基于PLC控制的变频恒压供水系统设计
基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。
PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。
下面将介绍一个基于PLC变频恒压供水控制系统的设计。
设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。
2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。
3.实现故障自动检测和报警,提高供水系统的可靠性。
系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。
2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。
3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。
4.水泵:使用多台水泵来实现供水。
系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。
2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。
3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。
当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。
4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。
系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。
2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。
3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。
总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。
基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计一、概述供水系统的重要性及其在现代社会中的应用:供水系统在现代社会中具有至关重要的地位。
随着城市化进程的加速和人口规模的不断扩大,稳定、高效、节能的供水系统已成为满足居民生活需求、保障工业生产和推动城市可持续发展的重要基础设施。
变频恒压供水系统的优势:变频恒压供水系统是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。
相比传统的水塔、高位水箱、气压罐等供水方式,变频恒压供水系统具有以下优势:高效节能:变频恒压供水系统能根据用水量自动调节水泵转速,节能效果显著,可节能3060。
PLC在变频恒压供水系统中的应用:PLC(可编程逻辑控制器)在变频恒压供水系统中的应用,使得系统能够通过微机检测、运算,自动改变水泵转速以保持水压恒定,满足用水需求。
PLC的应用不仅提高了系统的可靠性和稳定性,还简化了系统控制接线,方便了维修和调试。
系统原理:变频恒压供水系统以管网水压(或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节(PID),使供水系统自动恒稳于设定的压力值。
设备特点:变频恒压供水系统采用可编程控制器,程序灵活多变,精度高,可靠性强,功能多,反映速度快。
系统还配有稳压泵或稳压罐稳压,在用水量小到一定值时,主泵可停止运转,减少水泵电机的机械磨损并且节约电能。
应用前景:变频恒压供水系统作为一种先进的、合理的节能供水系统,在工业、商业和居民生活等领域具有广泛的应用前景。
它不仅能够满足用户对水压和水量的要求,还能够提高供水品质和供水效率,是一种理想的现代化建筑供水设备。
1. 供水系统的重要性和挑战供水系统在城市发展中扮演着至关重要的角色,它直接关系到居民的生活质量和健康。
一个可靠的供水系统能够确保居民获得充足、安全的饮用水,同时支持城市的工业、农业和其他用水需求。
保障居民健康:水质的好坏直接关系到居民的健康。
供水系统需要确保提供的水质符合卫生标准,以减少水源性疾病的传播。
基于PLC控制的恒压供水系统设计

摘要本设计根据城市小区的供水要求,设计了一套基于PLC控制的变频调速恒压供水系统。
该系统由PLC、变频器、水泵机组、压力变送器等构成。
本系统利用变频器实现对三相水泵电机的变频调速,采用“先启先停”的原则切换运行水泵。
压力传感器检测水压信号,送入PLC并与设定值比较进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速和供水量。
这样使管网水压力始终保持在设定值附近,从而实现恒压供水。
关键词:PLC;变频调速;PID控制;恒压供水ABSTRACTAccording to the city water supply system,this paper designed a PLC-based control of frequency control water supply system.The system consists of PLC, inverter, water pump, pressure sensors and other accessories.The system uses frequency converter three-phase pump motor of the soft start and frequency control, and use "first start first stop"principle to switch to run the pump.Pressure sensors to detect pressure signals into the PLC compared with the PID set point operation and thus control the inverter output voltage and frequency, thereby changing the water pump motor speed and water supply.It makes the pipe network water pressure is always maintained around the set value in order to achieve constant pressure water supply.Keywords:PLC; frequency control; PID control; constant pressure water supply目录1 绪论 (1)1.1课题的背景及意义 (1)1.2变频恒压供水系统的国内外研究现状 (1)1.3本课题主要研究内容 (2)2 恒压供水系统总体方案设计 (2)2.1系统的主要结构及组成 (2)2.2PLC概述及其系统组成 (2)2.3变频器简介及选型 (3)2.3.1 变频器简介 (3)2.3.2变频器的基本结构 (3)3 系统硬件选择及系统电路设计 (5)3.1硬件选择 (6)3.1.1 PLC及其扩展模块的选型 (6)3.1.2 变频器的选型 (6)3.1.3 水泵机组的选型 (7)3.1.4 压力变送器的选型 (7)3.1.5 液位变送器选型 (8)3.2系统主电路分析及其设计 (8)3.3系统控制电路分析及其设计 (9)3.4PLC的I/O端口分配及外围接线图 (11)4 系统的软件设计 (14)4.1 系统软件设计分析 (14)4.2PLC程序设计 (15)4.2.1 控制系统主程序设计 (15)4.2.2 控制系统子程序设计 (19)4.3PID控制器参数整定 (22)4.3.1 PID控制及其控制算法 (22)4.3.2 系统的近似数学模型及参数取值 (23)5总结 (24)参考文献 (25)附录 (26)致谢 (34)1 绪论1.1 课题的背景及意义城市中各类小区的供水系统是小区众多基础设施当中的一个重要组成部分。
