重点初中、外国语学校七年级上册期末数学模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点初中、外国语学校七年级上册期末数学模拟试卷
一、选择题
1.如图,将线段AB 延长至点C ,使1
2
BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )
A .4
B .6
C .8
D .12
2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:
图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70 C .182 D .206 3.一个角是这个角的余角的2倍,则这个角的度数是( )
A .30
B .45︒
C .60︒
D .75︒
4.对于方程
12132
x x +-=,去分母后得到的方程是( ) A .112x x -=+
B .63(12)x x -=+
C .233(12)x x -=+
D .263(12)x x -=+
5.估算15在下列哪两个整数之间( ) A .1,2
B .2,3
C .3,4
D .4,5
6.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60
B .300-0.8x =60
C .300×0.2-x =60
D .300×0.8-x =60
7.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚
B .赚了9元
C .赚了18元
D .赔了18元
8.如图的几何体,从上向下看,看到的是( )
A .
B .
C .
D .
9.下列计算正确的是( )
A .3a +2b =5ab
B .4m 2 n -2mn 2=2mn
C .-12x +7x =-5x
D .5y 2-3y 2=2
10.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )
A .a+b<0
B .a+c<0
C .a -b>0
D .b -c<0
二、填空题
11.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.
12.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.
13.若523m x y +与2n x y 的和仍为单项式,则n m =__________.
14.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 15.按照下面的程序计算:
如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 16.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.
17.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为
AM AB 、的中点,则PQ 的长为____________.
18.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 19.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.
20.已知|x|=3,y2=4,且x<y,那么x+y的值是_____.
三、解答题
21.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.
22.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A 款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:
(1)分别求出每款瓷砖的单价.
(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?
(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).
23.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.
24.先化简,再求值:()()
22
3a 4ab 2a ab ---,其中a 2=-,1b 2
=
. 25.解下列方程或方程组: (1)3(2x ﹣1)=2(1﹣x )﹣1
(2)11
1234
x y x y -+⎧+=⎪
⎨⎪+=⎩
26.(1)如图1,∠AOB 和∠COD 都是直角, ①若∠BOC=60°,则∠BOD= °,∠AOC= °; ②改变∠BOC 的大小,则∠BOD 与∠AOC 相等吗?为什么?
(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC 的度数.
27.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB =1:2,则点C 是线段AB 的一个三等分点.
(1)如图2,数轴上点A 、B 表示的数分别为-4、12,点D 是线段AB 的三等分点,求点D 在数轴上所表示的数;
(2)在(1)的条件下,点P 从点A 出发以每秒1个单位长度的速度在数轴上向右运动;点Q 从点B 出发,在数轴上先向左运动,与点P 重合后立刻改变方向与点P 同向而行,且速度始终为每秒3个单位长度,点P 、Q 同时出发,设运动时间为t 秒. ①用含t 的式子表示线段AQ 的长度;
②当点P 是线段AQ 的三等分点时,求点P 在数轴上所表示的数.
图1
28.一位同学做一道题:“已知两个多项式A,B,计算.”他误将“”看成“”,求得的结果为.已知,请求出正确答案.
29.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:
(1)动点Q从点C运动至点A需要秒;
(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?
(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的
5 4倍(即P点运动的路程=
5
4
Q点运动的路程).
30.如图,在数轴上有A 、B 、C 、D 四个点,分别对应的数为a ,b ,c ,d ,且满足a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.
(1)填空:a =、b =、c =、d =;
(2)若线段AB 以3 个单位/ 秒的速度向右匀速运动,同时线段CD 以1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C ,D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段AB ,线段CD 继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使BC=3AD ?若存在,求t 的值;若不存在,说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】
根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】
解:根据题意可得: 设BC x =,
则可列出:()223x x +⨯= 解得:4x =,
1
2
BC AB =
, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.
2.D
解析:D 【解析】 【分析】
根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】
设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行
∴x 的个位数只能是3或5或7
∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+
A .令41022x += 解得3x =,符合要求;
B .令41070x += 解得15x =,符合要求;
C .令410182x +=解得43x =,符合要求;
D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】
本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.
3.C
解析:C 【解析】 【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】
解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
4.D
解析:D 【解析】 【分析】
方程两边同乘以6即可求解. 【详解】
12132
x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】
本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.
5.C
解析:C 【解析】 【分析】
.
∵9<15<16,
∴,
故选C.
