有限元分析
有限元分析方法

有限元分析方法有限元分析(Finite Element Analysis, FEA)是一种数值分析方法,用于解决物理问题的近似解。
它基于将有限元区域(即解释对象)分解成许多简单的几何形状(有限元)并对其进行数值计算的原理。
本文将深入探讨有限元分析的原理、应用和优点。
有限元分析的原理基于弹性力学理论和数值计算方法。
它通过将解释对象分解为有限个简单的几何区域(有限元)和节点,通过节点之间的连接来建立模型。
这些节点周围的解释对象区域称为“单元”,并且通过使用单元的形状函数近似解释对象的形状。
每个单元都有一个与之相连的节点,通过对每个单元的受力进行计算,可以得到整个解释对象的受力分布。
然后,利用一系列运算和迭代,可以计算出解释对象的位移、应力和变形等相关参数。
有限元分析的应用范围广泛,从结构力学、热传导、电磁场分析到流体力学等各个领域。
在结构力学中,它被用于分析各种结构的静力学、动力学和疲劳等性能。
在热传导领域,它可以用于研究物体内部的温度分布和传热性能。
在电磁场分析中,它可用于计算复杂电磁场下的电场、磁场和电磁场耦合问题。
在流体力学中,有限元方法可以解决各种流体流动、热传递和质量转移问题。
有限元分析的优点之一是可以处理各种复杂边界条件和非线性材料特性。
它可以考虑到不同材料的非线性本质,例如弹塑性和接触等问题。
另外,有限元方法还可以适应任意形状和尺寸的几何模型,因此非常适用于复杂工程问题的建模与分析。
有限元分析的使用需要一定的专业知识和经验。
首先,需要将解释对象抽象成几何模型,并进行细分和离散化。
其次,需要选择适当的几何元素和材料模型,以及合适的边界条件和加载方式。
然后,需要定义求解器和数值方法,并使用计算机程序对模型进行计算。
最后,需要对结果进行后处理和验证,以确保其准确性和可靠性。
总的来说,有限元分析是一种强大的工程分析工具,在解决各种物理问题方面有广泛的应用。
它通过将复杂的问题简化为简单的有限元模型,通过数值计算的方法获得近似解。
有限元分析 (FEA) 方法

有限元分析及应用讲义
P方法及p单元的应用
P 单元的位移形函数
u=a1+a2x+a3y+a4x2+a5xy+a6y2
v=a7+a8x+a9y+ a10x2+a11xy+a12y2
P方法的优点:
如果使用 p-方法 进行结构分析,可以依靠p单元自动调整单元多项式阶数(2-
8),达到收敛到设定的精度. 对这种方法的相信程度,与使用经验有关.
有限元分析及应用讲义
识别无效的结果
分析的对象的一些行为 计算出的几何项 求解的自由度及应力 反作用力或节点力
有限元分析及应用讲义
1.分析的对象的一些基本的行为:
• 重力方向总是竖直向下的 • 离心力总是沿径向向外的 • 没有一种材料能抵抗 1,000,000 psi 的应力 • 轴对称的物体几乎没有为零的 环向应力 • 弯曲载荷造成的应力使一侧受压,另一侧受拉
– 仅高阶 (10-节点) 四面体单元 较满意, 因此DOF(自由度)数目 可能很多.
映射网格
+ 通常包含较少的单元数量.
+ 低阶单元也可能得到满意的结 果,因此DOF(自由度)数目较少.
– 面和体必须形状 “规则”, 划 分的网格必须满足一定的准则.
– 难于实现, 尤其是对形状复杂 的体.
有限元分析及应用讲义
某一个单元的应力偏差是此单 元上全部节点的六个应力分量 值与此节点的平均应力值之差 的最大值.
应力偏差:
所关心位置上的应力偏差值~450 psi
s
i n
s
a n
s
i n
(30,000 psi 应力的1.5%)
有限元分析法