《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。
恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。
其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。
本文将详细介绍基于PLC恒压变频供水系统的设计与实现。
二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。
其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。
2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。
此外,还需要具有与其他设备通信的能力。
在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。
3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。
供水泵站则负责实际的供水任务。
在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。
三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。
在选型过程中,应充分考虑设备的性能、价格、维护等因素。
安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。
2. 软件实现软件部分主要包括PLC程序的编写和调试。
在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。
在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。
四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。
测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。
如果发现问题,应及时进行排查和修复。
2. 系统运行经过测试后,系统可以正式投入运行。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。
随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。
在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。
而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。
恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。
基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。
研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。
1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。
传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。
对于基于PLC的恒压供水系统的研究具有重要的意义。
通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。
本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。
1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。
通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。
通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。
通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。
《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。
恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。
本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。
同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。
三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。
其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。
四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。
2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。
3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。
4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。
五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。
2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。
3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。
4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。
六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。
2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。
基于plc控制的恒压供水系统设计

基于PLC的恒压供水系统任务设计书基于PLC的恒压供水系统任务设计书一、系统概述众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。
在此情况下,我们小组讨论并设计了该“基于PLC的恒压供水系统”。
本文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统。
变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器等构成。
本系统包含三台水泵电机,它们组成变频循环运行方式。
采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。
压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。
二、总体方案设计PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图1所示:图1变频恒压供水系统控制流程图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。
(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种实现供水自动控制和恒定水压的系统,其中PLC(可编程逻辑控制器)是系统的核心控制设备。
本文将介绍基于PLC的恒压供水系统的设计。
需要明确恒压供水系统的工作原理。
恒压供水系统通过感应水压信号,实时检测并调节水泵的运行状态,以保持恒定的水压。
当水压下降时,PLC将接收到水压信号,并根据预设的控制逻辑,自动启停水泵。
当水压恢复到设定的压力范围内时,PLC会停止水泵的运行。
1. 系统布局设计:首先需要对供水系统的布局进行设计。
包括水泵的位置安排、水源与供水管道的连接方式等。
通过合理的布局设计,可以确保供水系统的稳定运行。
2. PLC选型和安装:根据实际需求选择合适的PLC设备,并进行安装。
选型时需要考虑PLC的输入输出点数量,通信接口等因素。
安装时需要按照PLC的安装手册进行操作,确保PLC设备的正常运行。
3. 传感器的选择和安装:恒压供水系统的关键是实时检测水压信号。
需要选择合适的传感器来感应水压信号,并将信号输入到PLC中。
一般可以选择压力传感器或液位传感器作为水压信号的检测装置。
安装传感器时需要遵循传感器的安装手册,确保传感器的准确度和可靠性。
4. PLC程序编写:根据系统需求,编写PLC程序。
程序的编写需要根据实际情况设置水压的设定值、水泵的启停逻辑等控制策略。
编写完程序后,需要进行PLC程序的调试和测试,确保程序的正确性和稳定性。
5. 系统调试和优化:系统调试是确保恒压供水系统正常运行的关键步骤。
调试过程中需要检查各个设备的连接情况、信号传输的准确性等。
同时还需要对恒压供水系统进行性能优化,例如设置合理的启停控制逻辑,调整设定的水压范围等,以提高供水系统的稳定性和节能效果。
6. 系统运行和维护:系统调试完成后,可以正式启动恒压供水系统的运行。
在系统运行过程中,需要定期检查和维护系统设备,保持设备的正常运行。
同时也需要注意系统的安全性,定期检查阀门、电气连接等,确保供水系统的安全运行。
基于PLC的变频恒压供水系统设计

基于PLC的变频恒压供水系统设计摘要:本文基于PLC的变频恒压供水系统设计探索了一种高效、可靠的供水方案。
通过对水泵运行频率的控制,实现了水流量和压力的稳定控制,确保了水的稳定供应和能源的节约。
通过模拟试验,验证了该系统的控制效果和运行稳定性,并说明了未来该系统在供水工程中的广泛应用前景。
关键词:变频,PLC,供水,恒压,控制一、前言:供水系统是城市建设中必不可少的基础设施,其对人们生产和生活起着至关重要的作用。
目前,传统的供水系统主要采用了定频水泵电机驱动,而这种方式存在能源浪费和控制不稳定等问题。
因此,寻求一种有效的变频恒压供水系统是当前供水领域中的一个热门问题。
根据这一需求,我们开发了一种基于PLC的变频恒压供水系统。
二、设计:系统的控制核心是基于PLC编程的控制器,通过对水泵运行频率的控制,实现系统的水流量和压力恒定。
在系统设计过程中,我们考虑到供水系统的实际应用需求,采用模糊控制策略来优化变频水泵的工作状态。
这种方式可以根据实时数据对水泵的运转频率进行无级调整,从而确保系统不会因为水流量或压力的变化而导致水的质量和供应的不稳定性。
同时,系统还具备故障自诊断和自校准功能,可以在自动检测到恶劣环境时启动保护程序,从而确保系统的安全可靠性。
三、验证:为了验证系统的可行性和可靠性,我们在实际的水泵变频供水系统运行过程中进行了模拟试验。
通过对系统的数据进行实时监控和分析,我们发现该系统可以准确地控制水泵的频率和动力,保证了水的流量和压力在给定的范围内恒定。
同时,系统具备快速的自适应性和随时调节能力,可以在不同水质和供水环境下实现稳定的运行状态。
以上实验结果表明,该系统是一种高效、可靠的供水系统,具有广泛的实际应用价值。
四、结论:本文论述了一种基于PLC的变频恒压供水系统的设计和实现过程,并通过模拟实验验证了该系统的可行性和可靠性。
该系统可以实现水流量和压力的稳定控制,节约能源并确保水的稳定供应,是一种高效、可靠的供水方案。
基于PLC控制的恒压供水系统设计

基于PLC控制的恒压供水系统设计基于PLC控制的恒压供水系统设计摘要在我国经济的飞速发展过程中,为了实现经济的可持续发展,节能减排的要求必将越来越高,使得节能设备得以大规模的推广和使用。
同时随着城市化进程不断加快,大量人口涌入城市,使得大中城市的原有基础设施不足以满足日益增长的使用需求,改建扩建这些基础设施必将提上日程,怎样既经济又高效又能满足以后扩展需要是我们当前必须面对的问题。
此外人们对生活质量要求不断提高,对城市基础设施的性能提出了更高的要求。
城市供水系统的建设是其中一个重要方面,供水的可靠性、稳定性、经济性直接影响人们的正常工作和生活。
传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水等供水方式普遍不同程度地存在效率低、可行性差、建设周期长、供水质量得不到保障等缺点,与节能和提高人们生活水平不相适应。
基于以上要求,本论文针对我校发展情况以及对师生生活用水周期的分析,利用变频器在恒压供水方面的优良表现设计出对生活供水进行变频控制的控制系统,并借助于PLC使整个系统更智能可靠,以此达到节能和学校办学条件的目的。
关键词恒压供水,变频调速,变频器,PLC1 绪论在我国经济的飞速发展过程中,城市化进程加快,大量人口涌入城市,使得大中城市的原有基础设施不足以满足日益增长的使用需求,改建扩建这些基础设施必将提上日程。
此外人们对生活质量要求不断提高,对城市基础设施的性能提出了更高的要求。
由于我国是一个人均能源相对贫乏的国家,为了实现可持续发展,对节能的要求也越来越高。
把先进的自动化技术、控制技术、通讯及网络技术等应用到供水领域,成为对供水系统的新要求。