【点睛】
本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
6.D
解析:D
【解析】
【分析】
要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程
【详解】
解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60
故选:D
【点睛】
本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:
(1)利润、售价、进价三者之间的关系;
(2)打八折的含义.
7.D
解析:D
【解析】
试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.
考点:一元一次方程的应用.
8.A
解析:A
【解析】
【分析】
根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.
【详解】
从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,
故选:A.
本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.
9.C
解析:C 【解析】
试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.
D.222 532.y y y -=故错误. 故选C.
点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.
10.C
解析:C 【解析】 【分析】
根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断. 【详解】
根据数轴可知:a <b <0<c ,且|a |>|c |>|b | 则A. a +b <0正确,不符合题意; B. a +c <0正确,不符合题意; C .a -b>0错误,符合题意; D. b -c<0正确,不符合题意; 故选C. 【点睛】
本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.
二、填空题
11.【解析】 【分析】
先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论. 【详解】
解:∵AB =4,BC =2AB , ∴B
解析:【解析】 【分析】
先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.
【详解】
解:∵AB=4,BC=2AB,
∴BC=8.
∴AC=AB+BC=12.
∵D是AC的中点,
∴AD=1
2
AC=6.
∴BD=AD﹣AB=6﹣4=2.
故答案为:2.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.12.10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P
解析:10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.
【详解】
解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,
∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,
即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,
又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,
∴∠B′PE+∠C′PF=∠B′PC′+85°,
∴2(∠B′PC′+85°)﹣∠B′PC′=180°,
解得∠B′PC′=10°.
故答案为:10°.
【点睛】
此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.13.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.
解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()2
39n m =-=,故答案为:9. 14.2
【解析】
【分析】
求出最大负整数解,再把x=-1代入方程,即可求出答案.
【详解】
解:最大负整数为,
把代入方程得:,
解得:,
故答案为2.
【点睛】
本题考查有理数和一元一次方程的解,能
解析:2
【解析】
【分析】
求出最大负整数解,再把x=-1代入方程,即可求出答案.
【详解】
解:最大负整数为1-,
把x 1=-代入方程2x 3a 4+=得:23a 4-+=,
解得:a 2=,
故答案为2.
【点睛】
本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 15.42或11
【解析】
【分析】
由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求
解析:42或11
【解析】
【分析】
由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.
【详解】
解:当4x-2=166时,解得x=42
当4x-2小于149时,将4x-2作为一个整体重新输入
即4(4x-2)-2=166,解得x=11
故答案为42或11
【点睛】
本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.
16.72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
解析:72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 17.6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1
解析:6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=1
2
AM=2cm,
AQ=1
2
AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,
∵P,Q分别为AM,AB的中点,
∴AP=1
2
AM=2cm,AQ=
1
2
AB=8cm,
∴PQ=AQ-AP=6cm;
故答案为:6cm.
【点睛】
本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.
18.正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考
解析:正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.404
【解析】
【分析】
仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规
律求解即可.
【详解】
解:观察图1有5×1-1=4个黑棋子;
图2有5×2-1=9个黑棋子;
图3有
解析:404
【解析】
【分析】
仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.
【详解】
解:观察图1有5×1-1=4个黑棋子;
图2有5×2-1=9个黑棋子;
图3有5×3-1=14个黑棋子;
图4有5×4-1=19个黑棋子;
…
图n有5n-1个黑棋子,
当5n-1=2019,
解得:n=404,
故答案:404.
【点睛】
本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.
20.﹣1或﹣5
【解析】
【分析】
利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.
【详解】
解:∵|x|=3,y2=4,
∴x=±3,y=±2,
∵x<y,
∴x=﹣3,y=±2,
当x=﹣
解析:﹣1或﹣5
【解析】
【分析】
利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.
【详解】
解:∵|x |=3,y 2=4,
∴x =±3,y =±2,
∵x <y ,
∴x =﹣3,y =±2,
当x =﹣3,y =2时,x +y =﹣1,
当x =﹣3,y =﹣2时,x +y =﹣5,
所以,x +y 的值是﹣1或﹣5.
故答案为:﹣1或﹣5.
【点睛】
本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x 、y 的值.
三、解答题
21.小明家到景蓝小区门口的距离为1000米.
【解析】
【分析】
可设小明家到景蓝小区门口的距离是x 米,根据等量关系:小明家到景蓝小区门口的时间=小明的父母到景蓝小区门口的时间,依此列出方程求解即可.
