泉港区二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泉港区二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,就称有序集对
(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么
“好集对” 一共有( )个
A .个
B .个
C .个
D .个 2. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A . =1.23x+4
B . =1.23x ﹣0.08
C . =1.23x+0.8
D . =1.23x+0.08
3.
=( )
A .﹣i
B .i
C .1+i
D .1﹣i 4. 在等差数列中,已知,则
( )
A .12
B .24
C .36
D .48
5. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )
A .1
B .
C .e ﹣1
D .e+1
6. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .
B .20
C .21
D .31
7. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )
A .10 13
B .12.5 12
C .12.5 13
D .10 15
8. 设命题p :函数y=sin (2x+
)的图象向左平移
个单位长度得到的曲线关于y 轴对称;命题q :函数
y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假
B .¬q 为真
C .p ∨q 为真
D .p ∧q 为假
9. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )
A .至少有一个白球;都是白球
B .至少有一个白球;至少有一个红球
C .恰有一个白球;一个白球一个黑球
D .至少有一个白球;红、黑球各一个
10.在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n
等于( )
A .4
B .5
C .6
D .7
【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.
11.若函数f (x )=﹣a (x ﹣x 3)的递减区间为(
,
),则a 的取值范围是( )
A .a >0
B .﹣1<a <0
C .a >1
D .0<a <1
12.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2
﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条
二、填空题
13.已知f (x )=,则f (﹣)+f ()等于 .
14.已知函数f (x )=
,若f (f (0))=4a ,则实数a= .
15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,
)到直线l 的距离为 .
16.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)
17.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .
18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .
三、解答题
19.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.
20.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l
的交点为Q,求线段PQ的长.
21.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.
(1)求f(x)的解析式;
(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;
(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.
22.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;
(Ⅱ)求点D到平面AMP的距离.
23.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
24.已知和均为给定的大于1的自然数,设集合,,,...,,集合
..。
,,,,...,.
(1)当,时,用列举法表示集合;
(2)设、,..。
,..。
,其中、,,,...,.证明:若,则.
泉港区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】B 【解析】
试题分析:因为{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当
{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,
{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
2. 【答案】D
【解析】解:设回归直线方程为=1.23x+a
∵样本点的中心为(4,5),
∴5=1.23×4+a
∴a=0.08
∴回归直线方程为=1.23x+0.08
故选D .
【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.
3. 【答案】 B
【解析】解: =
=
=i .
故选:B .
【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.
4. 【答案】B
【解析】
,所以,故选B
答案:B
5.【答案】C
【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,
∴0<1+ln(x2﹣m)≤,∴.
∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.
∴1+ln(x2﹣m)≤x2﹣m,
令x2﹣m≤,
化为m≥x﹣e x﹣e,x>m+.
令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.
∴m≥e﹣1.
故选:C.
6.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
7.【答案】C
【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,
∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5
而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标
第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可
∴中位数是13
故选:C.
【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距
×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.
8.【答案】C
【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,
当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,
故命题p为假命题;
函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.
故命题q为假命题;
则¬q为真命题;
p∨q为假命题;
p∧q为假命题,
故只有C判断错误,
故选:C
9.【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:
2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,
所以至少有一个白球,至多有一个白球不互斥;
至少有一个白球,至少有一个红球不互斥;
至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,
故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
10.【答案】B
11.【答案】A
【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)
∴f′(x)≤0,x∈(,)恒成立
即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立
∵1﹣3x2≥0成立
∴a>0
故选A
【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.
12.【答案】C
【解析】
【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,
;;
∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.
∴两圆的圆心距=r2﹣r1;
∴两个圆外切,
∴它们只有1条内公切线,2条外公切线.
故选C.
二、填空题
13.【答案】4.
【解析】解:由分段函数可知f()=2×=.
f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,
∴f()+f(﹣)=+.
故答案为:4.
14.【答案】2.
【解析】解:∵f(0)=2,
∴f(f(0))=f(2)=4+2a=4a,
所以a=2
故答案为:2.
15.【答案】3.
【解析】解:直线l的方程为ρcosθ=5,化为x=5.
点(4,)化为.
∴点到直线l的距离d=5﹣2=3.
故答案为:3.
【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.
16.【答案】(0,2)
【解析】解:令x=0,得y=a0+1=2
∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)
故答案为:(0,2).
【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点
17.【答案】[﹣,].
【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),
即,即,得﹣≤m≤,
故答案为:[﹣,]
【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.
18.【答案】0.
【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n}是周期为6的周期数列,
∴b2016=b336×6=b6=0,
故答案为:0.
【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)用茎叶图表示如下:
(Ⅱ)=,
==80,
=[(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,
=[(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,
∵=,,
∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.
20.【答案】
【解析】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.
(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.
可得普通方程:直线l,射线OM.
联立,解得,即Q.
联立,解得或.
∴P.
∴|PQ|==2.
21.【答案】
【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)
则对称轴x=,
f(x)存在最小值,
则二次项系数a>0
设f(x)=a(x﹣)2+.
将点(0,4)代入得:
f(0)=,
解得:a=1
∴f(x)=(x﹣)2+=x2﹣3x+4.
(2)h(x)=f(x)﹣(2t﹣3)x
=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].
当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;
当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;
当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:
当t≤0时,最小值4;
当0<t<1时,最小值4﹣t2;
当t≥1时,最小值﹣2t+5.
∴.
(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,
∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,
∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,
∴m<.
22.【答案】
【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA
∵△PCD为正三角形
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD
∴PE⊥平面ABCD
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理得EM=,AM=,AE=3
∴EM2+AM2=AE2,∴∠AME=90°
∴AM⊥PM
(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM
∴
而
在Rt△PEM中,由勾股定理得PM=
∴
∴
∴,即点D到平面PAM的距离为
23.【答案】
【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,
所以该考场有10÷0.25=40人,
所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:
40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;
(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:
×=2.9;
(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,
所以还有2人只有一个科目得分为A,
设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,
则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:
Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.
设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,
则P(B)=.
【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.24.【答案】
【解析】。