变频调速恒压供水技术其节能、安全、供水高品质等优点,在供水行业得到了广泛应用。
恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求是当今先进、合理的节能型供水系统。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计随着工业技术的不断发展,PLC(可编程逻辑控制器)在自动化领域中发挥着越来越重要的作用。
PLC可以实现逻辑控制、运算处理、故障诊断、通信联网等功能,因此在工业生产中广泛应用。
在工业生产中,恒压供水系统是一种重要的自动化系统,它能够保证供水系统在不同负荷条件下稳定供水,提高了供水系统的效率和可靠性。
本文将介绍一种基于PLC的恒压供水系统的设计方案。
一、恒压供水系统的结构和工作原理1. 结构恒压供水系统通常由水泵、水箱、变频器、传感器、PLC控制系统、阀门等组成。
其中水泵负责将水送入水箱,变频器负责控制水泵的转速,传感器用于监测系统的压力、液位等参数,PLC控制系统负责根据传感器的反馈信号来对水泵进行控制,以保持系统的恒压供水。
2. 工作原理恒压供水系统的工作原理主要是通过PLC不断地监测系统的压力变化,当系统压力低于设定值时,PLC控制系统会通过变频器提高水泵的转速,增加供水量;当系统压力高于设定值时,PLC控制系统会通过变频器降低水泵的转速,减少供水量,以达到恒压供水的目的。
1. 水泵选择在恒压供水系统设计中,水泵的选择非常重要。
一般选用离心泵,因为它具有流量大、压力稳定等特点,适合恒压供水系统的要求。
2. 传感器选择恒压供水系统需要具有对压力和液位的监测功能,因此需要选择适合的传感器。
一般选用压力传感器和液位传感器,它们能够准确地监测到系统的压力和液位变化,并将这些信息传输给PLC控制系统。
3. PLC选择PLC控制系统是恒压供水系统的“大脑”,需要选择性能稳定、可靠性高的PLC。
一般选用国内外知名品牌的PLC产品,如西门子、施耐德等。
变频器作为恒压供水系统中控制水泵转速的关键设备,需要选择具有可调节范围广、响应速度快等优点的产品。
同样,一般选用国内外知名品牌的变频器产品。
5. 恒压控制算法设计在PLC控制系统中,需要设计恒压控制算法,通过对系统压力和液位的监测,不断地调节水泵的转速来实现恒压供水。
基于PLC的变频调速恒压供水系统设计与实现

基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。
基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。
本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。
文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。
随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。
在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。
通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。
二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。
传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。
为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。
稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。
节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。
调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。
实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。
提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。
《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。
恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。
本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。
二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。
包括供水范围、水压要求、水泵数量及功率等。
同时,还需考虑系统的稳定性、可维护性及节能性等因素。
2. 硬件设计硬件设计是恒压变频供水系统的基础。
主要包括PLC控制器、变频器、水泵、压力传感器等设备。
其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。
3. 软件设计软件设计是实现恒压变频供水系统的关键。
通过PLC编程,实现对水泵的转速、输出及水压的精确控制。
同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。
三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。
通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。
在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。
2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。
确保各设备之间能够正常通信,并实现精确的控制与协调。
3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。
人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。
四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。
确保系统能够满足实际需求。
2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。
优化过程中,需充分考虑系统的实际运行情况及外界环境因素。
基于PLC变频调速恒压供水系统设计设计

摘要根据城市居民用水标准为前提和小型自来水厂的供水要求,自行设计了基于PLC变频调速恒压供水系统。
恒压供水系统是指用户端在任何时候,不管用水量的大小,总能保证管网中的水压恒的基本定。
变频调速恒压供水系统利用PLC、变频器、压力变送器和水泵机组组成闭环控制系统,采用了PLC进行逻辑控制,变频器对水泵机组的调速。
本系统是用3台水泵电机的变频循环运行方式,变频器和PLC作为系统控制的核心部件,时刻跟踪压力变送器检测到的管网压力和给定压力的偏差变化,经PLC内部进行PID运算,通过PLC控制变频和工频的切换,自动控制水泵的投入台数和控制变频器的输出频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。
