措勤县第三中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

措勤县第三中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的
面积的最大值为4,则此时△ABC 的形状为( )
A .等腰三角形
B .正三角形
C .直角三角形
D .钝角三角形
2. 下列命题中正确的是( )
A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题
B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”
C .“
”是“
”的充分不必要条件
D .命题“∀x ∈R ,2x >0”的否定是“

3. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
4. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )
A .
B .
C .
D . 5. 如右图,在长方体
中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将
次到第次反射点之间的线
段记为

,将线段
竖直放置在同一水平线上,则大致的图形是( )
A
B
C
D
6.设集合M={x|x2+3x+2<0},集合,则M∪N=()
A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}
7.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高杂质低
旧设备37 121
新设备22 202
根据以上数据,则()
A.含杂质的高低与设备改造有关
B.含杂质的高低与设备改造无关
C.设备是否改造决定含杂质的高低
D.以上答案都不对
8.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()
A.B.C.D.
9.数列1,﹣4,7,﹣10,13,…,的通项公式a n为()
A.2n﹣1 B.﹣3n+2 C.(﹣1)n+1(3n﹣2)D.(﹣1)n+13n﹣2
10.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()
A.B.C.
D.
11.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()
A.9 B.11 C.13 D.15
12.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是()
A.[﹣1,﹣] B.[﹣,﹣] C.[﹣1,0] D.[﹣,0]
二、填空题
13.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .
14.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则
OAB ∆面积的最大值为 .
【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
15.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:
①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;
③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;
④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,
则四边形P 0P 1P 2P 3的面积为定值4k 2

其中,所有正确结论的序号是 .
16.设函数f (x )
=
,则f (f (﹣2))的值为 .
17.设R m ∈,实数x ,y 满足23603260y m
x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若182≤+y x ,则实数m 的取值范围是___________.
【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.
18.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
三、解答题
19.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;
(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2
x ∈.
20.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠DAE=25°,求证:DA2=DC•BP.
21.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
22.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.
(I)求C的值;
(Ⅱ)若c=2a,b=2,求△ABC的面积.
23.(本小题满分12分)
已知椭圆C A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;
(2)若过左焦点1F 的直线交椭圆
C 于M N 、两点,求22F M F N 的取值范围.
24.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.
(1)当时,求函数的单调区间;
(2)当时,解关于的不等式

(3)当时,如果函数
不存在极值点,求的取值范围.
措勤县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:∵(acosB+bcosA)=2csinC,
∴(sinAcosB+sinBcosA)=2sin2
C,
∴sinC=2sin2
C,且sinC>0,
∴sinC=,
∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)
∵△ABC的面积的最大值S
△ABC=absinC≤=4,
∴a=b=4,
则此时△ABC的形状为等腰三角形.
故选:A.
2.【答案】D
【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;
命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;
“”⇒“+2kπ,或,k∈Z”,
“”⇒“”,
故“”是“”的必要不充分条件,故C不正确;
命题“∀x∈R,2x>0”的否定是“”,故D正确.
故选D.
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
3.【答案】D
【解析】解:∵A+B+C=180°,
∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,
∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,
∴A=C 即为等腰三角形.
故选:D.
【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.
【解析】
考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.
【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.
5.【答案】C
【解析】根据题意有:
A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);
E的坐标为(4,3,12)
(1)l1长度计算
所以:l1=|AE|==13。

(2)l2长度计算
将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:
A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);
显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。

设AE与的延长线与平面A2B2C2D2相交于:E2(x E2,y E2,24)
根据相识三角形易知:
x E2=2x E=2×4=8,
y E2=2y E=2×3=6,
即:E2(8,6,24)
根据坐标可知,E2在长方形A2B2C2D2内。

【解析】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},
集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},
∴M∪N={x|x≥﹣2},
故选A.
【点评】本题考查集合的运算,解题时要认真审题,仔细解答.
7.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37 121 158
新设备22 202 224
合计59 323 382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
8.【答案】C
【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,
故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,
则易知A
H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,
1
AO1=3,由A1O1•A1A=h•AO1,可得A1H=,
故选:C.
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
9.【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).
故选:C.
10.【答案】D
【解析】解:∵f(x)=y=2x2﹣e|x|,
∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,
故函数为偶函数,
当x=±2时,y=8﹣e2∈(0,1),故排除A,B;
当x∈[0,2]时,f(x)=y=2x2﹣e x,
∴f′(x)=4x﹣e x=0有解,
故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,
故选:D
11.【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5,
当a=5时,不满足退出循环的条件,故a=9,
当a=9时,不满足退出循环的条件,故a=13,
当a=13时,满足退出循环的条件,
故输出的结果为13,
故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.12.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.二、填空题
13.【答案】{a|或}.
【解析】解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为x=a﹣,
f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,
∴a﹣≥2,或a﹣≤1,∴a≥,或a≤,
故答案为:{a|a≥,或a≤}.
【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.
14.【答案】
9
【解析】
15.【答案】②③④.
【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,
对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;
对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|
∴|PA|+|PB|≥2=2k,③正确;
对于④,由题意知点P在曲线C上,根据对称性,
则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.
故答案为:②③④.
【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.16.【答案】﹣4.
【解析】解:∵函数f (x )=