2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data
有限元分析及应用

有限元分析及应用介绍有限元分析,简称FEA(Finite Element Analysis),是一种数值计算方法,用于预测结构的力学行为。
它可以将结构离散为有限个小单元,在每个小单元内进行力学计算,并通过求解得到整个结构的应力和位移分布。
有限元分析常用于工程领域中,如结构分析、热传导分析、流体流动分析等。
原理有限元分析的基本原理可以概括为以下几个步骤:1.离散化:将结构或物体离散为有限个小单元。
常见的小单元形状有三角形、四边形等,在三维问题中可以使用四面体、六面体等。
2.建立数学模型:在每个小单元内,根据结构的物理特性和力学行为建立数学模型。
模型中包括了材料的弹性模量、泊松比等参数,以及加载条件、约束条件等。
3.组装和求解:将所有小单元的数学模型组装成一个整体的数学模型,然后利用求解算法进行求解。
常见的求解算法有直接法、迭代法等。
4.后处理:得到结构的应力和位移分布后,可以进行各种后处理操作,如绘制位移云图、应力云图等,以帮助工程师分析结构的强度和刚度性能。
应用有限元分析在工程领域有着广泛的应用。
下面介绍几个常见的应用案例:结构分析有限元分析可以用于结构分析,以评估结构的刚度和强度。
在设计建筑、桥梁、航空器等工程项目时,工程师可以使用有限元分析来模拟结构的力学行为,预测结构在不同加载条件下的变形和应力分布,以优化结构设计。
热传导分析有限元分析也可以用于热传导分析,在工程项目中评估热传导或热辐射过程。
例如,在电子设备的散热设计中,可以使用有限元分析来预测电子元件的温度分布,优化散热设计,确保电子元件的正常工作。
流体流动分析在流体力学研究中,有限元分析可以用于模拟流体的运动和流动行为。
例如,在船舶设计中,可以使用有限元分析来模拟船体受到波浪作用时的变形和应力分布,验证船体的可靠性和安全性。
优缺点有限元分析具有以下优点:•可以模拟复杂结构和物理现象,提供准确的结果。
•可以优化结构设计,减少设计成本和时间。
有限元分析方法

有限元分析方法有限元分析是一种工程数值分析方法,它通过将复杂的结构分割成许多小的有限元素,然后利用数学方法对这些元素进行计算,最终得出整个结构的应力、变形等物理量。
有限元分析方法在工程设计、材料研究、结构优化等领域有着广泛的应用。
有限元分析方法的基本思想是将一个连续的结构分割成有限个小的单元,每个单元都是一个简单的几何形状,比如三角形、四边形等。
然后在每个单元内部建立一个数学模型,利用数学方法对这些单元进行计算,最终将它们组合起来得到整个结构的应力、变形等物理量。
有限元分析方法的核心是建立数学模型。
在建立数学模型的过程中,需要考虑结构的材料性质、边界条件、加载情况等因素。
通过合理地选择单元类型、网格划分、数学模型等参数,可以得到准确的分析结果。
有限元分析方法的优点之一是可以处理复杂的结构。
由于有限元分析方法将结构分割成小的单元,因此可以处理各种复杂的结构,比如曲面、异形、空腔等。
这使得有限元分析方法在工程设计中有着广泛的应用。
另外,有限元分析方法还可以进行结构优化。
通过改变单元类型、网格划分、边界条件等参数,可以对结构进行优化,使得结构在满足强度、刚度等要求的前提下,尽可能地减小材料消耗,降低成本。
当然,有限元分析方法也有一些局限性。
比如,在处理非线性、大变形、大变位等问题时,需要考虑材料的非线性特性、接触、接触、摩擦等效应,这会增加分析的复杂度。
另外,有限元分析方法的结果也受到网格划分、单元类型等参数的影响,需要谨慎选择这些参数。
总的来说,有限元分析方法是一种强大的工程数值分析方法,它在工程设计、材料研究、结构优化等领域有着广泛的应用。
通过合理地建立数学模型、选择合适的参数,可以得到准确的分析结果,为工程设计和科学研究提供有力的支持。
有限元分析原理