本系统是采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则,避免了水泵的长时间运行而造成电机的损坏和减少寿命,还增加了液位变送器的实时监控水泵进水源防止水泵的空抽而损坏水泵电机和报警系统是反应系统是否运行正常,水泵电机是否过载、变频器是否异常。
关键词:PLC、变频调速、恒压供水系统、压力变送器、液位变送器ABSTRACTThis paper is based on residential water standards for water supply requirements of the premise and waterworks, to design a PLC-based frequency control water supply system. Water Supply System means the size of the client at any time, regardless of water use, always ensure that the water pressure constant in the pipe network in the set. Frequency control water supply system uses PLC, inverter, pressure transmitter, and the pump unit to form a closed loop control system using PLC logic control, the inverter speed control of pump units.This system is the conversion cycle operation mode of the water pump motor, inverter and PLC as the core component of the system control keeps track of pressure transmitter detected the pipe network pressure and a given pressure change in error, the PID by the PLC internal operation by the PLC to control the switching of the variable frequency and power frequency, automatic control of pump input the number of units and control of inverter output frequency, and thus change the speed of the pump motor to change the supply quantity, and ultimately to maintain the stability of the pipe network pressure near the set value. This system uses the converter to achieve soft-start and frequency control three-phase water pump motor run switch using the principle of "first initial first stop" to avoid the long-running of the pump and cause damage and reduce the life of the motor, but also increase a real-time monitoring of the level transmitter pump into the empty pumping of water to prevent pump damage to the pump motor and alarm system is the response system is functioning properly, whether the pump motor overload, the inverter is abnormal.Keywords:PLC, Frequency Control, Water Supply System, pressure transmitter, level transmitter目录1 绪论 (1)1.1 选题的背景和意义 (1)1.2 变频恒压供水的特点及应用 (2)1.2.1 变频恒压供水代替传统恒压供水的优点 (2)1.2.2 变频恒压供水的特点 (3)1.2.3 变频调速恒压供水的应用 (3)1.3 变频恒压供水系统的发展方向 (3)1.3.1 变频调速技术的发展状况 (3)1.3.2 变频恒压供水系统的研究成果 (4)1.3.3 变频恒压供水系统的发展趋势 (5)1.4本课题的主要研究内容 (5)2 变频恒压供水系统的理论分析 (6)2.1系统概述和节能原理 (6)2.1.1 系统概述 (6)2.1.2 节能原理 (6)2.2电动机的调速原理 (7)2.3 变频恒压供水系统的控制方案 (8)2.3.1 控制方案的选择 (8)2.3.2 系统的组成及原理图 (9)2.3.3 系统控制流程 (11)2.3.4 水泵切换条件分析 (12)3 系统的硬件设计 (14)3.1 供水设备的选择原则 (14)3.2 系统主要设备的选型 (15)3.2.1 PLC及其扩展模块的选型 (16)3.2.2 变频器的选型 (20)3.2.3 压力变送器的选型 (24)3.2.4 液位变送器的选型 (25)3.3 系统主电路、控制电路分析及其设计 (26)3.3.1 系统主电路分析及其设计 (26)3.3.2 系统控制电路分析及其设计 (28)3.4 PLC的I/O分配及外围接线图 (30)4 系统的软件设计 (33)4.1 系统软件设计分析 (33)4.2 PLC程序设计 (34)4.2.1控制系统主程序设计 (35)4.2.2 控制系统子程序设计 (38)4.3 PID控制器参数整定 (41)4.3.1 PID控制及其控制算法 (41)4.3.2 变频恒压供水系统的近似数学模型 (43)4.3.3 PID参数整定 (43)5 结束语和展望 (45)5.1 结束语 (45)5.2 展望 (45)参考文献 (47)致谢 (48)附录A 主程序梯形图 (49)附录B 英文文献 (55)附录C 中文翻译 (61)1 绪论1.1 选题的背景自从改革开放以来,我国国民经济发展迅速,人民生活水平快速提高。
(完整版)基于PLC的变频恒压供水系统的设计毕业论文

一、课题简介随着变频技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。
变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。