∴f (﹣2)=4﹣2
=

f (f (﹣2))=f (
)=
=﹣4.
故答案为:﹣4.
17.【答案】[3,6]-. 【



18.【答案】1a = 【解析】
试题分析:因为不等式()2
110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足2
(1)40
a a a >⎧⎨
∆=+-≤⎩,即2
0(1)0
a a >⎧⎨
-≤⎩,解得1a =.1
考点:不等式的恒成立问题.
三、解答题
19.【答案】(本小题满分13分)
解:(Ⅰ)2()363(2)f x ax x x ax '=-=-, (1分)
①当0a >时,解()0f x '>得2x a >或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a
+∞,()f x 的递减区间为2
(0,)a . (4分)
②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)
③当0a <时,解()0f x '>得20x a
<<,解()0f x '<得0x >或2
x a <
∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2
(,)a
-∞和(0,)+∞. (7分)
(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2
(,0)a
上递增,在(0,)+∞上递减.
∵2
2
240a f a a -⎛⎫=> ⎪⎝⎭
,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11
(2)028
f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,
∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01
(0,)2x ∈ (12分)
综上所述,当2a <-时,()f x 有唯一的零点0x ,且01
(0,)2
x ∈. (13分)
20.【答案】
【解析】解:(1)∵EP 与⊙O 相切于点A ,∴∠ACB=∠PAB=25°, 又BC 是⊙O 的直径,∴∠ABC=65°,
∵四边形ABCD 内接于⊙O ,∴∠ABC+∠D=180°, ∴∠D=115°.
证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB ,∠D=∠PBA ,
∴△ADC ∽△PBA ,∴

又DA=BA ,∴DA 2
=DC •BP .
21.【答案】
【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,
奖金的可能取值是0,30,60,240,
∴一等奖的概率P(ξ=240)=,
P(ξ=60)=
P(ξ=30)=,
P(ξ=0)=1﹣
∴变量的分布列是ξ
∴E ξ==20
(2)由(1)可得乙一次抽奖中奖的概率是1﹣
四次抽奖是相互独立的
∴中奖次数η~B(4,)
∴Dη=4×
【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.
22.【答案】
【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,
∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,
∴sinC=cosC,∴tanC==,
由三角形内角的范围可得C=;
(Ⅱ)∵c=2a,b=2,C=,
∴由余弦定理可得c2=a2+b2﹣2abcosC,
∴4a2
=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)
∴△ABC的面积S=absinC==
23.【答案】(1)22
142
x y +=;(2)22[2,7)F M F N ∈-. 【解析】

题解析:(1)根据题意知2
c a =,即2212c a =,
∴222
12a b a -=,则22
2a b =, 设(,)P x y ,
∵(,)(,)PA PB a x y a x y =-----,
222
2
2
2
2
2
21()222
a x x a y x a x a =-+=-+-=-,
∵a x a -≤≤,∴当0x =时,2
min ()22
a PA PB =-=-, ∴24a =,则2
2b =.
∴椭圆C 的方程为22
142
x y +=.
11
11]
设11(,)M x y ,22(,)N x y ,则2
122
12x x k +=-+,21224(1)12k x x k -=+,
∵211(2,)F M x y =-,222()F N x y =,
∴222121212)2(F M F N x x x x k x x =+++
2221212(1))22k x x x x k =+++++ 222
2
222
4(1)42(1)2(1)221212k k k k k k k --=++-++++ 2
9
712k =-+.
∵2
121k +≥,∴2
10112k
<≤+. ∴2
9
7[2,7)12k -
∈-+. 综上知,22[2,7)F M F N ∈-.
考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.
【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.
24.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)
【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情
况解不等式;当时,,求导,函数不存在极值点,只需
恒成立,根据这个要求得出的范围.
试题解析:
(2)时,.
当时,原不等式可化为.
记,则,
当时,,
所以在单调递增,又,故不等式解为;
当时,原不等式可化为,显然不成立,
综上,原不等式的解集为.。

相关文档
最新文档