fluent燃烧简介
fluent燃烧简介

FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
fluent燃烧模型点火机理

fluent燃烧模型点火机理
在 Fluent 燃烧模型中,点火机理(Ignition Mechanism)是一种用于描述燃料在一定条件下发生化学反应并点燃的过程的模型。
该模型主要考虑了燃料、氧气和点火源之间的相互作用,以及它们如何影响火焰的传播和燃烧过程。
具体来说,点火机理主要关注以下几个方面的因素:
1.燃料和氧气混合物的化学性质:包括燃料的类型、氧气的浓度和温度等。
这些因素决定了混合物在受到点火源作用时是否能够被点燃。
2.点火源的性质:点火源的能量、温度和持续时间等都会影响燃料的点燃过
程。
不同的点火源会产生不同的点燃效果。
3.火焰传播速度:火焰传播速度是描述火焰在燃料和氧气混合物中传播的快
慢的参数。
它是衡量燃烧反应速度的重要指标之一。
基于这些因素,Fluent 燃烧模型可以通过不同的算法和模型来模拟燃料的点燃过程。
这些算法和模型可以模拟火焰在混合物中的传播,预测火焰的形状、位置和温度分布等,以及模拟燃烧过程中产生的各种化学反应和热量传递等。
总的来说,Fluent 燃烧模型的点火机理是一个复杂的模型,需要考虑多个因素和参数,以准确地模拟燃料的点燃过程。
这些模型和方法可以为燃烧设备的设计、优化和改进提供重要的指导和参考。
第六章,FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
fluent甲烷燃烧例子

fluent甲烷燃烧例子介绍甲烷是一种常见的天然气,也是一种重要的燃料。
在工业和家庭中,甲烷常被用于加热、烹饪和发电等用途。
了解甲烷的燃烧过程对于提高能源利用效率、减少环境污染具有重要意义。
Fluent是一种流体动力学软件,可以用于模拟和分析各种流体流动和燃烧过程。
在本文中,我们将使用Fluent来模拟甲烷的燃烧过程,并通过一个具体的例子来探讨甲烷燃烧的特点和影响因素。
模拟设置在Fluent中,我们需要提供一些基本参数来定义模拟场景。
对于甲烷燃烧例子,我们可以假设一个封闭的燃烧室,其中包含甲烷和空气。
具体的模拟设置包括:1.定义几何形状:燃烧室的几何形状可以是简单的长方体或圆柱体,具体大小和比例可以根据实际情况进行设定。
2.设定边界条件:燃烧室的各个边界需要定义不同的条件,例如进口边界可以设定为甲烷和空气的混合物,出口边界可以设定为燃烧产物的组合。
3.确定初始条件:模拟开始时,需要给定燃烧室内各个区域的初始温度、压力和组分分布等信息。
4.定义物理模型:在模拟中,需要选择适当的物理模型来描述甲烷的燃烧过程,例如湍流模型、燃烧模型等。
燃烧过程甲烷的燃烧过程可以简化为以下几个步骤:1.混合:甲烷和空气在燃烧室中混合,形成可燃混合物。
混合过程中需要考虑气体的扩散和对流等因素。
2.点火:在适当的条件下,混合物中的甲烷可以被点火,引发燃烧反应。
点火过程需要考虑点火源的位置和能量等因素。
3.燃烧:点火后,甲烷开始燃烧,产生燃烧产物和释放能量。
燃烧过程需要考虑燃烧速率、温度分布等因素。
4.燃烧产物:甲烷燃烧的主要产物包括二氧化碳、水蒸气和一氧化碳等。
燃烧产物的生成和分布对环境和能源利用具有重要影响。
影响因素甲烷的燃烧过程受到多种因素的影响,下面列举了一些主要的影响因素:1.温度:燃烧温度是影响燃烧速率和产物生成的重要因素。
较高的温度可以促进燃烧反应,但过高的温度会导致产物生成的变化。
2.氧气浓度:氧气是燃烧的必要条件,较高的氧气浓度可以提高燃烧速率。
Fluent燃烧模型