有限元分析原理有限元分析(FiniteElementAnalysis,简称FEA)是一种新的工程数值计算技术,有限元分析被用于研究各种工程问题时,借助计算机模拟这些问题中复杂的连续介质,能有效地解决一些重要的结构分析问题。
有限元分析原理详细地阐述了所使用的数值方法,以及如何使用它们来解决特定的问题。
有限元分析是一种数学技术,它被用来解决复杂的工程问题。
它的基础原理是,将一个复杂的实体模型分割成许多较小的“有限元”,所有的有限元合起来构成一个完整的有效模型。
在模型中,对于每一个有限元,都应用一系列的假设,如假定结构材料是均匀同质的,应力分布均匀,或者应力以局部区域进行均匀分布等等;这些假设构成了有限元分析中的数值计算方法。
使用有限元分析的方法,可以模拟和研究各种复杂的工程结构,比如航空航天、船舶、航海、桥梁等等;以及重要的力学问题,如振动、传声、传热、流体动力学等等。
使用有限元分析,可以使用数值模拟,计算不同的结构尺寸及材料组合,研究各种假设条件下的结构受力特性,从而更加准确、快速地解决重要的工程问题。
在实际应用中,有限元分析技术对工程设计和结构优化起着十分重要的作用,结合了现代数值分析技术,有限元分析可以使得工程设计和结构优化效率更高。
例如,运用有限元分析,可以通过计算模型模拟在实际应力条件下的结构工作情况,从而更加准确地预测机构的工作状态。
有限元分析不仅仅可以用于分析传统的结构模型,还可以用于复杂的组合结构模型,例如组合材料结构、多孔介质结构、微细结构等等。
有限元分析也可以用来解决实际的流体动力学问题,有效地模拟流体流动的特性。
有限元分析还被广泛应用于工程计算机辅助设计,可以实现对产品外观、大小、结构以及性能等进行精确模拟,有效地提高了工程设计的精度和效率。
总之,有限元分析是一种重要的工程分析技术,从模拟仿真角度而言,它可以有效地预测和解释现实物理问题的运动规律,不仅有助于研究工程结构的受力特性,还为优化结构设计提供了有力的手段和技术支持,有效地提高了工程设计的准确性和效率。
有限元分析法概述

第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
有限元分析及应用

有限元分析及应用有限元分析是一种数值计算方法,用于解决各种工程和科学领域中的复杂问题。
该方法基于物体或结构的离散性近似模型,将其分割成许多小的子领域,进而进行数学求解。
有限元分析广泛应用于结构力学、流体力学、电磁学、热传导等领域,在工程设计、产品开发和科学研究中发挥着重要作用。
一、有限元分析的原理有限元分析的核心原理是将一个复杂的物体或结构离散为许多互相连接的小尺寸单元,如三角形或四边形。
每个单元被视为一个小的、局部的子问题,并假设在每个单元内部的场变量(如位移、温度、电势等)为局部常数。
根据这一假设,可以建立一个局部方程来描述每个单元内部的行为。
为了求解整个系统的行为,将这些局部方程组合为一个整体方程组,并且采用边界条件来限制解的自由度。
然后,通过求解整体方程组,就可以得到整个系统在给定加载条件下的响应。
二、有限元分析的步骤有限元分析通常需要经过以下几个步骤:1. 几何建模:将待分析的物体或结构建立几何模型,包括定义节点、边界和连接关系等。
2. 单元划分:将几何模型划分为许多小的单元,选择合适的单元类型和尺寸。
3. 材料属性和加载条件:分配材料属性和加载条件给每个单元,如材料的弹性模量、材料的线性或非线性特性以及加载的力、温度等。
4. 单元方程建立:根据每个单元的几何形状和材料特性,建立每个单元内部的方程。
5. 整体方程建立:将所有单元的方程组合成一个整体方程,引入边界条件和约束条件。
6. 方程求解:通过数值方法(如矩阵解法)求解整体方程组。
7. 结果后处理:根据求解得到的结果,进行分析和后处理,如位移、应力和应变的计算、轴力图、位移云图等的绘制。
三、有限元分析的应用有限元分析已经应用于各种领域,主要包括以下几个方面:1. 结构力学:有限元分析可以用于评估结构的强度和刚度,预测结构的变形和破坏情况。
它广泛应用于建筑、桥梁、汽车、飞机等结构的设计和优化。
2. 流体力学:有限元分析可以用于模拟流体力学问题,如流体流动、传热和传质等。
第一节有限元分析概述