【详解】
解:设小明家到景蓝小区门口的距离为x 米,
由题意得:
54054060
x x ⨯+=+ 解得:x =1000,
答:小明家到景蓝小区门口的距离为1000米.
【点睛】
考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
22.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,
34
或1,15. 【解析】
【分析】
(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;
(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的
用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由9
2
b
b
-
+
是正整教分情况求
出b的值.
【详解】
解: (1)设A款瓷砖单价x元,B款单价y元,
则有
140
34
x y
x y
+=
⎧
⎨
=
⎩
,
解得
80
60 x
y
=
⎧
⎨
=
⎩
,
答: A款瓷砖单价为80元,B款单价为60元;
(2)设A款买了m块,B款买了n块,且m>n,
则80m+60n=1000,即4m+3n=50
∵m,n为正整数,且m>n
∴m=11时n=2;m=8时,n=6,
答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;
(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.
由题意得:
7997 22114 22
b b
a a
b a b a
--
⎛⎫
⨯⨯=+⨯-
⎪
++
⎝⎭
,
解得a=1.
由题可知,9
2
b
b
-
+
是正整教.
设9
2
b
k
b
-
=
+
(k为正整数),
变形得到
92
1
k
b
k
-
=
+
,
当k=1时,
77
(1
22
b=>,故合去),
当k=2时,
55
(1
33
b=>,故舍去),
当k=3时,
3
4
b=,
当k=4时,
1
5
b=,
答: B款瓷砖的长和宽分别为1,3
4
或1,
1
5
.
【点睛】
本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.
23.30°.
【解析】
【分析】
依据平行线的性质,即可得到∠DOE =60°,再根据三角形外角性质,即可得到∠E 的度数.
【详解】
解:∵AB ∥CD ,∠A =60°,
∴∠DOE =∠A =60°,
又∵∠C =∠E ,∠DOE =∠C+∠E ,
∴∠E =12
∠DOE =30°. 【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
24.2a 2ab -,6.
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:原式2223a 4ab 2a 2ab a 2ab =--+=-
当a 2=-,1b 2
=时, 原式()1422422=-⨯-⨯
=+ 6=.
【点睛】
本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
25.(1)x=12 ;(2)15x y =-⎧⎨=⎩
. 【解析】
【分析】
(1)方程去括号,移项合并,把x 系数化为1,即可求出解;
(2)方程组整理后,利用加减消元法求出解即可.
【详解】
解:(1)3(2x ﹣1)=2(1﹣x )﹣1,
6x ﹣3=2﹣2x ﹣1, x=12
, (2)111234
x y x y -+⎧+=⎪⎨⎪+=⎩,
整理得:
3x+2y=7
2x+2y=8
①
②⎧
⎨
⎩
,
②﹣①得:﹣x=1,
x=﹣1,
把x=﹣1代入①中得:y=5,
∴方程组的解为:
1
5
x
y
=-
⎧
⎨
=
⎩
.
【点睛】
此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键. 26.(1)①30;30;②相等,理由详见解析;(2)∠AOC=30°.
【解析】
【分析】
(1)①根据直角定义可得∠COD=∠AOB=90°,再利用角的和差关系可得答案;
②根据条件可得∠AOB=∠COD,再用等式的性质可得∠AOB-∠COB=∠COD-∠BOC,进而可得结论;
(2)设∠AOC=x°,则∠BOC=(100-x)°,然后再表示出∠BOD,进而可得
∠AOD=∠AOB+∠BOD=100°+10°+x°=100°-x°+70°,再解方程即可.
【详解】
解:(1)①∵∠COD是直角,
∴∠COD=90°,
∵∠BOC=60°,
∴∠BOD=30°,
∵∠AOB是直角,
∴∠AOB=90°,
∵∠BOC=60°,
∴∠AOC=30°,
故答案为30;30;
②相等,
∵∠AOB和∠COD都是直角,
∴∠AOB=∠COD,
∴∠AOB﹣∠COB=∠COD﹣∠BOC,
即∠BOD=∠AOC;
(2)设∠AOC=x°,则∠BOC=(100﹣x)°,
∵∠COD=110°,
∴∠BOD=110°﹣(100﹣x)°=x°+10°,
∵∠AOD=∠BOC+70°,
∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,
解得:x=30,
∴∠AOC=30°.
【点睛】
此题主要考查了角的计算,关键是理清图中角之间的和差关系.