Rosseland模型是最为简化的辐射模型,只能应用于大尺度辐射计算。其优点是速度最快,需要内存最少。
Discrete Ordinates (DO) Model
DO模型是所有四种模型是最为复杂的辐射模型,从小尺度到大尺度辐射计算都适用,且可计算非-灰度辐射和散射效应,但需要较大计算量。
三、污染模型
NOx模拟
Fluent软件提供了三种NOx形成的模型:Thermal NOx、Prompt NOx和Fuel NOx形成模型。从而可以模拟绝大多数情况下的NOx生成问题。
烟尘模型(Soot Model)
Fluent软件可以考虑单步和两步的烟尘生成问题。烟尘的燃烧由有限速率模型模拟,并考虑了烟尘对辐射吸收的影响。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型
层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。
FLUENT软件的燃烧模型介绍
Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍:
二、分散相燃烧模型
除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型:
第六章,FLUENT中的燃烧模拟

6.1燃烧模拟的重要性面向实际装置(如锅炉、内燃机、火箭发动机、火灾等) 面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT 燃烧模拟方法概要FLUENT 可以模拟宽广范围内的燃烧(反应流)问题。
保证你所使用的物理模型要适合你所研究的问题 下图所示:气相燃烧模型一般的有限速率形式(Mag nu ssen 模型) 守恒标量的PDF 模型(单或二组分混合物分数) 层流火焰面模型(Laminar flamelet model )Zimont 模型离散相模型 煤燃烧与喷雾燃烧 热辐射模型DTRM, P-1, Rosseland 和 Discrete Ordinates 模型污染物模型NOx 模型,烟(Soot )模型第六章,FLUENT中的燃烧模拟然而,需要注意的是:你必须FLUENT 在燃烧模拟中的应用可如6.3气相燃烧模型 6.3.1燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应, 而且这些组分之间的反应时间尺度相差很大 (10— 9〜102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计 算成本,如下: 有限速率燃烧模型一一 > 预混、部分预混和扩散燃烧 混合物分数方法(平衡化学的 PDF 模型和非平衡化学的层流火焰面模型)烧反应进度方法(Zimont 模型)一一 >预混燃烧 混合物分数和反应进度方法的结合一一>部分预混燃烧6.3.2 一般的有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 求解组分的输运方程,得到每种组分的时均质量分数值,如下:鲁的)+ ▽■阿)=-v-Ji+fli+Si其中组分j 的反应源项为所有 K 个反应中,组分j 的净生成速率:R jR jkk6式中,反应k 中的组分j 的反应速率可按照 Arrhenius 公式、混合(mixing )速率或 breakup ”速率的方法求解。
fluent 氢燃烧 算例

fluent 氢燃烧算例
Fluent氢燃烧是一个用于分析氢燃料在燃烧室内燃烧的计算流体力学(CFD)软件。
此软件的派生版本可以被用于分析任何复杂流量的
问题,如空气动力学、传热、多相流等。
下面我们将介绍Fluent氢燃烧的算例分析步骤:
步骤一:准备流体几何模型和网格文件。
为了分析氢燃烧,我们需要准备好燃料室模型,模型中应包括燃
烧室、注油嘴、燃料喷口、空气进口等要素。
在此之后,生成适当的
三维网格。
步骤二:设置计算参数。
在Fluent软件中,我们需要设置如下参数:时间步长、气体压力、物理模型、计算精度、边界条件、初始条件等。
步骤三:定义边界条件。
在模型中,不同的区域需要定义不同的边界条件。
例如,燃烧室
壁面需要设置热传导系数,空气进口和燃料喷口需要设置质量流量等。
步骤四:计算。
完成前三个步骤后,我们可以运行计算了。
Fluent中提供了多种不同的计算器和求解器来处理不同类型的问题。
氢燃烧的计算通常使
用密度泛函理论(DFT)求解。
步骤五:结果分析。
计算完成后,我们可以使用Fluent提供的后处理工具来可视化
结果。
例如,绘制温度分布、燃料浓度分布、速度流线等。
综上所述,通过以上步骤的执行,我们可以在Fluent氢燃烧中
进行氢燃料的燃烧分析。
这可以帮助工程师们更好地了解燃料在燃烧
室内的行为,以及如何优化系统的设计,使其在燃料燃烧过程中能够
得到更好的效率和性能。
Fluent软件的燃烧模型介绍