第一节有限元分析概述有限元分析是一种数值计算方法,用于求解连续物体的力学问题。
它是将连续体划分成有限个小元素,利用元素间的相互关系来近似描述物体的行为。
有限元分析可以用于求解各种力学问题,如固体力学、流体力学、热传导等。
有限元分析的基本步骤包括建立模型、离散化、求解和分析结果。
首先,需要根据实际问题建立一个几何形状和边界条件的模型。
然后,将模型离散化为有限个小元素,每个元素具有一些简单的形状和几何特征。
接下来,需要确定每个元素内部的应力和变形的形式,这通常与所采用的数学模型有关。
然后,根据力学原理和边界条件,可以通过数值方法求解每个元素的应力和变形。
最后,可以对求解结果进行后处理,分析模型的响应,并检查结果的合理性。
有限元分析的优点之一是可以处理复杂的几何形状。
因为问题的几何形状是通过离散化成有限个小元素来描述的,所以可以处理各种形状的物体,包括曲线、曲面和体积。
同时,有限元分析还可以考虑非线性和不均匀性。
对于具有非线性特性的材料或结构,可以通过数值方法来求解其行为。
此外,有限元分析还可以处理多物理场的耦合问题,如流固耦合、热力耦合等。
然而,有限元分析也有一些局限性。
首先,离散化过程中需要选择合适的元素类型和大小。
选择不当的元素可能导致结果的不准确性。
其次,有限元分析需要耗费大量的计算资源。
由于模型通常包含大量的节点和单元,需要进行大规模的计算,对计算机的存储和计算能力有一定的要求。
最后,有限元分析的结果需要进行验证和验证。
由于模型的简化和假设,有限元分析的结果可能与实际情况存在一定的差异,需要通过实验数据进行验证和验证。
总的来说,有限元分析是一种有效的数值计算方法,用于求解连续体的力学问题。
它可以处理复杂的几何形状、非线性和不均匀材料,以及多物理场的耦合问题。
然而,它也有一定的局限性,需要合适的离散化、大量的计算资源和验证结果的步骤。
在实际应用中,需要根据具体问题的性质和要求,选择适当的数值方法和参数,以获得准确可靠的结果。
有限元分析及应用

有限元分析及应用有限元分析作为一种数值计算方法,广泛应用于工程领域中的各种结构分析问题。
其基本思想为将复杂的实际结构通过离散化为一个有限个单元,每个单元内部的行为受到基本物理原理的支配,同时单元间的互相作用可以通过相邻节点间的连续性条件进行联系,最终可以得到整个结构的应力、变形等计算结果。
正是由于有限元分析在进行结构分析中的高度有效性,使其成为了工程领域优秀的工具。
自有限元分析方法提出以来,其应用领域逐渐不断拓展。
在建筑领域中,有限元分析可以被用来计算各种建筑结构的静力学和动力学性能,帮助确保建筑的安全性并优化其设计。
在机械工程中,有限元分析可以帮助设计师进行各类零部件和系统的强度、疲劳、热稳定性等的计算,包括汽车、船舶、飞机、火箭等的各种机械结构的分析。
在电子工程领域中,有限元分析可以用来进行各种电子器件中的热学、电磁场以及耦合问题的计算。
在材料科学领域中,有限元分析可以用来进行各种材料中的应力、变形、物理性能的预测,帮助设计出更加高效的材料。
应用有限元方法进行结构分析时,需要选择合适的有限元模型来进行离散化,这需要根据具体问题的需要进行选择。
在离散化后,利用有限元软件进行离散化流程的输入和结果输出。
有限元分析中常用的软件包有ANSYS、ABAQUS、COMSOL 等,它们具备良好的体系结构、流程以及常用算法和概念,能够满足各类不同结构的模拟和计算需要。
在进行有限元分析时,必须保证离散化后的模型能够精确地表达实际结构的内部和边界条件,并且要尽可能地避免数值误差的产生。
这需要考虑诸如模型的精度、单元数量的选择、计算网格及时间步长等方面的问题。
而更加复杂的结构分析问题,则需要进行优化并使用更加高级的有限元分析算法来解决。
有限元分析方法在现代工程技术领域中担任重要角色,为各种复杂结构的设计和应用提供了强有力的支持,也为制造业的提升做出了贡献。
相信,随着技术的不断进步,有限元分析方法在实际应用中发挥更多重要作用的同时,也会不断地得到完善和发展。
有限元分析FEA

