
此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.
22.6
【解析】
【分析】
结合等腰三角形的性质,根据勾股定理求解即可.
【详解】
解:如图AB =6,∠AOB =90°,且OA =OB ,
在中,根据勾股定理得,即
∴,
故答案为:6.
【点睛】
解析:6
【解析】
【分析】
结合等腰三角形的性质,根据勾股定理求解即可.
【详解】
解:如图AB =,∠AOB =90°,且OA =OB ,
在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,
0OA >
6OA ∴=
故答案为:6.
【点睛】
本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.
23.50(1﹣x )2=32.
【解析】
由题意可得,
50(1−x)²=32,
故答案为50(1−x)²=32.
解析:50(1﹣x )2=32.
【解析】 由题意可得,
50(1−x)²=32,
故答案为50(1−x)²=32.
24.【解析】
【分析】
根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.
【详解】
根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数
解析:3k <
【解析】
【分析】
根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.
【详解】
根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.
1a ,23b =-,c k =方程有两个不相等的实数根,
241240b ac k ∴∆=-=->,
故答案为:3k <.
【点睛】
本题考查了根的判别式.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
25.>
【解析】
【分析】
利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.
【详解】
解:∵抛物线的对称轴在y 轴的左侧,且开口向下,
∴点,都在对称轴右侧的抛物线
解析:>
【解析】
【分析】
利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.
【详解】
解:∵抛物线的对称轴在y 轴的左侧,且开口向下,
∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,
∴1y >2y .
故答案为>.
【点睛】
本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.
26.2
【解析】
【分析】
首先连接BE ,由题意易得BF=CF ,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF 中,即可求
解析:2
【分析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=1
2
CK,BF=
1
2
BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,
∴KO=OF=1
2
CF=
1
2
BF,
在Rt△PBF中,tan∠BOF=BF
OF
=2,
∵∠AOD=∠BOF,
∴tan∠AOD=2.
故答案为2
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
27.8
【解析】
【分析】
在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=
13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A
解析:8
【解析】
【分析】
在Rt△ADC中,利用正弦的定义得sin C=AD
AC
=
12
13
,则可设AD=12x,所以AC=13x,利
用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=12
13
,接着在Rt△ABD中利用
正切的定义得到BD=13x,所以13x+5x=12,解得x=2
3
,然后利用AD=12x进行计算.
【详解】
在Rt△ADC中,sin C=AD
AC
=
12
13
,
设AD=12x,则AC=13x,
∴DC=5x,
∵cos∠DAC=sin C=12 13
,
∴tan B=12 13
,
在Rt△ABD中,∵tan B=AD
BD
=
12
13
,
而AD=12x,∴BD=13x,
∴13x+5x=12,解得x=2
3
,
∴AD=12x=8.
故答案为8.
【点睛】
本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.15π
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2.
【详解】
解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.
故答案为:15π.
【点睛】
本题考
解析:15π
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2.【详解】
解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=1
2
×6π×5=15πcm2.
故答案为:15π.
【点睛】
本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.
29.1或1.75或2.25s
【解析】
试题分析:∵AB是⊙O的直径,
∴∠C=90°.
∵∠ABC=60°,
∴∠A=30°.
又BC=3cm,
∴AB=6cm.
则当0≤t<3时,即点E从A到B再到
解析:1或1.75或2.25s
【解析】
试题分析:∵AB是⊙O的直径,
∴∠C=90°.
∵∠ABC=60°,
∴∠A=30°.
又BC=3cm,
∴AB=6cm.
则当0≤t<3时,即点E从A到B再到O(此时和O不重合).
若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;
当∠BEF=90°时,则BE=BF=3
4
,此时点E走过的路程是
21
4
或
27
4
,则运动时间是
7
4
s或
9
4
s.
故答案是t=1或7
4
或
9
4
.
考点:圆周角定理.
30.4π
【解析】
【分析】
直接利用弧长公式计算即可求解.【详解】
l==4π,
故答案为:4π.
【点睛】
本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)
解析:4π
【解析】
【分析】
直接利用弧长公式计算即可求解.
【详解】
l =6012180
π⨯=4π, 故答案为:4π.
【点睛】
本题考查弧长计算公式,解题的关键是掌握:弧长l =180
n r π(n 是弧所对应的圆心角度数) 三、解答题
31.(1)x 1=3,x 2=﹣7;(2)x 1x 2【解析】
【分析】
(1)根据因式分解法解方程即可;
(2)根据公式法解方程即可.
【详解】
解:(1)x 2+4x ﹣21=0
(x ﹣3)(x+7)=0
解得x 1=3,x 2=﹣7;
(2)x 2﹣7x ﹣2=0
∵△=49+8=57
∴x
解得x 1x 2 【点睛】
本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.
32.(1)10700y x =-+;(2)(10)(10700)w x x =--+;(3)当40x =时,w 的值最大,最大值为9000元
【解析】
【分析】
(1)根据待定系数法即可求出一次函数解析式;
(2)根据题意列出二次函数即可求解;
(3)根据二次函数的性质即可得到最大值.