在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等有着重要意义。
变频恒压供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。
目前变频恒压供水系统正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。
追求高度智能化、系列化、标准化,是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。
变频恒压供水系统能适用生活水、工业用水以及消防用水等多种场合的供水要求,该系统具有以下特点:(1)供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量(如:温度、流量、浓度等)一样,对控制作用的响应具有滞后性。
同时用于水泵转速控制的变频器也存在一定的滞后效应。
(2)用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。
(3)变频调速恒压供水系统要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异,因此其控制对象的模型具有很强的多变性。
(4)在变频调速恒压供水系统中,由于有定量泵的加入控制,而定量泵的控制(包括定量泉的停止和运行)是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化,因此可以认为,变频调速恒压供水系统的控制对象是时时变化的。
基于plc恒压供水系统毕业设计

基于plc恒压供水系统毕业设计恒压供水系统是一种自动化控制系统,通过控制水泵电机的启停,实现恒定的水压。
本文通过PLC控制器控制水泵电机的启停和压力传感器的反馈,实现一个基于PLC的恒压供水系统。
一、系统组成恒压供水系统由水源装置、水泵、管道、压力传感器、PLC控制器等组成。
系统功能是稳定的将水泵输出的水流量保持在一个恒定的水压力范围内,以满足供水的需要,并且应具备系统自我检测及保护等功能。
二、系统工作原理当水压力低于给定的最小值时,PLC控制器发出启动水泵的指令,水泵开始工作,向管路供水,并通过压力传感器反馈实时的压力数据,当压力达到设定最大值时,PLC控制器发出停止水泵的指令,水泵停止工作。
当用户需求水量变化时,系统通过控制水泵的启停以及输出水流量的调节,保持水压在给定范围内,从而实现恒压供水。
三、系统硬件设计(1)PLC选型本系统采用FX3U系列的三菱PLC。
FX3U系列PLC具有较高的性能、可靠性和处理速度,对于高性能、高可靠性的自动化系统来说非常适合。
(2)水泵及电机选型根据所需供水量及水压,选用起动电流较小、继电容较小型号的水泵,同时配合相应容量的交流电机,在保证水压的同时,提高系统的效率。
(3)压力传感器选型压力传感器是系统中关键的一部分,它将水管路的实时压力转化为具有一定精度和稳定性的电信号,供PLC控制器处理。
本系统中采用的压力传感器是0-1MPa的压力传感器,精度为0.5。
(4)PLC控制器电路设计PLC控制器电路包括输入电路和输出电路两部分。
输入电路用于控制水泵的启动和停止,其中启动信号来自压力传感器,停止信号来自电源控制。
输出电路用于控制水泵电机的正反转动及其调速,其中正转和调速信号由PLC控制器发出,反转信号由相应的感应器反馈。
系统软件运用了Fx-Work中的三种编程语言:LD、ST和FBD。
其中LD程序用于控制水泵启动和停止的输入信号,ST程序用于控制水泵电机的正反转动和调速,FBD程序用于实现数据处理、数据采集和数据分析功能。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计一、引言恒压供水系统是现代城市生活中常见的设备,它能够保持水压稳定,满足不同用水设备对水压的需求。
而PLC(可编程逻辑控制器)作为现代自动化控制系统的核心,具有高精度、稳定性强等特点,已广泛应用于各个领域。
本文将通过PLC对恒压供水系统的设计,实现对水泵运行、压力控制等参数的精确控制,从而提高供水系统的性能和稳定性。
1. 恒压供水系统的工作原理恒压供水系统主要由水泵、压力传感器、PLC控制器和阀控制器等组成。
当用户开启水龙头用水时,压力传感器感知到水压下降,PLC则会启动水泵进行供水,当水压升高到设定值时,PLC会控制关闭水泵。
这样就能够保持系统内的水压稳定,满足用户的需求。
2. PLC控制原理PLC作为恒压供水系统的核心控制器,负责监测水压、控制水泵启停等功能。
其控制原理主要包括四个步骤:(1)采集数据:通过压力传感器等传感器采集系统中的各项参数,比如水压、水流量等。
(2)数据处理:PLC将采集到的数据进行处理和分析,根据设定的逻辑规则进行判断和运算。
(3)控制执行:根据处理后的数据结果,PLC控制执行相应的操作,比如启停水泵、调整阀门开度等。
(4)监测反馈:PLC实时监测系统运行状态,并接收执行结果的反馈信息,保证供水系统的稳定运行。
1. 系统参数设定需要根据实际需要设定恒压供水系统的各项参数,比如供水压力、水泵启停设定值、阀门开度等。
根据系统参数的设定,编写相应的PLC控制程序,实现对水泵运行、压力控制等功能的自动化控制。
3. PLC硬件布置与连线根据控制程序的需求,布置PLC控制器及相关IO模块,进行连线连接,确保PLC与系统中的各个传感器、执行器等设备能够正常通讯。
4. 调试与运行对编写好的PLC控制程序进行调试,检查系统各部分设备的运行状态,确保系统能够按照设定的参数稳定运行。
1. 精确控制:PLC具有较高的精度和稳定性,能够实现对恒压供水系统的精确控制。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计一、系统概述恒压供水系统是一种保持供水压力恒定的供水系统,并且可以根据水压的变化自动调整水泵的转速以维持恒定的水压。
本文设计的系统采用了PLC控制系统作为控制核心,通过检测压力传感器反馈的水压信号,然后根据设定的压力值来控制水泵的转速。
本系统的优点是具有压力恒定、节能、便于维护、易于操作等特点。
二、系统硬件设计本系统硬件设计包括水泵、压力传感器、PLC控制器、电源和电线等。
1、水泵:采用变频水泵,可以根据PLC发送的调节水泵转速的信号来控制水泵的转速,保持水压恒定。
2、压力传感器:传感器采用,具有高精度、高可靠性、长使用寿命等特点,通过监测水管中的水压,并将反馈的水压信号发送到PLC控制器。
3、PLC控制器:本系统采用网口式PLC,具有高性能、可靠性高、扩展功能强等特点,定时读取压力传感器反馈的水压信息,并与事先设定的压力值对比,然后根据变频器的功率输出,输出控制信号来实现对水泵的转速的调节。
4、电源:恒压供水系统的电源使用交流电源,电源频率为50Hz,可供给水泵、PLC控制器和压力传感器等设备使用。
三、系统流程控制PLC控制系统根据实际情况,设计了以下控制流程:1、水泵启动时间控制:与恒压供水系统反应快慢的一个重要原因,是水泵的启动时间,如果水泵启动时间过长,则水压下降会比较明显,影响水的正常使用。
系统中启动时间的控制使用定时器软件实现。
2、水泵流量控制:PLC根据监测到的水压信号和设定的压力值,来计算出流量,根据流量来控制水泵的转速,以保持压力稳定。