有限元分析FEA有限元分析(Finite Element Analysis,FEA)是一种数值分析方法,广泛应用于工程领域,用于估算结构在特定工况下的力学性能。
FEA 将复杂的实际结构抽象为有限数量的简单几何形状,然后通过对这些几何形状进行分割,建立一个离散的节点网格,进而利用数学方法对节点网格上的几何、力学和材料性能进行模拟和计算,通过求解节点间的方程组,得到结构的应力、应变、位移等结果。
1.建立几何模型:通过计算机辅助设计软件建立结构的几何模型。
模型可以是二维或三维的,包括各种几何形状,如线段、矩形、圆形等,并包含结构的尺寸和几何特征。
2.网格划分:将几何模型划分为离散的节点网格,并在节点上分配适当的节点元素。
节点元素可以是线元素、平面元素或体元素,将结构的连续性转化为离散点之间的连接关系。
3.建立力学模型:根据所要研究的问题和加载条件,确定边界条件、加载情况和材料性能等。
边界条件包括约束和加载,在节点和元素上分配适当的约束和加载。
4.建立单元刚度矩阵:根据单元的几何形状和材料特性,建立单元的刚度矩阵。
刚度矩阵包含单元的弹性刚度、几何刚度和材料刚度。
5.组装刚度矩阵:将所有单元的刚度矩阵根据节点的连接关系进行组装,得到总体的刚度矩阵。
组装的过程包括将单元刚度矩阵映射到全局坐标系、考虑边界条件和加载等。
6.求解方程组:建立节点的位移和约束条件之间的关系,得到结构的位移、应力和应变等结果。
可以通过直接解方程组或迭代求解的方法得到最终结果。
7.后处理:根据具体问题的要求,对结果进行分析和解释。
可以绘制位移云图、应力云图、应变云图等,进行结构的评估和优化。
FEA有以下几个主要特点和优势:1.可适用于各种工程领域:FEA可以用于解决结构和材料的强度、稳定性、疲劳、振动、热传导、电磁等多种问题,广泛应用于航空航天、汽车、能源、建筑和机械制造等领域。
2.具有高精度:通过适当的剖分和合理的力学模型,能够在相对较短的时间内提供较准确的结果,并对结构进行合理和有效的评估。
有限元分析及应用

有限元分析及应用有限元分析(Finite Element Analysis,简称FEA)是一种工程数值分析方法,用于解决连续介质的力学、热力学、电磁学等问题。
它通过将一个复杂的物理系统或结构划分为许多小的有限元单元,利用数值计算方法对每个单元进行分析,最终得到整个系统的行为和性能。
有限元分析的基本思想是将连续介质划分为许多离散的有限元,每个有限元内的物理量可以通过有限元模型进行近似表示。
在分析过程中,有限元法将一个复杂的整体问题转化为一组简单的局部问题,通过对局部问题进行求解,再将结果组合起来得到整体的解。
有限元方法的优点是:能够分析复杂的几何形状和材料特性、能够进行高精度的应力和应变分析、能够考虑非线性、瞬态和多物理场等问题。
有限元分析在许多工程领域中得到了广泛的应用。
在结构力学中,有限元分析可以用于求解结构的强度、刚度、振动等问题,用于优化结构设计,提高结构的性能;在热力学中,有限元分析可以用于求解传热问题,包括热传导、对流、辐射等问题,用于优化热交换器、热管、散热器等热管理设备的设计;在流体力学中,有限元分析可以用于求解流体的流动、湍流、热对流等问题,用于优化流体管道、泵、阀门等设备的设计;在电磁学中,有限元分析可以用于求解电磁场、电场、磁场等问题,用于优化电机、电磁传感器等电磁设备的设计。
有限元分析的应用具有以下优点:能够提供合理的工程模型,能够准确预测系统的行为和性能;能够对系统进行优化设计,提高系统的效率和可靠性;能够节约时间和成本,通过计算机程序可以高效地进行分析,避免了昂贵的试验和实践;能够提高工程师的分析能力和创新能力,通过分析和模拟,能够深入理解系统的本质和行为规律。
总之,有限元分析是一种有效的工程数值分析方法,可以应用于各个领域的工程问题。
通过有限元分析,可以准确地评估系统的性能,并对系统进行优化设计。
随着计算机技术和数值计算方法的不断发展,有限元分析在工程领域的应用前景将越来越广阔。
什么是有限元分析