27.(1)4
3
或
20
3
;(2)①4,16-3t或3t-8;②
4
-
3
或
4
-
9
或
4
3
【解析】【分析】
(1)根据三等分点的定义,分两种情况:AD=1
3
AB时;AD=
2
3
AB 时,分别在数轴上找到
点D的位置即可;
(2)①P、Q两点经过4秒相遇,分相遇前和相遇后两种情况讨论,分别表示出AQ即可;
②根据①中的结论,分相遇前和相遇后两种情况,结合三等分点的定义,一共有四种情况,分别计算即可,最后总结所求结果.
【详解】
解:(1)根据题意,分情况讨论:
当AD:BD=1:2时,AD=1
3
AB=
16
3
,点D表示的数为-4+
16
3
=
4
3
;
当AD:BD=2:1时,AD=2
3
AB=
32
3
,点D表示的数为-4+
32
3
=
20
3
,
所以,点D在数轴上所表示的数为4
3
或
20
3
,
故答案为:4
3
或
20
3
;
(2)①P、Q两点经过4秒相遇,相遇时,AP=4, P、Q相遇前,当t小于或等于4时,AQ=16-3t;
P、Q相遇后,当t大于4时,AQ=4+3(t-4)=3t-8;
②当P、Q相遇前:若AP=1
3
AQ,则t=
1
3
(16-3t),t=
8
3
,此时点P表示的数为-
4
3
;
若AP=2
3
AQ,则t=
2
3
(16-3t),t=
32
9
,此时点P表示的数为-
4
9
;
当P、Q相遇后:若AP=2
3
AQ,则t=
2
3
(3t-8),t=
16
3
,此时点P表示的数为
4
3
;
若AP=1
3
AQ,则t=
1
3
(3t-8),无解,
综上所述,点P为线段AQ的三等分点时,点P表示的数分别为
4
-
3
或
4
-
9
或
4
3
,
故答案为:
4
-
3
或
4
-
9
或
4
3
.
【点睛】
本题考查了三等分点的定义,相遇问题,数轴上的动点问题,掌握数轴上的动点问题以及三等分点的定义是解题的关键.
28.
【解析】
【分析】
根据题意列出式子,先求出A表示的多项式,然后再求2A+B.
【详解】
解:由,,
得.
所以
.
【点睛】
本题考查整式的加减运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系可先求出A,进一步求得2A+B.
29.(1)26秒;(2)t的值是10,相遇点M所对应的数是8;(3)26
【解析】
【分析】
(1)由时间=路程÷速度即可解答;
(2)根据相遇时,P,Q所用时间相等的等量关系,列方程、解方程即可解答;
(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的5
4
倍需分两直角
边分别情况讨论,并根据P点运动的路程=5
4
Q点运动的等量关系,列方程、解方程即可
解答。
【详解】
解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;
(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.
则12÷2+x÷2=(20﹣12)÷1+(12﹣x)÷2,
解得x=8,
12÷2+x÷2=12÷2+8÷2=6+4=10.
答:t的值是10,相遇点M所对应的数是8.
(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的5
4
倍有2种可
能:
①动点Q在OB上,动点P在AO上,
则:2t =54
[20﹣12+2(t ﹣8÷1)], 解得:t =20(舍去).
②动点Q 在OA 上,动点P 在BC 上,
则:2t =54
[20+(t ﹣8÷1﹣12÷2)], 解得:t =10(舍去).
综上所述:t 无解.
故答案为:26;
【点睛】
本题考查了数轴以及一元一次方程的应用,弄清题意、找准等量关系并列方程是解答本题的关键.
30.(1)a = -8 , b = -6,c = 12 , d = 16;(2)316
t =
;(3)t =274 或t = 458时, BC = 3AD
【解析】
【分析】
(1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.
【详解】
(1) | x + 7 |= 1,
∴ x = -8 或-6
∴ a = -8 , b = -6,
(c -12)2 + | d -16 |= 0 ,
∴ c = 12 , d = 16
(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,
∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |
AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |
BD = 2 AC ,
∴ 22 - 4t = ±2(20 - 4t )
解得: 92t =或316
t = 当92t =时,此时点 B 对应的数为152,点C 对应的数为152
,此时不满足题意, 故316
t = (3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t 112t ∴>
, BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,
AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,
BC = 3AD ,
∴|18 - 4t |= 3 | 24 - 4t | ,
解得: t =274 或t = 458
经验证,t =
274 或t = 458
, BC = 3AD 【点睛】 本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.。