FLUENT软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
∙PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
∙非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。
∙预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
fluent甲烷燃烧机理文件

fluent甲烷燃烧机理文件甲烷是一种碳氢化合物,由一个碳原子和四个氢原子组成。
它是天然气的主要成分,也是一种重要的燃料。
甲烷燃烧是一种常见的化学反应,当甲烷与氧气接触时,会发生燃烧反应,产生二氧化碳和水。
甲烷的燃烧机理是一个复杂的过程,涉及到多个步骤和中间产物。
甲烷的燃烧可以分为三个主要阶段:点火阶段、燃烧阶段和熄灭阶段。
在点火阶段,甲烷和氧气在高温下发生反应,产生一种称为自由基的中间产物。
这些自由基随后会与氧气反应,导致化学链反应的产生。
这些链反应会引发甲烷的燃烧,释放出大量的热能。
在燃烧阶段,甲烷和氧气的反应将进一步加剧,加热周围的物质。
同时,产生的热能会使甲烷分子和氧气分子分解,形成碳氢化合物和水蒸气。
这一过程是一个高温高压的化学反应,产生的热能会使周围的物质燃烧起来。
最后,在熄灭阶段,当氧气供给不足时,燃烧反应会停止。
这时,燃烧区域内的氧气已经被消耗殆尽,甲烷分子无法继续与氧气反应。
这时,燃烧区域内的温度会迅速下降,甲烷分子不再能够与氧气反应,导致燃烧停止。
甲烷燃烧的机理是一个复杂的过程,受到温度、压力、氧气浓度等多种因素的影响。
在工业生产和能源利用中,了解甲烷燃烧的机理对于提高能源利用效率、减少环境污染具有重要意义。
另外,甲烷燃烧也常常受到化学反应动力学的影响。
化学反应动力学研究了化学反应速率与反应条件(如温度和浓度)之间的关系。
在甲烷的燃烧过程中,由于燃烧反应涉及到多个步骤和中间产物,因此其反应速率会受到多种因素的影响。
总之,甲烷的燃烧机理是一个复杂的过程,涉及多个步骤和中间产物。
了解甲烷燃烧的机理对于优化工业生产和能源利用方式具有重要意义。
同时,化学反应动力学的研究也为我们深入理解甲烷燃烧提供了重要的理论基础。
fluent在燃烧方面的应用

CFD主要工作流程
• 几何描述
• 说明流动条件
• 选择计算的数学模型
• 说明初始条件、边界条件
• 网格生成
• 选择数值计算参数
• CFD程序计算 • 流场结果的可视化分析处理 • 准确度估计
流场结果后处理:
通过等值图、流线图、XY函数曲线图等手 段对流场密度、压力、马赫数等参数和流速、 流向等进行分析
– 描述流体运动的偏微分方程数学特性非常复杂,迄今为止只有 很少数很简单的流动用AFD获得了结果
• CFD与实验研究(EFD)相比有独特的优势
– 不需要实验模型、风洞等,可节省大量的时间和经费 – 可以获得远比实验数据丰富、直观的三维流场结果 – 可以模拟许多难以进行实验的流动问题 – 能实现计算机的“虚拟”设计/分析,一定程度代替制造和测
– 松弛迭代、CFL条件、Lax定理等
• 60~70年代初步形成数值计算能力,无粘线性问题计算
– 面元法,用于飞机和汽车工业
• 70~80年代实现了无粘非线性问题的计算
– 全速势方程计算,激波装配法,不可压N-S方程计算
• 80~90年代取得了Euler/N-S方程计算突破
– TVD、MUSCL等高分辨率格式,时间推进的有限体积法
— Fluent应用 —
燃烧模拟
目录 本讲
第一章 Fluent简介
§ 1.3 计算流体力学中的应用
可用于非常广泛的涉及流体运动的领域 • 航空航天 • 天气预测 • 舰船设计 • 汽车工业 • 能源工程 • 其他工业 • 生物工程 • 体育竞赛
— Fluent应用 —
燃烧器模拟
目录 本讲
第一章 Fluent简介
1. /dvbbs/index.asp?action=fra meon
fluent燃烧简介

FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
fluent燃烧机理

fluent燃烧机理
Fluent燃烧机理是一种在工程界非常广泛使用的计算流体力学软件,主要用于模拟和分析燃烧过程中的复杂流体动力学现象。
该软件的独特之处在于它能够基于不同的燃烧机理进行模拟,从而实现对不同类型的燃料和氧化剂的燃烧过程的准确描述和预测。
Fluent燃烧机理采用了一种流体动力学的计算方法,通过对流体的质量、动量、能量和化学反应等因素进行数值模拟,从而实现对燃烧过程中复杂的流体现象的模拟和分析。
通过这种模拟方法,可以准确地预测燃烧过程中的温度、压力、速度、组分分布等参数,并且可以对各种不同类型的燃料和氧化剂的燃烧行为进行全面而深入的探究。
Fluent燃烧机理的研究和应用领域非常广泛,在航空航天、汽车、能源、环境等领域都有重要的应用价值。
例如,在优化燃油喷射系统和减少废气排放方面,Fluent燃烧机理可以提供有力的支持和指导,为工程师和科学家提供了一个快速而准确的工具,用于预测不同的燃油喷射参数对尾气排放的影响。
总之,Fluent燃烧机理是一种非常强大的计算流体力学软件,可以帮助人们深入研究和理解燃烧过程中的复杂流体动力学现象,从而为各种不同的应用提供了有力的支持和指导。
未来,随着该软件在各个领
域的不断深入研究和应用,相信它将会为人们带来更多更具创造性和实用性的发现和创新。
fluent甲烷预混燃烧温度设置

主题:fluent甲烷预混燃烧温度设置随着环境保护意识的提高,燃烧技术的研究与应用越来越受到关注。
fluent甲烷预混燃烧是一种常见的燃烧技术,其燃烧温度的设置对于燃烧效率和环境影响具有重要意义。
本文将对fluent甲烷预混燃烧温度设置进行深入探讨。
一、fluent甲烷预混燃烧的基本原理1.1 甲烷预混燃烧概述甲烷预混燃烧是指将甲烷与空气混合后一起供给燃烧器进行燃烧。
其基本原理是在适当的空气和燃料混合比下,通过点火后在燃烧器内燃烧产生热能,从而达到让甲烷充分燃烧的效果。
1.2 燃烧温度对甲烷预混燃烧的影响燃烧温度是指燃烧过程中燃料和空气混合后产生的热量。
燃烧温度的高低直接影响着燃烧效率和产生的污染物。
合理设置燃烧温度对于保证燃烧效率和减少环境污染具有重要意义。
二、影响fluent甲烷预混燃烧温度的因素2.1 空气与燃料的混合比空气与燃料的混合比是影响燃烧温度的重要因素之一。
当混合比过高时,燃烧温度会降低,造成燃烧效率下降;当混合比过低时,燃烧温度会升高,产生过多的氮氧化物。
2.2 燃烧室结构燃烧室的设计和结构对燃烧温度也有一定影响。
合理的燃烧室结构能够使燃料和空气混合更加均匀,从而提高燃烧效率并控制燃烧温度。
2.3 空气预热空气的预热也会对燃烧温度产生影响。
预热后的空气能够促进燃烧反应的进行,提高燃烧温度并减少污染物的生成。
三、fluent甲烷预混燃烧温度的设置方法3.1 确定最佳混合比在fluent甲烷预混燃烧时,需要根据实际情况确定最佳的空气与燃料的混合比,以保证燃烧温度在合适的范围内。
3.2 优化燃烧室结构通过合理的燃烧室设计和结构优化,可以使燃气和空气更加均匀混合,从而提高燃烧效率和控制燃烧温度。
3.3 添加空气预热装置在fluent甲烷预混燃烧系统中添加空气预热装置,可以有效提高燃料的燃烧效率,降低燃烧温度并减少环境污染。
四、fluent甲烷预混燃烧温度设置的应用意义4.1 提高燃烧效率合理设置燃烧温度可以提高燃料的燃烧效率,降低能源消耗。
Fluent软件的燃烧模型介绍(精)