非变形体 (刚体)
材料力学
对象:简单变形体 特征:变形(小)
简单形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
结构力学
对象:数量众多的简单变形体 特征:变形(小)
简单形状的体(数量众多)
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
弹性力学
对象:任意变形体 特征:变形(小)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(针对微体dxdydz) (1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
模型的建立
设定材料属性
E、G、μ等等
添加边界条件
约束、载荷
划分网格
运行求解
后处理
结果的提取 应力、应变、位移等等
• 边界条件的添加
边界条件——当研究一个物体,与该物体相连接的其他物体被拿掉时,用一个约束或者 载荷来替代被拿掉的物体。这个约束或者载荷就是边界条件。
固定铰链
添加边界条件
位移边界条件 力边界条件
弹性常数
物体变形后的形状 物体的变形程度 物体的受力状态
物体的材料特征
• 基本方程
力的平衡方程: 几何变形方程: 材料的物理方程(本构关系):
力→应力 位移→应变 应力→应变
力平衡方程
几何变形方程
本构关系
• 有限元法的思路
连续体
有限元分析基础

第二章 结构几何构造分析
(a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构
14
第二章 结构几何构造分析
2.2 结构计算基本知识
2.2.1 结构计算简图
实际结构总是很复杂的,完全按照结构的实际情况 进行力学分析是不可能的,也是不必要的,因此在对实 际结构进行力学计算之前,必须将其作合理的简化,使 之成为既反映实际结构的受力状态与特点,又便于计算 的几何图形。这种被抽象化了的简单的理想图形称之为 结构的计算简图,有时也称为结构的力学模型。 结构计算所常用的结点和支座的简化形式:
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19
第二章 结构几何构造分析
单元结点位移条件
当 x0 时
v vi,
v x
i
当 xl
时 v vj,
v x
j
1 vi
2 i
3
3 l2
vi v j
1 l
2i
j
4
2 l3
vi v j
1 l2
i j
34
第三章 杆系结构静力分析的有限单元法
a. 杆件的转折点、汇交点、自由端、集中载荷作用 点、支承点以及沿杆长截面突变处等均可设置成结点。 这些结点都是根据结构本身特点来确定的。
b. 结构中两个结点间的每一个等截面直杆可以设置 为一个单元。 变换为作用在结点上的等效结点载荷。
有限元分析及应用的内容

有限元分析及应用的内容有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,通过将实际工程问题建模成有限元模型,采用数值计算方法对其进行求解,从而得到结构的应力、变形、热传导等结果。
其广泛应用于机械、航空航天、土木工程、电子等多个领域。
有限元分析的基本思想是将连续问题离散化成有限个简单的单元,再通过有限元法求得每个单元的解,最终拼接求出整个问题的解。
其核心步骤包括几何建模、单元划分、边界条件设置和求解等。
有限元分析的内容主要涉及以下几个方面:1. 结构力学分析:有限元分析广泛应用于结构力学分析中,可以进行静力、动力、热力、疲劳等各种类型的分析。
通过有限元法可以获得结构的应力、变形、位移、刚度和模态等信息,从而评估结构的安全性和性能。
2. 流体力学分析:有限元分析也可以用于流体力学分析中,如流体的流动、热传导等问题。
通过建立数值模型和使用适当的流体力学方程,结合有限元法可求解复杂的流体流动问题,如气体流动、液体冲击等。
3. 热传导分析:有限元分析可用于热传导问题的求解,如热传导、热辐射、热对流等。
通过建立热传导的数值模型、设置热边界条件和内部热源等,结合有限元法求解热传导问题,获得温度场和热通量等信息。
4. 模态分析:有限元分析可以进行模态分析,得到结构的固有频率、振型和振幅等信息。
模态分析在结构设计中起到重要的作用,可用于评估结构的稳定性、避免共振等问题。
5. 优化设计:有限元分析可结合优化算法进行结构的优化设计。
通过对结构的形状、材料、尺寸等参数进行改变,并以某种性能指标(如结构的最小重量、最大刚度等)作为目标函数,运用有限元分析求解器进行求解,最终得到最优的设计方案。
6. 疲劳分析:有限元分析可用于疲劳分析,通过数值模拟和加载历史条件等,得到结构在循环或随机载荷下的寿命预测。
疲劳分析对于评估结构在实际工况下的安全性和可靠性具有重要意义。
7. 耦合分析:有限元分析还可以进行结构与流体、热传导、电磁场等耦合分析。
有限元分析-详解