【详解】
(1)设y 与x 的函数关系式为y=kx+b
把(15,550)、(20,500)代入得5501550020k b k b =+⎧⎨=+⎩
解得10700k b =-⎧⎨=⎩
∴10700y x =-+
(2)∵成本为10元,故每件利润为(x-10)
∴销售利润(10)(10700)w x x =--+
(3)(10)(10700)w x x =--+=210(40)9000x --+
∵-10<0,
∴当40x =时,w 的值最大,最大值为9000元.
【点睛】
本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.
33.(1)
95102BP <<;(2)BP=1;(3)1125
PM BP = 【解析】
【分析】
(1)当点G 和点E 重合,当点G 和点D 重合两种临界状态,分别求出BP 的值,因为任意点都不重合,所以BP 在两者之间即可得出答案; (2)∠KFC 和∠BFE 是对顶角,得到tan =3BE BFE EF
∠=,得出EF 的值,再根据△BEF ∽△FEG ,求出EG 的值,进而可求出BP 的值;
(3)设圆的半径,利用三角函数表示出PO ,GO 的值,看PP G '∆用面积法求出P Q ',在P GQ '∆中由勾股定理得出MQ 的值,进而可求出PM 的值即可得出答案.
【详解】
(1)当G 点与E 点重合时,BG=BE ,如图所示:
∵四边形ABCD 是矩形,AB=4,BC=3,
∴BD=5,
∵CE ⊥BD ,
∴1122
BC CD BD CE ⋅=⋅, ∴125CE =
, 在△BEC 中,由勾股定理得:
221293()55
BE =-=, ∴910
BP =, 当点G 和点D 重合时,如图所示:
∵△BCD 是直角三角形,
∴BP=DP=CP ,
∴52
BP =, ∵任意两点都不重合,
∴95102
BP <<, (2)连接FG ,如图所示:
∵∠KFC=∠BFE ,tan ∠KFC = 3,
∴tan 3BFE ∠=,
∴3BE EF
=, ∴335
BE EF =
=, ∵BG 是圆的直径,
∴∠BFG=90°, ∴∠GFE+∠BFE=90°,
∵CE ⊥BD ,
∴∠FEG=∠FEB=90°,
∴∠GFE+∠FGE=90°,
∴∠BFE=∠FGE
∴△BEF ∽△FEG ,
∴2EF BE EG =⋅, ∴99255
EG =, ∴15EG =
, ∴BG=EG+BE=2,
∴BP=1,
(3)
PM BP
为定值, 过P '作P Q BD '⊥,连接P G ',P M ',P P '交GH 于点O ,如下图所示:
设5BP x PG P G P M ''====,
则3PO P O x '==,4GO x =, ∴1122
P Q PG GO PP ''⋅=⋅, ∴245
P Q x '=, ∴2275MQ GQ P G P Q x ''==
-=, ∴145
MG x =, ∴115PM PG MG x =-=
, ∴1111:5525
PM x x BP == 【点睛】
本题考查了动圆问题,矩形的性质,面积法的运用,三角函数,相似三角形的判定和性质等知识点,属于圆和矩形的综合题,难度中等偏上,利用数形结合思想和扎实的基础是解决本题的关键.
34.(1)
14;(2)16 【解析】
【分析】
(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;
(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.
【详解】
解:(1)小聪想从这4部数学名著中随机选择1部阅读,
则他选中《九章算术》的概率为14
.
故答案为1
4
;
(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.
方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:
第1部
第2部
A B C D
A BA CA DA
B AB CB DB
C AC BC DC
D AD BD CD
12种结果出现的可能性相等,
所有可能的结果中,满足事件M的结果有2种,即DB,BD,
∴P(M)=
21
= 126
.
方法二:根据题意可以画出如下的树状图:
由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,
∴P(M)=
21
= 126
.
故答案为:1 6 .
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.35.见解析
【解析】
【分析】
根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.
【详解】
∵x 高=()1
10+6+7+8+9=85
⨯(℃), x 低 =()1
1+01+0+3=0.65
⨯-(℃),
2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2) 2S 低=()()()()()222221
10.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦
=1.84(℃2) ∴2S 高>2S 低
∴这5天的日最高气温波动大.
【点睛】
本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=
()()()()
22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦. 四、压轴题
36.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4
【解析】
【分析】
(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;
(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得
∠BCF=12
∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解.
【详解】
(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F
∴BE EF =,80BEF ∠= ∴180502
BEF EBF BFE -∠∠=∠== ,即50BFD ∠= ∵AB=AC=4,D 是BC 的中点
∴BD DC =,AD BC ⊥
∴BF CF =,ABD ACD △≌△
∴FBD FCD △≌△,1005022
BAC BAD CAD ∠∠=∠=
== ∴50BFD CFD ∠=∠=。