Fluent软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰,可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。
预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
fluent教程 燃烧模拟

组分输运方程中没有化学反应源项.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
可以用单个混合物分数模拟的燃烧系统
Fuel/air 扩散火焰: 多氧化剂入口的扩散火焰: 多燃料进口的扩散火焰:
60% CH4 40% CO
气相燃烧
有限速率模型 (Magnussen model) 守恒标量的 PDF模型 (一个或两个混合分数) 层流火焰面(小火焰)模型 (V5) Zimont model (V5)
稀疏相模型
湍流颗粒弥散
随机轨道模型(Stochastic tracking) 颗粒云团模型(Particle cloud model) (V5)
求解组分的质量分数输运方程,化学反应机理由用户自己定 义。
非预混燃烧模型
该模型中并不求解单个组分的输运方程,而是求解一个或者 两个守恒标量(混合分数)的输运方程
预混燃烧模型
模拟完全混合的燃烧问题。充分混合的燃烧物和产物被火焰 前锋分隔,求解出的化学反应进展变量来描述该火焰前峰的位置 部分预混燃烧模型
实际处理方法
简化化学反应机理 有限速率燃烧模型
考虑湍流及其混合、弱化反应化学 混合分数模型
平衡化学的 PDF模型 层流火焰面模型
进展变量模型
Zimont 模型
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
有限速率模型
用总包机理反应描述化学反应过程. 求解化学组分输运方程.
计算流体与传热传质
FLUENT中组分输运及化学反应 (燃烧)模拟
热科学与能源工程系 2003年10月
fluent燃烧说明介绍

FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
fluent燃烧案例

fluent燃烧案例
一个典型的fluent燃烧案例可以是用于模拟内燃机燃烧过程。
内燃机通过燃烧混合气体(通常是汽油或柴油)来产生动力。
利用FLUENT软件,可以模拟燃烧室内燃烧过程的流动和热
学性质,以及燃烧产物的生成和分布。
在该案例中,首先需要建立内燃机的几何模型。
这可以通过CAD软件绘制出引擎的各个部分,包括气缸、活塞、阀门等。
然后,将模型导入FLUENT中,并设置适当的边界条件和初
始条件。
接下来,需要定义燃烧模型。
根据燃料的类型和燃烧室的设计,可以选择适当的燃烧模型,如预混合燃烧模型、不完全燃烧模型等。
还需要输入燃料的物理性质参数,如燃烧温度、燃烧速率等。
然后,设置求解器和数值方法。
FLUENT提供了多种求解器
和数值方法,用于求解Navier-Stokes方程、能量守恒方程、
物质守恒方程等。
根据具体情况,选择合适的求解器和数值方法。
最后,进行模拟计算并进行后处理。
通过求解器和数值方法,可以得到燃烧室内流场、温度场和燃烧产物分布。
利用后处理工具,可以对这些结果进行可视化、统计和分析,以评估燃烧过程的效率和性能。
总之,上述案例展示了利用FLUENT进行内燃机燃烧过程模
拟的一般流程。
通过模拟和分析,可以优化燃烧室的设计,并预测燃烧产物的生成和分布,从而提高内燃机的燃烧效率和排放性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
2.2.2守恒标量的PDF模型守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。
该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。
-----(4)-----(5)其中-----(6)混合分数定义-----(7)其中Zk代表元素k的元素质量分数,下标F和O分别代表燃料和氧化剂的进口值。
对于简单的燃料/氧化剂体系,每一计算单元内的混合物分数代表了该单元内的燃料质量分数,由于混合物分数是守恒标量,因此在求解输运方程时不再考虑反应源项。
在该方法中,化学反应认为足够快,体系中的组分立刻达到平衡状态。
化学平衡组分在混合物空间的分布可示意如下:化学反应和湍流之间的相互作用采用概率密度函数(PDF)的方法处理:上图代表了概率密度函数p(V)的定义,因此在混合物分数空间,f标量的时均值可由下式计算:守恒标量PDF模型的优缺点:优点:可以预测中间组分的浓度,可以考虑流动中的耗散现象,可以考虑化学反应与湍流之间的相互作用,该方法不需要求解大量的组分和能量的输运方程,因此可以缩短计算时间。
缺点:研究的流动体系必须接近于局部化学平衡状态,且不能用于非湍流流动,同时亦不能处理预混燃烧问题。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
2.2.3 层流火焰面模型层流火焰面模型的基本思想是把湍流扩散火焰看作是层流对撞扩散火焰面的系统。
该方法可以看作是守恒标量PDF模型的一个扩展,它可用于处理非化学平衡状态的体系,即可以利用化学反应动力学的方法处理反应流。
不同于守恒标量的PDF模型,标量是混合物分数和标量耗散率的函数,而非混合物分数的函数:-----(8)指定混合物分数f的PDF符合β函数分布,标量耗散率χ的PDF符合狄拉克-δ函数分布,因此,时均标量值可以通过在f和χ空间求标量的统计平均来得到(即,考虑化学反应与湍流的相互作用):-----(9)层流火焰面模型的计算过程如下:1、计算不同标量耗散率下,标量在混合物分数f空间的分布,即求解火焰面方程,组分方程为:-----(10)能量方程为:-----(11)从而得到标量随混合物分数和标量耗散率的变化关系,即式(8),并以火焰面数据库文件的形式保存结果。
2、火焰面数据库文件也可由其它软件生成,若得到的库文件为单标量耗散率,则需计算不同标量耗散库的库文件,最后将它们合并。
3、利用(9)式计算火焰面的PDF库,从而得到时均标量随平均混合物分数和平均混合物方差的变化关系。
4、利用求解平均混合物分数及其平均方差的输运方程的方法,在流场中计算这两个量,然后再利用得到的PDF库查找时均标量值。
2.2.4 预混燃烧的Zimont模型湍流预混燃烧的化学反应采用反应进度(progress variable),c,进行表征,如下:-----(12)其中Yp和Yp(ad)分别代表当前和完全绝热燃烧后燃烧产物的质量分数,其取值范围在0到1之间,0代表未燃混合物,1代表已燃混合物。