C、棱柱铰约束(Slider)
该约束只能施加于虚件之上,仅允许被约束的 对象沿指定放松的轴平移滑动,限制其它五个自由 度。一般施加过程为:单击 按钮,弹出图示对话 框。选择虚件加于Supports 栏,选择使用的坐标系, 并在需要放松的轴线方向输入1。单击确定完成定义。 如针对如图所示接触虚件示例,用加于虚件的取代 施加于Point1 的高级约束,结果相同。
Element Type 决定采用linear 线性直边单元亦或采 用parabolic 抛物线棱边单元,抛物线棱边单元能带 来更好的精度。
此外还可以通过如图所示对话框中的Local 卡片,通 过添加(Add)sage和sag来调整局部网格细密程度 和,带来更合适的分析精度。(注:全局网格划分越 细密或采用抛物线棱边单元同样能提高精度,但同时 计算耗时增加)。
网格和属性还可以通过模型管理工具条 来自行定义。其中:
图标用于给实体Solid 模型定义四面体单元;
图标用于给曲面surface 模型定义三角形单元,如 果用户决定把实体模型当作薄壳模型来处理,也可 以用于实体模型;
图标表示对线框wireframe 几何进行梁单元网格划 分,要求对象是在Generative Shape Design 或 Wireframe and Surface Design 中生成的部件, 或者在Structure Design 环境下生成的梁(不能对 Sketch 对象进行网格划分),且划分出的网格是一 维的。
CATIA有限元分析
有限元分析是实现安全设计的重要部分, 在日常设计工作中也经常得到应用。
一 、零件体有限元分析
零件体有限元分析的一般步骤为:
(1):建立零件模型并导入分析模块;
有限元分析—模态分析

有限元分析—模态分析有限元分析是一种结构力学领域的分析方法,可以对结构进行数值求解,以获得其固有频率和振型。
模态分析是其中的一种应用,用于研究结构在固有频率下的振动情况。
本文将介绍有限元分析的基本原理、模态分析的步骤和应用,并讨论其在实际工程中的重要性。
有限元分析是一种利用数值方法对结构进行力学分析的技术。
它将结构离散化为有限数量的单元,通过单元之间的相互作用来模拟整个结构的力学行为。
在进行模态分析时,通常采用线性弹性模型,即假设结构在固有频率下是线性弹性振动的。
模态分析的主要目标是确定结构的固有频率和振型。
固有频率是结构自由振动的频率,与结构的几何形状、材料性质和边界条件等相关。
振型则描述了结构在不同频率下的振动模式。
通过模态分析,可以了解结构在特定频率下的振动情况,为结构设计和改进提供依据。
模态分析的步骤主要包括:建模、网格划分、边界条件的定义、求解和结果分析。
建模是指将实际结构抽象为数学模型,在计算机上进行仿真。
网格划分是将结构划分为有限数量的单元,以便进行数值求解。
边界条件的定义是指确定结构的受力和支撑情况,包括约束、荷载等。
求解是指通过数值计算方法求解结构的固有频率和振型。
结果分析是对求解结果进行解释和评价,了解结构的振动特性。
模态分析在工程中具有广泛的应用。
首先,它可以用于优化结构设计。
通过模态分析,可以评估结构在不同固有频率下的振动情况,从而优化结构的设计参数,使其在工作频率下保持稳定。
其次,模态分析可以用于故障诊断。
结构的振动特性在受到损伤或故障时会发生变化,通过模态分析可以检测出这些变化,从而确定结构的健康状况。
最后,模态分析还可以用于结构改进。
通过分析结构的振动模式,可以确定结构的薄弱部位,从而采取相应的改进措施,提高结构的性能。
在实际工程中,模态分析具有重要的应用价值。
例如,在航空航天领域,模态分析可用于研究航空器的振动特性,以评估其结构的可靠性和安全性。
在建筑领域,模态分析可用于评估建筑物的地震响应性能,从而确保其在地震中的安全性。
有限元分析简介

