第3章 专题技能训练(五)2列一元一次方程解应用题的三种设元方法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:甲、乙两地之间的距离为20 km.
3.一个五位数,个位数为4,这个五位数加上6 120后所 得的新五位数的万位、千位、百位、十位、个位上的 数恰巧分别为原五位数的个位、万位、千位、百位、 十位上的数,试求原五位数.
解:设原五位数去掉个位数后的四位数为x,则原五位数可表 示为10x+4.根据题意,得(10x+4)+6 120=4×10 000+x. 解得x=3 764.所以10x+4=37 644. 答:原五位数是37 644.
第3章 一次方程与方程组
专题技能训练(五)
2.列一元一次方程解应用题的三种设元方法
1 见习题 2 见习题 3 见习题
答案显示
1.[2021·安徽模拟]元朝著名数学家朱世杰在《四元玉鉴》 中有一首诗:“我有一壶酒,携着游春走,遇店添一 倍,逢友饮一斗,店友经三处,没了壶中酒,借问此 壶中,原有多少酒?” 解:设壶中原有 x 斗酒, 根据题意,得 2[2(2x-1)-1]-1=0,解得 x=78. 答:原有78斗酒.
2.某人原计划在一定时间内由甲地步行到乙地,他先以 每小时4 km的速度行了全程的一半后,又搭上了每 小时行驶20 km的顺路汽车,所以比原计划提早2 h到 达乙地.甲、乙两地之间的距离是多少千米?
解:设全程一半的路程为s km,根据题意, 得24s-4s +2s0=2, 解得s=10,2×10=20(km).
Hale Waihona Puke
3.一个五位数,个位数为4,这个五位数加上6 120后所 得的新五位数的万位、千位、百位、十位、个位上的 数恰巧分别为原五位数的个位、万位、千位、百位、 十位上的数,试求原五位数.
解:设原五位数去掉个位数后的四位数为x,则原五位数可表 示为10x+4.根据题意,得(10x+4)+6 120=4×10 000+x. 解得x=3 764.所以10x+4=37 644. 答:原五位数是37 644.
第3章 一次方程与方程组
专题技能训练(五)
2.列一元一次方程解应用题的三种设元方法
1 见习题 2 见习题 3 见习题
答案显示
1.[2021·安徽模拟]元朝著名数学家朱世杰在《四元玉鉴》 中有一首诗:“我有一壶酒,携着游春走,遇店添一 倍,逢友饮一斗,店友经三处,没了壶中酒,借问此 壶中,原有多少酒?” 解:设壶中原有 x 斗酒, 根据题意,得 2[2(2x-1)-1]-1=0,解得 x=78. 答:原有78斗酒.
2.某人原计划在一定时间内由甲地步行到乙地,他先以 每小时4 km的速度行了全程的一半后,又搭上了每 小时行驶20 km的顺路汽车,所以比原计划提早2 h到 达乙地.甲、乙两地之间的距离是多少千米?
解:设全程一半的路程为s km,根据题意, 得24s-4s +2s0=2, 解得s=10,2×10=20(km).
Hale Waihona Puke