3、故障报警:当系统出现故障时,PLC控制器会自动停机,并发出故障报警信号,提示用户需要检查系统是否存在故障。
四、系统总结恒压供水系统基于PLC的设计,具有结构简单、自动化控制、操作方便等优点,能够自动控制恒压供水系统的水压,达到节能、节约水资源的目的。
由于PLC控制器具有高性能、可靠性高、控制精度高等优点,可以实现对系统的全面监控和排错,使系统稳定性和可靠性提高。
基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计变频调速恒压供水系统第一章绪论1.1变频恒压供水产生的背景和意义1.2国内外研究现状1.3 发展趋势1.4变频恒压供水优势第二章方案拟定2.1任务要求2.2 恒压供水系统简介2.3变频恒压供水控制方式的选择2.4变频构成恒压供水及工作原理第三章电路设计3.1主电路设计3.2控制电路设计第四章器件的选型及介绍4.1 可编程控制器选择4.1.2 PLC的特点4.1.3 PLC的选型4.2 变频器4.2.1 变频器的构成4.2.2 变频器的选型4.3 PID调节器4.4 压力传感器第五章 PLC与变频器的链接5.1 利用PLC的模拟量输出模块控制变频器5.2 利用PLC的开关量输入/输出模块控制变频器5.3PLC通过485通信接口控制变频器第六章程序设计结束语参考文献第一章绪论1.1 变频恒压供水产生的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需大量消耗能量,提高泵站效率:降低能耗,对国民经济有重大意义。
我国泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等等原因,致使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。
目前,大量的电能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当的比例。
这一方面是由于我国居民多,用水量大,造成用电量大:另一方面是因为我国供水设备工作效率低,控制方式不够科学合理。
造成不必要的能量浪费。
因此,研究提水系统的能量模型,找出能够节能的控制策略方法,这里大有潜力可挖,是减少能耗,保障供水的一个很有意义的工作。
以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术于一体。
基于PLC变频恒压供水控制系统设计

目录第一章绪论 (1)第二章系统的理论分析及控制方案 (4)2.1变频恒压供水系统的理论分析 (4)2.1.1 电动机的调速原理 (4)2.1.2 变频恒压供水系统的节能原理 (4)2.2变频恒压供水系统的理论分析 (5)2.2.1 控制方案的比较和确定 (5)2.2.2 变频概述 (6)2.2.3 变频恒压供水系统的组成和原理图 (7)2.2.4 变频恒压供水系统控制流程 (9)2.2.5 水泵切换条件 (9)第三章系统的硬件设计 (11)3.1系统主要设备的选型 (11)3.2系统主电路分析及其设计 (16)3.3系统控制电路分析及其设计 (17)3.4 PLC的I/O端口分配及外围接线图 (19)第四章系统的软件设计 (22)4.1系统软件设计分析 (22)4.2 PLC程序设计 (23)第五章结束语 (38)参考文献 (39)第一章绪论目前,居民生活用水和工业用水日益增加。
由于居民日常用水和工业用水会随季节、昼夜等变化而随之发生变化,如采取传统的供水方式不仅影响生活也不利于资源的优化配置。
传统的供水系统已经不能满足人们的需求,为了能更合理的分配资源,使能最大限的为人们所用,可采用变频恒压供水方式来代替传统的供水系统,以达到供水稳定,满足人们需求,合理优化分配等目的。
本文介绍的是关于变频恒压供水系统的设计,因为变频恒压供水系统有高效节能,恒压供水,安全卫生,自动运行,管理简便等优点,非常适合现在的国民需求。
变频恒压供水系统根据用水量的变化,自动调节运行参数,在水量发生变化时保持水压恒定以满足用水要求是当今先进、合理的节能型供水系统。
变频调速是现在优于以往任何一种调速方式(如调压调速、变极调速、串级调速等)的技术。
本论文根据中国城市的供水要求,设计了一套基于PLC的变频调速恒压供水系统。
变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、HMI构成。
本系统包含四台水泵电机,它们组成变频循环运行方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用技术24基于PLC和变频器控制的恒压供水系统设计赵华军钟波(广州铁路职业技术学院)摘要:文章介绍一种基于三菱PLC和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。
系统较好地解决高层建筑、工业等恒压供水需求。
系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。
关键词:变频器;PID;PLC;恒压供水1 引言目前,在城市供水系统中,还有很多高楼、生活小区、边郊企业等采用高位水塔供水方式。
这样,由于用水量具有很大随机性,常常出现在用水高峰时供水量很小甚至没有水用的问题;且采用高位水塔,很容易造成自来水的二次污染问题。
针对这一情况,本文设计了一套基于变频器内置PID功能的恒压供水系统,采用了PLC控制及交流变频调速技术对传统水塔供水系统的技术改造。
该系统根据用水量的变化,经过压力传感器将水压变化情况反馈给系统,使得系统能自动调节变频器输出频率,从而控制水泵转速,调节输出数量,使得水量变化时可保持水压恒定;可取代高位水塔或直接水泵加压供水方式,为城市供水系统的建设提出了一条极具推广、应用的新途径[1]。
2 工作原理本文采用的变频器是三菱FR-A540,该变频器内置PID控制功能;供水系统方案如图1所示。
将通往用户供水管中的压力变化经传感器采集到变频器,与变频器中的设定值进行比较,根据变频器内置的PID功能,进行数据处理,将数据处理的结果以运行频率的形式进行输出 [2]。
当供水的压力低于设定压力,变频器就会将运行频率升高,反之则降低,且可根据压力变化的快慢进行差分调节。
由于本系统采取了负反馈,当压力在上升到接近设定值时,反馈值接近设定值,偏差减小,PID运算会自动减小执行量,从而降低变频器输出频率的波动,进而稳定压力。
在水网中的用水量增大时,会出现“变频泵”效率不够的情况,这时就需要增加水泵参与供水,通过PLC控制的交流接触器组负责水泵的切换工作;PLC是通过检测变频器频率输出的上下限信号,来判断变频器的工作频率,从而控制接触器组是否应该增加或减小水泵的工作数量。
图1 供水系统方案图3 系统设计3.1 主电路主电路如图2,KM1、KM3、KM5分别为电动市政管网PLC变频器液面传感器压力传感器水泵组用户用水图2主电路接线图2006年第3期自动化与信息工程 25机M1、M2、M3工频运行时接通电源的控制接触器,KM0、KM2、KM4分别为电动机M1、M2、M3变频运行时接通电源的控制接触器,KM6为由PLC 控制,作为接通变频器电源用的接触器,变频器的启动由PLC 控制Y7实现。