若用反应进度c代表其平均值,则其输运方程可表达如下:-----(13)上式中平均反应速率项如下求解:-----(14)ρv代表未燃物密度,Ut代表湍流火焰传播速度。
湍流预混燃烧的关键在于求解湍流火焰传播速度(位于湍流火焰表面的法线方向),该速度受两方面馆因素的影响:一是层流火焰传播速度,即决定于燃料和氧化剂的浓度、初始温度、组分的扩散特性以及化学反应动力学特性;二是有大涡褶皱和拉伸以及由小涡决定的火焰表面厚度。
根据上述讨论,FLUENTZ中的湍流火焰传播速度可表达为:-----(15)式中,A模型常数,u`速度均方值,Ul层流火焰传播速度,α=k/ρCp未燃物的分子导热系数,I=CdU3/ε湍流长度尺度,τt为湍流时间尺度,τc为化学反应时间尺度。
为考虑火焰拉伸所导致的吹熄现象,在反应速率源项中可乘以一个拉伸因子G,它代表了拉伸所导致火焰不熄火的概率。
-----(16)2.2.5 部分预混燃烧模型部分预混燃烧系统是指这样一种预混火焰,其燃料/氧化剂之比不唯一。
FLUENT中的部分预混模型是非预混模型和预混模型的结合。
预混燃烧的反应进度,c,决定了火焰前锋的位置,在火焰前锋的后面(c=1),混合物已燃,使用守恒标量PDF或层流火焰面模型的解;在火焰前锋的前面(c=0),组分质量分数,温度和密度由混合但未燃烧混合物分数来计算。
在火焰内部,未燃和已燃混合物的线性结合的方法被使用。
部分预混模型求解平均反应进度c,平均混合物分数f和混合物分数方差f2的输运方程。
平均标量可由如下的f和c的PDF来计算:-----(17)在火焰很薄的假设下,由于存在未燃的反应物和已燃的产物,则平均标量可如下计算:-----(18) 具体煤粉燃烧算例1、建立求解模型:连续相(气体)只有在非耦合求解时非预混燃烧模型才是可用的。
Define---models---solver...2、打开RNG k-e湍流模型Define---models---viscous...3、打开非预混燃烧模型Define---models---species...a、在Model下选择Non-Premixed Combustion。
当点OK时,FLUENT将打开一个对话框,要求输入在模拟中要用到的PDF 文件。
b、在选择文件对话框中,选择并读入非绝热的PDF文件(coal.pdf)当FLUENT读入非绝热PDF文件时,它会自动激活能量求解方程,所以你可以不用打开能量面板激活传热方程。
3、选择P-1以激活辐射模型。
Define---Models---Radiation....P1模型是能求解气体和颗粒间辐射传热的模型之一。
2、建立求解模型:离散相FLIENT会用离散相模型来模拟煤粉的流动。
这模型会预示出单个煤粒的轨迹,每一个都代表煤的连续流,在交替计算离散相的轨迹和气相连续方程时,煤粒与气相间热量、动量、质量的传递都将包含其中。
1、耦合离散相与连续相流动预报。
Define---Models---Discrete Phase.....a、在Interaction 下,选中Interaction with Continuous Phase 选项。
这选项将激活耦合求解,在求解中,离散相的轨迹将会对气相产生影响,如果不选中这选项,你仍可以看到煤粒的轨迹,但上述参数对连续相的流动将没有任何影响。
b、定义耦合参数,设定Number of continous phase interations per DPM interation 为200;在一些有着高质量粒子和较大网格尺寸的问题中,应该给这参数设定高一点的值,这对低频率轨迹是很有好处的,为了更完全地聚合气相方程,应先对轨迹进行反复的计算。
c、在Tracking paramete 下,为MAX Number of steps 输入500000。
d、打开Specify Length Scale ,保持Lenth Scale的默认值为0.01m。
Length Scale 控制离散相轨迹综合中用到的每一次步数的大小。
这儿用到的值0.01m意味着10m长的一段轨迹要计算1000步左右。
e、在Options下,选择Particle Radiation Interation。
2、创建离散相煤的射入轨迹。
煤粉流用初始条件定义,这初始条件认为煤是进入到气体中。
在颗粒的运动方程的每一次综合中,FLUENT将用这些初始条件作为计算的开始点。
在这里,煤的总质量流的比率为2.4653kg/s,在10-160微米直径方向上,假设颗粒是服从Rosin-Rammler尺寸分布的。
其他的初始条件以及适当的输入程序将在下面做详细说明。
Define----Injections.....a、在Injections面板中点击Creat按钮。