有限元软件ansys简介有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
ANSYS是一种广泛的商业套装工程分析软件。
所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。
一般机械结构系统的几何结构相当复杂,受的负载也相当多,理论分析往往无法进行。
想要解答,必须先简化结构,采用数值模拟方法分析。
由于计算机行业的发展,相应的软件也应运而生,ANSYS 软件在工程上应用相当广泛,在机械、电机、土木、电子及航空等领域的使用,都能达到某种程度的可信度,颇获各界好评。
使用该软件,能够降低设计成本,缩短设计时间。
ANSYS 软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS 参数设计语言扩展宏命令功能。
有限元分析有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 本课题的完成情况 (4)加载和求解 根据分析并计算了的初始条件和公式(1)所得的对流系数 等参数。温度施加在板料和模具有限元模型的结点上,而结点 温度在整个瞬态分析过程保持不变,所以要先作稳态分析确定 初始温度。 国外发表相关文献设定的生产周期是30秒,零件在模具中 20秒,剩下的10秒用于取出零件和放置下一个钢板,其中零件 的淬火时间约是17秒,本文同样初步设定17秒,时间步长为0.1 秒,为便于观测结果所有步长均为恒值。最后设置分析输出选 项为LS-DYNA,存盘,进行求解。
4. 本课题的完成情况 (4)模拟结果
图3 温度分布图
4. 本课题的完成情况
图4 0.007S
4. 本课题的完成情况
5. 课题目前存在的问题
(1)本课题选用的为实体板料,受硬件影响在网格划 分时网格比较稀疏,导致板料和模具在圆角部位产生缺陷。 (2)板料圆角处的温度的较高。圆角处的冷却效果不 好,需要进一步调整参数获得较淬火后较均匀的温度分布。 (3)目前的课题完成进度较慢,需要加快课题的进展 速度;
报告内容
1.研究课题的介绍 2.课题的研究内容 3.现阶段的主要任务 4.本课题完成情况 5.课题目前存在的问题 6.下一步的研究计划
1.研究课题的介绍 随着人们的环保意识逐步增强,以及国家汽车正 碰、侧碰、排放等强制法规的相继推出,节能、环保 和安全已成为汽车生产的必备要素,汽车轻量化与高 强度是解决该问题的有效手段。 热冲压工艺是将高强度钢板加热到奥氏体温度范 围(900℃-1000℃),钢板组织完全奥氏体化后,快速 移动到模具,快速冲压,在压机保压状态下,通过模 具中布置的冷却回路并保证一定的冷却速度,对零件 进行淬火冷却,最后获得超高强度冲压件(组织为马 氏体,抗拉强度在1500MPa甚至更高)的新型工艺。
h A0
( )0.8 D 0.2
4. 本课题的完成情况 (3)边界条件的确定 主要的热量交换发生在模具和板料之间,水道和模 具之间的对流系数h可以通过公式(1)进行计算得出:
A0——温度参数; ρ——水的密度,kg/m3; v——冷却水的流速,m/s; D——冷却管道的直径,m。 所得出的冷却系数h为35790W/(m2· K)
2Hale Waihona Puke 本课题的主要研究内容(1)通过高温拉伸和热膨胀试验获得板料的热物性参数, 为仿真模拟所需的数据提供支撑作用。 (2)利用ANSYS/LS-DYNA有限元建模及瞬态温度场 的模拟,建立奥氏体的分解模型,输出奥氏体分解后子 相的重量百分比、零件的维氏硬度和屈服强度,观测板 料内部组织的分布情况。
3. 现阶段的主要任务
利用ANSYS/LS-DYNA有限元建立高强钢板热冲压模具冷
却系统有限元模型并对模具及板料瞬态温度场进行模拟;
4. 本课题的完成情况
首先,收集并阅读了大量的相关资料;选用热冲压成形材 料为USIBOR1500P钢板,其材料性能通过热拉伸及热膨胀试验 获得。 选用USIBOR1500P钢板的热力学参数如下:
6. 下一步的研究内容
(1)建立奥氏体分解模型,输出奥氏体分解后子相的 重量百分比、零件的维氏硬度和屈服强度。 (2)观测板料内部组织的分布情况。
4. 本课题的完成情况 (2)网格划分 网格是有限元分析的基本单元,直接关系到计算结果的正 确性与准确性,在划分网格时,原则上网格越小,分析就越精 确,但同时分析计算的时间也相应增加,对硬件的要求也要提 高;如果网格过大,将会大大降低分析结果的准确性,甚至导 致计算过程不收敛。而根据模型的复杂程度,本文选择 Thermal Solid、Brick 8node70,8结点六面体单元,应用智 能网格划分在凸、凹模圆角处的网格设置的密一些,其他部位 设置的稀疏一些,这样既能满足分析精度也能减小计算时间和 降低对硬件的要求。检查网格后,确认无网格缺陷。