3.2 接触器与PLC 连接如图3,图中Y0~Y5分别接接触器KM0~KM5。
图3 PLC 连接图为了防止出现某台电动机既接工频电又接变频电,设计了电气互锁,如在同是控制M1电动机的两个接触器KM1、KM0线圈中,分别串入了对方的常闭触头形成电气互锁。
供水压力设定值通过变频器的2和5端子(0~5V )设定,频率检测的上/下限信号分别通过OL 和FU 输出至PLC 的X2与X3输入端,作为PLC 增泵、减泵控制信号。
3.3 变频器的参数设置[3]虽然系统对调速的精度要求不高,但要使供水系统运行性能稳定,工作可靠,必须正确设置变频器的各种性能。
具体设置如表1。
表1 变频器参数设定表 参数号 设定值 设定范围注解Pr128 20 10.11.20.21 PID 控制为4端输入,起负作用Pr129 100 0.1~1000 PID 比例常数设定为100% Pr130 0.5 0~3600s PID 积分常数设定为0.5s Pr134 0.5 0.01~10s PID 积分常数设定为0.5s Pr183 14 0~99.9999 RT 端子功能设定为PID 控制有效Pr193 4 0~199.9999OL 端子功能设置为上限频率 Pr194 5 0~199.9999FU 端子功能设置为下限频率 Pr42 10 0~400Hz 下限标志频率为10Hz Pr50 49 0~400Hz上限标志频率为49Hz 3.4 程序设计由于供水系统惯性较大,因此在设计思想上以查询方式为主,本系统PLC 控制程序流程如图4。
图4 PLC 程序流程图系统启动时,KM0闭合,1#水泵以变频方式运行。
如果水压过低,而变频器已经达到上限设定值时,OL 发出“发出频率上限”动作信号,PLC 启动增泵程序;PLC 通过这个上限信号将KM0断开KM1吸合,1#水泵由变频运行转为工频运行,同时KM2吸合变频启动2#水泵。
此时电动机M1工频运行,M2为变频运行。
如果再次接收到变频器上限输出信号,则KM2断开KM3吸合,2#水泵由变频转为工频,同时KM4闭合3#水泵变频运行,这时电动机M1、M2为工频运行,M3为变频运行。
如果变频器频率偏低,即压力过高,输出的下限信号,PLC 启动减泵程序,将正在使用的“变频泵”切除,将另一台“工频泵”切换为“变频泵”,使PLC 关闭KM4、KM3,开启KM2,2#水泵变频启动,此时电动机M1工频运行,M2为变频运行。
若再次收到下限信号就关闭KM2、KM1,吸合KM0,只剩1#水泵变频工作。
4 结语当流量减少,水泵转速下降时,其电动机输出功率迅速下降。
如当流量下降到70%,转速也下降到70%,其轴功率则下降到额定功率的34.3%[4]。
考虑由于转速降低引起效率下降等附加控制装置的效率等因素,节能潜力仍很大。
本系统于2005年6月在某校安装、调试、运行,每吨水可节约用电0.1kWh。
学校年供水量80万吨,按2/3的用水需加压计算,年节电5.3万kWh,按本市电价0.6元/kWh 计算,年节省电费3万元,一年多即可收回系统投资。
变频恒压供水在学校、企业及高层生活小区的应用越来越广泛,它可取代传统的水塔、高位水箱或气压罐等供水方式,不仅节电节水效果明显,还可以极大地改善系统的工作性能,并能延长系统的使用寿命,具有良好的技术、经济效益,有广阔的应用前景和推广价值。
参考文献[1] 张万忠,孙晋.可编程控制器入门与应用实例.北京:中国电力出版社, 2005: 94~103[2] MITSUBISHI ELECTRIC CORPORATION.三菱变频调速器FR-A540使用手册. 2004: 190~197[3]彭旭昀.一种基于变频器PID功能的PLC控制恒压供水系统.机电工程技术, 2005,34(10): 54~56[4] 卢建勤. PLC及变频器在恒压变量供水系统中的应用.机床电器, 2005, 32(4): 58~62Design of Constant Pressure Water-Supply System Based on PLC & InverterZhao Huajun Zhong Bo(Guangzhou Institute of Railway Technology)Abstract: This article introduces a kind of design of constant pressure water supply system based on Mitsubishi PLC & inverter. It is also explains hardware configuration and control. The system can solve the problem of the water supply in a high building or industry etc. This system has the advantages of saving energy, high reliability, easy control, simple operation, economic and easy matches.Key words : Inverter; PID;PLC;Water-Supply System of Constant Pressure作者简介:赵华军,男,1974年生,广州铁路职业技术学院电气工程系讲师,主要研究方向:自动化控制技术。
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (上接第17页)参考文献[1] Wonderware Corporation Wonderware FactorySuite TMINTOUCH User Manual, 2000-6-06. [2] Rockwell Automation;Allen-Bradley Logix5550 ControllerUser Manual, Cat. No. 1756-L1, L1M1on. http://www.The Application of ControlLogix PLC in Supplementary WorkshopWang Shuying(Guangdong Zhanjiang Power Company Ltd.)Abstract: As automatic control development in power plant, it is important that automatic control system should be applied in supplementary workshop as well。
This article introduces control system of a pump house for dirt and dregs of the Zhanjiang Power Plant, which uses ControlLogix PLC system replaces normal instrument and meter monitor。
Key words: Supplementary Workshop; ControlLogix PLC; Control; Application作者简介:王书英,女,1971年生,助理工程师,主要从事自动控制及保护检修工作。
26。