100、数列的概念与简单表示法教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 数列的概念与简单表示法
授课类型:新授课
●教学目标
知识与技能:1、理解数列及其有关概念,了解数列和函数之间的关系; 2、了解数列的通项公式,并会用通项公式写出数列的任意一项; 3、对于比较简单的数列,会根据其前几项写出它的个通项公式。

过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

●教学重点
数列及其有关概念,通项公式及其应用 ●教学难点
根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入
三角形数:1,3,6,10正方形数:1,4,9,16,25,…(正方形数是指形如n^2的数) Ⅱ.讲授新课
⒈ 数列的定义:按一定次序排列的一列数叫做数列.
注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;
⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.
⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….
例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.
⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项
结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”
是这个数列的第“3
下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用
一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 1 5
14
13
12
1
↓ ↓ ↓ ↓ ↓
序号 1 2 3 4 5
这个数的第一项与这一项的序号可用一个公式:n
a n 1
=
来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系
⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.
注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;
⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公
式可以是2
)1(11
+-+=n n a ,也可以是|21cos |π+=n a n . ⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系
数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。

反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、
f(2)、 f(3)、 f(4)…,f(n),… 6.数列的分类:
(1)根据数列项数的多少分:
有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。

是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列 (2)根据数列项的大小分:
递增数列:从第2项起,每一项都不小于它的前一项的数列。

递减数列:从第2项起,每一项都不大于它的前一项的数列。

常数数列:各项相等的数列。

摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列
观察:课本P29的六组数列,哪些是递增数列,递减数列,常数数列,摆动数列? [范例讲解]
个性化优秀教案 杨老师
3
3
Ⅲ.课堂练习
课本P31[练习]3、4、5
[补充练习]:根据下面数列的前几项的值,写出数列的一个通项公式:
(1) 3, 5, 9, 17, 33,……; (2) 32, 154
, 356, 638, 9910, ……;
(3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……; (5) 2, -6, 12, -20, 30, -42,…….
解:(1) n a =2n +1; (2) n a =)
12)(12(2+-n n n
; (3) n a =2)1(1n -+;
(4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……,
∴n a =n +2
)1(1n
-+;
(5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……, ∴ n a =(-1)1+n n(n +1) Ⅳ.课时小结
本节课学习了以下内容:数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式。

Ⅴ.课后作业
●板书设计 ●授后记
第2课时 数列的概念与简单表示法
授课类型:新授课
●教学目标
知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n项和与
a的关系
n
过程与方法:经历数列知识的感受及理解运用的过程。

情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

●教学重点
根据数列的递推公式写出数列的前几项
●教学难点
理解递推公式与通项公式的关系
●教学过程
Ⅰ.课题导入
[复习引入]
数列及有关定义
Ⅱ.讲授新课数列的表示方法
1、通项公式法
如果数列{}
a的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫
n
做这个数列的通项公式。

如数列的通项公式为;
的通项公式为;
的通项公式为;
2、图象法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数为横坐标,相应的项为
纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都
在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.
3、递推公式法
用其来解决一些实际问题.
观察钢管堆放示意图,寻其规律,建立数学模型.
模型一:自上而下:
第1层钢管数为4;即:1↔4=1+3
个性化优秀教案 杨老师
5
5
第2层钢管数为5;即:2↔5=2+3 第3层钢管数为6;即:3↔6=3+3 第4层钢管数为7;即:4↔7=4+3 第5层钢管数为8;即:5↔8=5+3 第6层钢管数为9;即:6↔9=6+3 第7层钢管数为10;即:7↔10=7+3
若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7)
运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。

让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系
自上而下每一层的钢管数都比上一层钢管数多1。

即41=a ;114512+=+==a a ;115623+=+==a a 依此类推:11+=-n n a a (2≤n ≤7)
对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。

定义:
递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 递推公式也是给出数列的一种方法。

如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为:)83(,5,32121≤≤+===--n a a a a a n n n
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用
表示第一项,

表示第一项,……,用
表示第 项,依次写出成为
4、列表法
.简记为

[范例讲解]
例3 设数列{}n a 满足11111(1).n
n a a n a -=⎧
⎪⎨
=+>⎪⎩
写出这个数列的前五项。

解:分析:题中已给出{}n a 的第1项即11=a ,递推公式:1
11-+=n n a a
解:据题意可知:3
211,211,12
31
21=+==+==a a a a a ,5
8,3
51153
4==+=a a a
[补充例题]
例4已知21=a ,n n a a 21=+ 写出前5项,并猜想n a .
法一:21=a 22222=⨯=a 323222=⨯=a ,观察可得 n n a 2= 法二:由n n a a 21=+ ∴12-=n n a a 即21
=-n n
a a ∴ 11
23
22
11
2------=⨯⨯⨯⨯n n n n n n n a a a a a a a a
∴ n n n a a 2211=⋅=- Ⅲ.课堂练习 [补充练习]
1.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式 (1) 1a =0, 1+n a =n a +(2n -1) (n ∈N); (2) 1a =1, 1+n a =
2
2+n n
a a (n ∈N); (3) 1a =3, 1+n a =3n a -2 (n ∈N).
解:(1) 1a =0, 2a =1, 3a =4, 4a =9, 5a =16, ∴ n a =(n -1)2; (2) 1a =1,2a =
32,3a =4221=, 4a =52, 5a =6231=, ∴ n a =1
2+n ;
(3) 1a =3=1+203⨯, 2a =7=1+213⨯, 3a =19=1+223⨯,
4a =55=1+233⨯, 5a =163=1+243⨯, ∴ n a =1+2·31-n ;
Ⅳ.课时小结
本节课学习了以下内容:
1.递推公式及其用法;
2.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n 项)之间的关系.
Ⅴ.课后作业
个性化优秀教案杨老师7 7
习题2。

1A组的第4、6题●板书设计
●授后记。

相关文档
最新文档