fluent燃烧简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLUENT燃烧简介
FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示:
图 1 FLUENT模拟过程中所需的物理模型
1.1.1 气相燃烧模型
一般的有限速率形式(Magnussen模型)
守恒标量的PDF模型(单或二组分混合分数)
层流火焰面模型(Laminar flamelet model)
Zimount 模型
1.1.2 离散相模型
煤燃烧与喷雾燃烧
1.1.3 热辐射模型
DTRM,P-1,Rosseland 和Discrete Ordinates 模型
1.1.4 污染物模型
NOx模型,烟(Smoot)模型
2.1气相燃烧模型
·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:
有限速率燃烧模型---预混、部分预混和扩散燃烧
混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧
反应进度方法(Zimont模型)---预混燃烧
混合物分数和反应进度方法的结合---部分预混燃烧
2.2.1 有限速率模型
化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:
-----(1)
其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:
-----(2)
-----(3)
计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:
优点:适用于预混、部分预混和扩散燃烧,简单直观;
缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
2.2.2守恒标量的PDF模型
守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。
该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。
-----(4)
-----(5)
其中-----(6)
混合分数定义-----(7)
其中Zk代表元素k的元素质量分数,下标F和O分别代表燃料和氧化剂的进口值。对于简单的燃料/氧化剂体系,每一计算单元内的混合物分数代表了该单元内的燃料质量分数,由于混合物分数是守恒标量,因此在求解输运方程时不再考虑反应源项。
在该方法中,化学反应认为足够快,体系中的组分立刻达到平衡状态。化学平衡组分在混合物空间的分布可示意如下:
化学反应和湍流之间的相互作用采用概率密度函数(PDF)的方法处理:
上图代表了概率密度函数p(V)的定义,因此在混合物分数空间,f标量的时均值可由下式计算:
守恒标量PDF模型的优缺点:
优点:可以预测中间组分的浓度,可以考虑流动中的耗散现象,可以考虑化学反应与湍流之间的相互作用,该方法不需要求解大量的组分和能量的输运方程,因此可以缩短计算时间。缺点:研究的流动体系必须接近于局部化学平衡状态,且不能用于非湍流流动,同时亦不能处理预混燃烧问题。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
2.2.3 层流火焰面模型
层流火焰面模型的基本思想是把湍流扩散火焰看作是层流对撞扩散火焰面的系统。该方法可以看作是守恒标量PDF模型的一个扩展,它可用于处理非化学平衡状态的体系,即可以利用化学反应动力学的方法处理反应流。
不同于守恒标量的PDF模型,标量是混合物分数和标量耗散率的函数,而非混合物分数的函数:
-----(8)
指定混合物分数f的PDF符合β函数分布,标量耗散率χ的PDF符合狄拉克-δ函数分布,因此,时均标量值可以通过在f和χ空间求标量的统计平均来得到(即,考虑化学反应与湍流的相互作用):
-----(9)
层流火焰面模型的计算过程如下:
1、计算不同标量耗散率下,标量在混合物分数f空间的分布,即求解火焰面方程,组分方程为:
-----(10)
能量方程为:
-----(11)
从而得到标量随混合物分数和标量耗散率的变化关系,即式(8),并以火焰面数据库文件的形式保存结果。
2、火焰面数据库文件也可由其它软件生成,若得到的库文件为单标量耗散率,则需计算不同标量耗散库的库文件,最后将它们合并。
3、利用(9)式计算火焰面的PDF库,从而得到时均标量随平均混合物分数和平均混合物方差的变化关系。
4、利用求解平均混合物分数及其平均方差的输运方程的方法,在流场中计算这两个量,然后再利用得到的PDF库查找时均标量值。
2.2.4 预混燃烧的Zimont模型
湍流预混燃烧的化学反应采用反应进度(progress variable),c,进行表征,如下: